Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms

Tianyi Wang , Dawei Su , Devaraj Shanmukaraj , Teofilo Rojo , Michel Armand , Guoxiu Wang

Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 200 -237.

PDF
Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 200 -237. DOI: 10.1007/s41918-018-0009-9
Review Article

Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms

Author information +
History +
PDF

Abstract

Sodium-ion batteries have been emerging as attractive technologies for large-scale electrical energy storage and conversion, owing to the natural abundance and low cost of sodium resources. However, the development of sodium-ion batteries faces tremendous challenges, which is mainly due to the difficulty to identify appropriate cathode materials and anode materials. In this review, the research progresses on cathode and anode materials for sodium-ion batteries are comprehensively reviewed. We focus on the structural considerations for cathode materials and sodium storage mechanisms for anode materials. With the worldwide effort, high-performance sodium-ion batteries will be fully developed for practical applications.

Keywords

Sodium-ion battery / Cathode material / Anode material / Crystal structure / Sodium storage mechanism / Energy storage

Cite this article

Download citation ▾
Tianyi Wang, Dawei Su, Devaraj Shanmukaraj, Teofilo Rojo, Michel Armand, Guoxiu Wang. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochemical Energy Reviews, 2018, 1(2): 200-237 DOI:10.1007/s41918-018-0009-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based materials: a growing research path. Energy Environ. Sci., 2013, 6: 2312-2337.

[2]

Han M, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci., 2015, 8: 81-102.

[3]

Zhu, Y., Yuan, S., Bao, D., et al.: Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 29, 1603719 (2017)

[4]

Han M, Gonzalo E, Sharma N, et al. High performance P2 phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient temperature sodium ion batteries. Chem. Mater., 2016, 28: 106-116.

[5]

Fouassier C, Matejka G, Réau JM, et al. Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1): le système cobalt-oxygène-sodium. J. Solid State Chem., 1973, 6: 532-537.

[6]

Zhu Y, Yin Y, Yang X, et al. Transformation of rusty stainless-steel meshes into stable, low-cost and binder-free cathodes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed., 2017, 56: 7881-7885.

[7]

Billaud J, Singh G, Armstrong A, et al. Na0.67Mn1−xMg xO2 (0 ≤  x≤0.2) a high capacity cathode for sodium-ion batteries. Energy and Environ. Sci., 2014, 7: 1387-1391.

[8]

Wang H, Yuan S, Ma D, et al. Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci., 2015, 8: 1660-1681.

[9]

Tarascon JM Key challenges in future Li-battery research. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 2010, 368: 3227-3241.

[10]

Alcantara R, Jimenez-Mateos JM, Lavela P, et al. Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun., 2001, 3: 639-642.

[11]

Alcantara R, Lavela P, Ortiz GF, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid State, 2005, 8: A222-A225.

[12]

Burba CM, Frech R Vibrational spectroscopic investigation of structurally-related LiFePO4, NaFePO4, and FePO4 compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2006, 65: 44-50.

[13]

Sun T, Li Z, Wang H, et al. A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed., 2016, 55: 10662-10666.

[14]

Yazami R, Lebrun N, Bonneau M, et al. High performance LiCoO2 positive electrode material. J. Power Sources, 1995, 54: 389-392.

[15]

Armand M, Whittingham M, Huggins R The iron cyanide bronzes. Mat. Res. Bull., 1972, 7: 101-107.

[16]

Braconnier JJ, Delmas C, Fouassier C, et al. Comportement electrochimique des phases Na xCoO2. Mater. Res. Bull., 1980, 15: 1797-1804.

[17]

Berthelot R, Carlier D, Delmas C Electrochemical investigation of The P2-Na xCoO2 phase diagram. Nat. Mater., 2011, 10: 74-80.

[18]

Doeff, M.M., Ma, Y., Peng, M.Y., et al.: Solid sodium solid polymer electrolyte batteries. In: Proceedings of 28th Intersociety Energy Conversion Engineering Conference (Iecec-93), vol. 1, pp. 1111–1116 (1993)

[19]

Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Na x[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater., 2012, 11: 512-517.

[20]

Kim D, Lee E, Slater M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun., 2012, 18: 66-69.

[21]

Komaba S, Takei C, Nakayama T, et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun., 2010, 12: 355-358.

[22]

Xia X, Dahn JR NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State, 2012, 15: A1-A4.

[23]

Mendiboure A, Delmas C, Hagenmuller P Electrochemical intercalation and deintercalation of Na xMnO2 bronzes. J. Solid State Chem., 1985, 57: 323-331.

[24]

Stoyanova R, Carlier D, Sendova-Vassileva M, et al. Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J. Solid State Chem., 2010, 183: 1372-1379.

[25]

Hamani D, Ati M, Tarascon JM, et al. Na xVO2 as possible electrode for Na-ion batteries. Electrochem. Commun., 2011, 13: 938-941.

[26]

Doeff MM, Ma Y, Visco SJ Electrochemical insertion of sodium into carbon. J. Electrochem. Soc., 1993, 140: L169-L170.

[27]

Delmas C, Braconnier JJ, Fouassier C, et al. Electrochemical intercalation of sodium in Na xCoO2 bronzes. Solid State Ionics, 1981, 3–4: 165-169.

[28]

Smirnova O, Avdeev M, Nalbandyan V, et al. First observation of the reversible O3↔ P2 phase transition: crystal structure of the quenched high-temperature phase Na0. 74Ni0. 58Sb0. 42O2. Mater. Res. Bull., 2006, 41: 1056-1062.

[29]

Shacklette LW, Jow JR, Townsend L Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc., 1988, 135: 2669-2674.

[30]

Bhide A, Hariharan K Physicochemical properties of Na xCoO2 as a cathode for solid state sodium battery. Solid State Ionics, 2011, 192: 360-363.

[31]

Sathiya M, Hemalatha K, Ramesha K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater., 2012, 24: 1846-1853.

[32]

Carlier D, Cheng J, Berthelot R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans., 2011, 40: 9306-9312.

[33]

Lu Z, Dahn JR In situ X-ray diffraction study of P2-Na 2/3Ni1/3Mn 2/3O2. J. Electrochem. Soc., 2001, 148: A1225-A1229.

[34]

Thackeray MM Manganese oxides for lithium batteries. Prog. Solid State Chem., 1997, 25: 1-71.

[35]

Parant JP, Olazcuaga R, Devalette M, et al. Sur quelques nouvelles phases de formule Na xMnO2 (x ≤ 1). J. Solid State Chem., 1971, 3: 1-11.

[36]

Velikokhatnyi O, Chang CC, Kumta P Phase stability and electronic structure of NaMnO2. J. Electrochem. Soc., 2003, 150: A1262-A1266.

[37]

Braconnier JJ, Delmas C, Hagenmuller P Etude par desintercalation electrochimique des systemes Na xCrO2 et Na xNiO2. Mater. Res. Bull., 1982, 17: 993-1000.

[38]

Lu ZH, Dahn JR In situ and ex situ XRD investigation of Li [Cr x Li1/3−x/3Mn2/3 2x/3] O2 (x = 1/3) cathode material. J. Electrochem. Soc., 2003, 150: A1044-A1051.

[39]

Xia X, Dahn JR NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett., 2011, 15: A1-A4.

[40]

Yu CY, Park JS, Jung HG, et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci., 2015, 8: 2019-2026.

[41]

Doeff MM, Peng MY, Ma Y, et al. Orthorhombic Na xMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J. Electrochem. Soc., 1994, 141: 943-956.

[42]

Kim D, Kang SH, Slater M, et al. Enabling sodium batteries using lithium substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater., 2011, 1: 333-336.

[43]

Xia X, Dahn JR NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State Lett., 2012, 15: A1-A4.

[44]

Doeff MM, Richardson TJ, Kepley L Lithium insertion processes of orthorhombic Na xMnO2-based electrode materials. J. Electrochem. Soc., 1996, 143: 2507-2516.

[45]

Sauvage F, Laffont L, Tarascon JM, et al. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem., 2007, 46: 3289-3294.

[46]

Tevar AD, Whitacre JF Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J. Electrochem. Soc., 2010, 157: A870-A875.

[47]

Whitacre JF, Tevar A, Sharma S Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun., 2010, 12: 463-466.

[48]

Su D, Wang C, Ahn HJ, et al. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem. Eur. J., 2013, 19: 10884-10889.

[49]

Su D, Ahn HJ, Wang G Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J. Mater. Chem. A, 2013, 1: 4845-4850.

[50]

Su D, Ahn HJ, Wang G β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater., 2013, 5: e70.

[51]

Yamada A, Chung SC, Hinokuma K Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc., 2001, 148: A224-A229.

[52]

Galceran M, Roddatis V, Zúñiga F, et al. Na–vacancy and charge ordering in Na ≈  2/3FePO4. Chem. Mater., 2014, 26: 3289-3294.

[53]

Moreau P, Guyomard D, Gaubicher J, et al. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater., 2010, 22(14): 4126-4128.

[54]

Wizansky AR, Rauch PE, Disalvo FJ Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides. J. Solid State Chem., 1989, 81: 203-207.

[55]

Zaghib K, Trottier J, Hovington P, et al. Characterization of Na-based phosphate as electrode materials for electrochemical cells. J. Power Sources, 2011, 196: 9612-9617.

[56]

Lee KT, Ramesh T, Nan F, et al. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem. Mater., 2011, 23: 3593-3600.

[57]

Huang W, Zhou J, Li B, et al. A new route toward improved sodium ion batteries: a multifunctional fluffy Na0. 67FePO4/CNT nanocactus. Small, 2015, 11: 2170-2176.

[58]

Trad K, Carlier D, Croguennec L, et al. NaMnFe2 (PO4) 3 alluaudite phase: synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem. Mater., 2010, 22: 5554-5562.

[59]

Nishimura SI, Nakamura M, Natsui R, et al. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J. Am. Chem. Soc., 2010, 132: 13596-13597.

[60]

Clark JM, Nishimura SI, Yamada A, et al. High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew. Chem. Int. Ed., 2012, 51: 13419-13153.

[61]

Kim H, Shakoor R, Park C, et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Func. Mater., 2013, 23: 1147-1155.

[62]

Ha KH, Woo SH, Mok D, et al. Na4-αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5MN0.5, Mn): a promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater., 2013, 3: 770-776.

[63]

Barpanda P, Lu J, Ye T, et al. A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Adv., 2013, 3: 3857-3860.

[64]

Barpanda P, Avdeev M, Ling CD, et al. Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. Inorg. Chem., 2013, 52: 395-401.

[65]

Barker J, Saidi M, Swoyer J A sodium-ion cell based on the fluorophosphate compound NaVPO4 F. Electrochem. Solid-State Lett., 2003, 6: A1-A4.

[66]

Zhao J, He J, Ding X, et al. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources, 2010, 195: 6854-6859.

[67]

Zhuo H, Wang X, Tang A, et al. The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources, 2006, 160: 698-703.

[68]

Liu ZM, Wang XY, Wang Y, et al. Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery. Trans. Nonferr. Metals Soc. China, 2008, 18: 346-350.

[69]

Ellis B, Makahnouk W, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater., 2007, 6: 749-753.

[70]

Swafford SH, Holt EM New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg (PO4) F and Sr5 (PO4)3F. Solid State Sci., 2002, 4: 807-812.

[71]

Ong SP, Chevrier VL, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci., 2011, 4: 3680-3688.

[72]

Recham N, Chotard JN, Dupont L, et al. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc., 2009, 156: A993-A999.

[73]

Ellis BL, Makahnouk WM, Rowan-Weetaluktuk W, et al. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem. Mater., 2010, 22: 1059-1070.

[74]

Wolfenstine J, Allen J Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources, 2005, 142: 389-390.

[75]

Okada S, Ueno M, Uebou Y, et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J. Power Sources, 2005, 146: 565-569.

[76]

Wadia C, Albertus P, Srinivasan V Resource constraints on the battery energy storage potential for grid and transportation applications. J. Power Sources, 2011, 196: 1593-1598.

[77]

Ellis BL, Ramesh TN, Rowan-Weetaluktuk WN, et al. Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem., 2012, 22: 4759-4766.

[78]

Hasegawa Y, Imanaka N Effect of the lattice volume on the Al3+ ion conduction in NASICON type solid electrolyte. Solid State Ionics, 2005, 176: 2499-2503.

[79]

Hoshina K, Dokko K, Kanamura K Investigation on electrochemical interface between Li4Ti5O12 and Li1+x Al xTi2−x(PO4)3 NASICON-type solid electrolyte. J. Electrochem. Soc., 2005, 152: A2138-A2142.

[80]

Kobayashi E, Plashnitsa LS, Doi T, et al. Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes. Electrochem. Commun., 2010, 12: 894-896.

[81]

Delmas C, Nadiri A, Soubeyroux J The nasicon-type titanium phosphates ATi2 (PO4)3 (A=Li, Na) as electrode materials. Solid State Ionics, 1988, 28–30: 419-423.

[82]

Delmas C, Cherkaoui F, Nadiri A, et al. A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater. Res. Bull., 1987, 22: 631-639.

[83]

Uebou Y, Kiyabu T, Okada S, et al. Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V). Rep. Inst. Adv. Mater. Study Kyushu Univ., 2002, 16: 1-5.

[84]

Plashnitsa LS, Kobayashi E, Noguchi Y, et al. Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc., 2010, 157: A536-A543.

[85]

Barker J, Gover R, Burns P, et al. A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F. Electrochem. Solid-State Lett., 2005, 8: A285-A287.

[86]

Lu Y, Wang L, Cheng J, et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun., 2012, 48: 6544-6546.

[87]

Wessells CD, Peddada SV, McDowell MT, et al. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc., 2012, 159: A98-A103.

[88]

Kareis CM, Lapidus SH, Her JH, et al. Non-Prussian blue structures and magnetic ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6]·2H2O. J. Am. Chem. Soc., 2012, 134: 2246-2254.

[89]

Matsuda T, Takachi M, Moritomo Y A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun., 2013, 49: 2750-2752.

[90]

Kong B, Tang J, Wu Z, et al. Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes. Angew. Chem. Int. Ed., 2014, 53: 2888-2892.

[91]

Wang L, Song J, Qiao R, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc., 2015, 137: 2548-2554.

[92]

Lee H, Kim YI, Park JK, et al. Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun., 2012, 48: 8416-8418.

[93]

Zhou M, Qian J, Ai X, et al. Redox-active Fe(CN)6 4−-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater., 2011, 23: 4913-4917.

[94]

Yue Y, Binder AJ, Guo B, et al. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed., 2014, 53: 3134-3137.

[95]

Asakura D, Li CH, Mizuno Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc., 2013, 135: 2793-2799.

[96]

Wessells CD, Huggins RA, Cui Y Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Comun., 2011, 2: 550.

[97]

Wessells CD, McDowell MT, Peddada SV, et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano, 2012, 6: 1688-1694.

[98]

Pasta M, Wessells CD, Huggins RA, et al. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun., 2012, 3: 1149.

[99]

Wu XY, Sun MY, Shen YF, et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. ChemSusChem, 2014, 7: 407-411.

[100]

Wu X, Cao Y, Ai X, et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun., 2013, 31: 145-148.

[101]

Wessells CD, Peddada SV, Huggins RA, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett., 2011, 11: 5421-5425.

[102]

Yu SH, Shokouhimehr M, Hyeon T, et al. Iron hexacyanoferrate nanoparticles as cathode materials for lithium and sodium rechargeable batteries. ECS Electrochem. Lett., 2013, 2: A39-A41.

[103]

Takachi M, Matsuda T, Moritomo Y Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express, 2013, 6: 025802.

[104]

Lee HW, Wang RY, Pasta M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun., 2014, 5: 5280.

[105]

Song J, Wang L, Lu Y, et al. Removal of Interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc., 2015, 137: 2658-2664.

[106]

Arora P, White RE, Doyle M Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc., 1998, 145: 3647-3667.

[107]

You Y, Yu X, Yin Y, et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res., 2015, 8: 117-128.

[108]

You Y, Wu XL, Yin YX, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci., 2014, 7: 1643-1647.

[109]

Wang, H., Li, W., Liu, D., et al.: Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv. Mater. 29, 1703012 (2017)

[110]

Yuan S, Zhu Y, Li W, et al. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater., 2017, 29: 16024.

[111]

Wang S, Sun T, Yuan S, et al. P3-type K0.33Co0.53Mn0.47O2·0.39H2O: a novel bifunctional electrode for Na-ion batteries. Mater. Horiz., 2017, 4: 1122-1127.

[112]

Dahbi M, Nakano T, Yabuuchi N, et al. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and surface layer of hard carbon for sodium-ion batteries. ChemElectroChem, 2016, 3: 1856-1867.

[113]

Wu L, Buchholz D, Vaalma C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem, 2016, 3: 292-298.

[114]

Ponrouch A, Palacin MR On the high and low temperature performances of Na-ion battery materials: hard carbon as a case study. Electrochem. Commun., 2015, 54: 51-54.

[115]

Ding C, Nohira T, Hagiwara R, et al. Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range. Electrochim. Acta, 2015, 176: 344-349.

[116]

Prabakar SJR, Jeong J, Pyo M Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta, 2015, 161: 23-31.

[117]

Zhu YE, Yang L, Zhou X, et al. Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J. Mater. Chem. A, 2017, 5: 9528-9532.

[118]

Zheng P, Liu T, Yuan X, et al. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode. Sci. Rep., 2016, 6: 26246.

[119]

Ji LW, Gu M, Shao YY, et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater., 2014, 26: 2901-2908.

[120]

Zhang H, Ming H, Zhang W, et al. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl. Mater. Interfaces., 2017, 9: 23766-23774.

[121]

Yuan Z, Si L, Zhu X Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life. J. Mater. Chem. A, 2015, 3: 23403-23411.

[122]

Yin L, Wang Y, Han C, et al. Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. J. Power Sources, 2016, 305: 156-160.

[123]

Zhang J, Wang D, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci., 2017, 10: 370-376.

[124]

Zhang S, Lv W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium ion batteries. Energy Storage Mater., 2016, 3: 18-23.

[125]

Luo W, Bommier C, Jian Z, et al. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces., 2015, 7: 2626-2631.

[126]

Kaspar J, Storch M, Schitco C, et al. SiOC(N)/hard carbon composite anodes for Na-ion batteries: influence of morphology on the electrochemical properties. J. Electrochem. Soc., 2016, 163: A156-A162.

[127]

Qiu S, Xiao L, Sushko ML, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater., 2017, 7: 1700403.

[128]

Li Y, Hu YS, Titirici MM, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater., 2016, 6: 1600659.

[129]

Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci., 2011, 4: 3342-3345.

[130]

Li Y, Hu YS, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A, 2016, 4: 96-104.

[131]

Xiao L, Cao Y, Henderson WA, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19: 279-288.

[132]

Vali R, Janes A, Thomberg T, et al. D-glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J. Electrochem. Soc., 2016, 163: A1619-A1626.

[133]

Zheng Y, Wang Y, Lu Y, et al. A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy, 2017, 39: 489-498.

[134]

Peters J, Buchholz D, Passerini S, et al. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci., 2016, 9: 1744-1751.

[135]

Zhang F, Yao Y, Wan J, et al. High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces., 2017, 9: 391-397.

[136]

Shen F, Zhu H, Luo W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces., 2015, 7: 23291-23296.

[137]

Kim K, Lim DG, Han CW, et al. Tailored carbon anodes derived from biomass for sodium-ion storage. ACS Sustain. Chem. Eng., 2017, 5: 8720-8728.

[138]

Guan Z, Liu H, Xu B, et al. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. J. Mater. Chem. A, 2015, 3: 7849-7854.

[139]

Zhu Y, Wen Y, Fan X, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano, 2015, 9: 3254-3264.

[140]

Li W, Yang Z, Li M, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett., 2016, 16: 1546-1553.

[141]

Song J, Yu Z, Gordin ML, et al. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano, 2015, 9: 11933-11941.

[142]

Li WJ, Chou SL, Wang JZ, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett., 2013, 13: 5480-5484.

[143]

Li M, Carter R, Oakes L, et al. Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. J. Mater. Chem., 2017, A 5: 5266-5272.

[144]

Lan D, Wang W, Li Q Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy, 2017, 39: 506-512.

[145]

Liu Z, Yu XY, Lou XW, et al. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci., 2016, 9: 2314-2318.

[146]

Qian J, Chen Y, Wu L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun., 2012, 48: 7070-7072.

[147]

Ko YN, Kang YC Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun., 2014, 50: 12322-12324.

[148]

Zhang B, Rousse G, Foix D, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater., 2016, 28: 9824-9830.

[149]

Liu J, Wen Y, van Aken PA, et al. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium Storage. Nano Lett., 2014, 14: 6387-6392.

[150]

Ying H, Zhang S, Meng Z, et al. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A, 2017, 5: 8334-8342.

[151]

He M, Walter M, Kravchyk KV, et al. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale, 2015, 7: 455-459.

[152]

Wang J, Luo C, Gao T, et al. An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small, 2015, 11: 473-481.

[153]

Ren W, Zhou W, Zhang H, et al. ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl. Mater. Interfaces., 2017, 9: 487-495.

[154]

Zhang S, Yu X, Yu H, et al. Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces., 2014, 6: 21880-21885.

[155]

Su D, Dou S, Wang G Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater., 2015, 5: 1401205.

[156]

Su D, Ahn HJ, Wang G SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun., 2013, 49: 3131-3133.

[157]

Su D, Kretschmer K, Wang G Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv. Energy Mater., 2016, 6: 1501785.

[158]

Xiang J, Song T One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun., 2017, 53: 10820-10823.

[159]

Chao D, Zhu C, Yang P, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun., 2016, 7: 12122.

[160]

Qian JF, Gao XP, Yang HX Electrochemical Na-storage materials and their applications for Na-ion batteries. J. Electrochem., 2013, 19: 523-529.

[161]

Putungan DB, Lin SH, Kuo JL Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl. Mater. Interfaces., 2016, 8: 18754-18762.

[162]

Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater., 2011, 23: 4109-4111.

[163]

Xiong H, Slater MD, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett., 2011, 2: 2560-2565.

[164]

Lee J, Chen Y-M, Zhu Y, et al. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl. Mater. Interfaces., 2014, 6: 21011-21018.

[165]

Wang N, Bai Z, Qian Y, et al. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater., 2016, 28: 4126-4133.

[166]

He H, Sun D, Zhang Q, et al. Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces., 2017, 9: 6093-6103.

[167]

Wang B, Zhao F, Du G, et al. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces., 2016, 8: 16009-16015.

[168]

Qin G, Zhang X, Wang C Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance. J. Mater. Chem., 2014, A 2: 12449-12458.

[169]

Zhou C, Fan S, Hu M, et al. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. J. Mater. Chem., 2017, A 5: 15517-15524.

[170]

Xu X, Niu C, Duan M, et al. Alkaline earth metal vanadates as sodium-ion battery anodes. Nat. Commun., 2017, 8: 460.

[171]

Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chem. Rev., 2014, 114: 11636-11682.

[172]

Ma X, Chen H, Ceder G Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc., 2011, 158: A1307-A1312.

[173]

Guo S, Yu H, Jian Z, et al. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem, 2014, 7: 2115-2119.

[174]

Wu D, Li X, Xu B, et al. NaTiO2: a layered anode material for sodium-ion batteries. Energy Environ. Sci., 2015, 8: 195-202.

[175]

Vassilaras P, Ma X, Li X, et al. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc., 2013, 160: A207-A211.

[176]

Didier C, Guignard M, Denage C, et al. Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid-State Lett., 2011, 14: A75-A78.

[177]

Wang Y, Yu X, Xu S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun., 2013, 4: 2365.

[178]

Yuan D, He W, Pei F, et al. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J. Mater. Chem. A, 2013, 1: 3895-3899.

[179]

Yuan D, Hu X, Qian J, et al. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochem. Acta, 2014, 116: 300-305.

[180]

Zhao S, Wang Y, Dong J, et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 2016, 1: 16184.

[181]

Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew. Chem. Int. Ed., 2015, 54: 5894-5899.

[182]

Casas-Cabanas M, Roddatis VV, Saurel D, et al. Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. J. Mater. Chem., 2012, 22: 17421-17423.

[183]

Boyadzhieva T, Koleva V, Zhecheva E, et al. Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv., 2015, 5: 87694-87705.

[184]

Jian Z, Han W, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2 (PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater., 2013, 3: 156-160.

[185]

Li G, Yang Z, Jiang Y, et al. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources, 2016, 308: 52-57.

[186]

Saravanan K, Mason CW, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater., 2013, 3: 444-450.

[187]

Xie XQ, Kretschmer K, Zhang JQ, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13: 208-217.

[188]

Darwiche A, Marino C, Sougrati MT, et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc., 2012, 134: 20805-20811.

[189]

Darwiche A, Toiron M, Sougrati MT, et al. Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J. Power Sources, 2015, 280: 588-592.

[190]

Ding YL, Wu C, Kopold P, et al. Graphene-protected 3D Sb-based anodes fabricated via electrostatic assembly and confinement replacement for enhanced lithium and sodium storage. Small, 2015, 11: 6026-6035.

[191]

Wang XY, Fan L, Gong DC, et al. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Func. Mater., 2016, 26: 1104-1111.

[192]

Liu Y, Kang H, Jiao L, et al. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7: 1325-1332.

[193]

Wu X, Ma J, Ma Q, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem., 2015, A 3: 13193-13197.

[194]

Xu Y, Zhou M, Wen L, et al. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater., 2015, 27: 4274-4280.

Funding

Australia Research Council and University of Technology, Sydney (UTS)(DECRA DE170101009)

ARC Discovery Project(DP170100436)

ARENA(2014/RND106)

AI Summary AI Mindmap
PDF

418

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/