Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities

Han Tang , Zhuo Peng , Lu Wu , Fangyu Xiong , Cunyuan Pei , Qinyou An , Liqiang Mai

Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 169 -199.

PDF
Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (2) : 169 -199. DOI: 10.1007/s41918-018-0007-y
Review Article

Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities

Author information +
History +
PDF

Abstract

Due to the large reserves, low cost, high security and high energy density, rechargeable multivalent batteries have attracted extensive research enthusiasm for a long time. Multivalent batteries are also supposed as the potential candidates to Li-ion batteries in portable electronic devices and large-scale energy storage units. Unfortunately, most commercial cathode materials in Li-ion batteries cannot be applied in multivalent batteries because of the intensive polarization problem of multivalent intercalated ions (Mg2+, Zn2+, Al3+). Choosing and synthesizing the appropriate cathode materials are the main issues in overcoming the intensive polarization problem. Vanadium-based materials often possess many kinds of oxidation states because of the mutable vanadium element, which can facilitate achieving local electroneutrality and relieve the polarization problem of multivalent ions. In this review, we summarize the researches about the vanadium-based cathode materials for multivalent batteries and highlight the intercalation mechanism of multivalent ions to vanadium-based materials. In addition, different kinds of optimizing strategies are extracted from the literatures. On the basis of our review, progresses and future challenges of vanadium-based cathode materials in rechargeable multivalent batteries are more explicit.

Keywords

Vanadium-based materials / Cathode materials / Rechargeable multivalent batteries / Energy storage

Cite this article

Download citation ▾
Han Tang, Zhuo Peng, Lu Wu, Fangyu Xiong, Cunyuan Pei, Qinyou An, Liqiang Mai. Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities. Electrochemical Energy Reviews, 2018, 1(2): 169-199 DOI:10.1007/s41918-018-0007-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn B, Kamath H, Tarascon JM Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928-935.

[2]

Andre D, Kim SJ, Lamp P, et al. Future generations of cathode materials: an automotive industry perspective. J. Mater. Chem. A, 2015, 3: 6709-6732.

[3]

Erickson EM, Ghanty C, Aurbach D New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett., 2014, 5: 3313-3324.

[4]

Mai L, Yan M, Zhao Y Track batteries degrading in real time. Nature, 2017, 546: 469-470.

[5]

Nykvist B, Nilsson M Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change, 2015, 5: 329-332.

[6]

Sakti A, Michalek JJ, Fuchs ERH, et al. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sources, 2015, 273: 966-980.

[7]

Whittingham MS Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev., 2014, 114: 11414-11443.

[8]

Yang Z, Zhang J, Kintner-Meyer MC, et al. Electrochemical energy storage for green grid. Chem. Rev., 2011, 111: 3577-3613.

[9]

Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater., 2013, 12: 518-522.

[10]

Bruce PG, Scrosati B, Tarascon JM Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47: 2930-2946.

[11]

Thackeray MM, Wolverton C, Isaacs ED Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci., 2012, 5: 7854-7863.

[12]

Ruth MF, Zinaman OR, Antkowiak M, et al. Nuclear-renewable hybrid energy systems: opportunities, interconnections, and needs. Energy Convers. Manag., 2014, 78: 684-694.

[13]

Chu S, Majumdar A Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294-303.

[14]

Heller A Chemical engineering challenges and investment opportunities in sustainable energy. ChemSusChem, 2008, 1: 651-652.

[15]

Pudukudy M, Yaakob Z, Mohammad M, et al. Renewable hydrogen economy in Asia—opportunities and challenges: an overview. Renew. Sustain. Energy Rev., 2014, 30: 743-757.

[16]

Shafiei E, Davidsdottir B, Leaver J, et al. Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system. Energy, 2015, 83: 614-627.

[17]

Abruna HD, Kiya Y, Henderson JC Batteries and electrochemical capacitors. Phys. Today, 2008, 61: 43-47.

[18]

Crowther O, West AC Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc., 2008, 155: A806-A811.

[19]

Zhamu A, Chen G, Liu C, et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy Environ. Sci., 2012, 5: 5701-5707.

[20]

Crabtree, G.: The joint center for energy storage research: a new paradigm for battery research and development. In: Physics of Sustainable Energy III (PSE III): Using Energy Efficiently and Producing It Renewably, 3rd Physics of Sustainable Energy (PSE) Conference, Berkeley, March 2014. AIP Conference Proceedings, vol. 1652, pp. 112–128. American Institute of Physics, Melville (2015)

[21]

Berg EJ, Villevieille C, Streich D, et al. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc., 2015, 162: A2468-A2475.

[22]

Eroglu D, Ha S, Gallagher KG Fraction of the theoretical specific energy achieved on pack level for hypothetical battery chemistries. J. Power Sources, 2014, 267: 14-19.

[23]

Gallagher KG, Goebel S, Greszler T, et al. Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci., 2014, 7: 1555-1563.

[24]

Gallagher KG, Nelson PA, Dees DW Simplified calculation of the area specific impedance for battery design. J. Power Sources, 2011, 196: 2289-2297.

[25]

Gallagher KG, Trask SE, Bauer C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc., 2016, 163: A138-A149.

[26]

Lu X, Kirby BW, Xu W, et al. Advanced intermediate-temperature Na–S battery. Energy Environ. Sci., 2012, 6: 299-306.

[27]

Lu X, Lemmon JP, Kim JY, et al. High energy density Na–S/NiCl2 hybrid battery. J. Power Sources, 2013, 224: 312-316.

[28]

Manwell JF, Mcgowan JG Lead acid battery storage model for hybrid energy systems. Sol. Energy, 1993, 50: 399-405.

[29]

Abruna, H.D., Goodenough, J.B., Buchanan, M.V.: ANYL 28-Summary overview of basic research needs for electrical energy storage. In: Abstracts of Papers of the American Chemical Society, vol. 234, 28-ANYL. American Chemical Society, Washington, DC (2007)

[30]

Iwase, S., Minato, T.: Lead acid battery, has container, cover with exhaust port and projection disposed on peripheral portion of exhaust port that is formed in upper or side surface of cover. US Patent 2003049521-A1, 13 Mar 2003

[31]

Saiju, R., Heier, S.: Performance analysis of lead acid battery model for hybrid power system. In: 2008 IEEE/PES Transmission and Distribution Conference & Exposition, Chicago, April 2008. pp. 404-409. IEEE, Piscataway (2008)

[32]

Nogueira CA, Delmas F New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction. Hydrometallurgy, 1999, 52: 267-287.

[33]

Reddy BR, Priya DN, Rao SV, et al. Solvent extraction and separation of Cd(II), Ni(II) and Co(II) from chloride leach liquors of spent Ni–Cd batteries using commercial organo-phosphorus extractants. Hydrometallurgy, 2005, 77: 253-261.

[34]

Sun B, Skyllas-Kazacos M Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment. Electrochim. Acta, 1992, 37: 1253-1260.

[35]

Liu QH, Grim GM, Papandrew AB, et al. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection. J. Electrochem. Soc., 2012, 159: A1246-A1252.

[36]

Sun B, Skyllas-Kazacos M Chemical modification of graphite electrode materials for vanadium redox flow battery application. Part II. Acid treatments. Electrochim. Acta, 2010, 37: 2459-2465.

[37]

Jian Z, Han W, Liang Y, et al. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. J. Mater. Chem. A, 2014, 2: 20231-20236.

[38]

Song W, Ji X, Pan C, et al. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys. Chem. Chem. Phys., 2013, 15: 14357-14363.

[39]

Song W, Ji X, Yao Y, et al. A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Phys. Chem. Chem. Phys., 2014, 16: 3055-3061.

[40]

Liu J, Zhang JG, Yang Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater., 2013, 23: 929-946.

[41]

Plashnitsa LS, Kobayashi E, Noguchi Y, et al. Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc., 2010, 157: A536-A543.

[42]

Yao Y, Mcdowell MT, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett., 2011, 11: 2949-2954.

[43]

Fergus JW Recent developments in cathode materials for lithium ion batteries. J. Power Sources, 2010, 195: 939-954.

[44]

He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano, 2013, 7: 4459-4469.

[45]

Canepa P, Gautam GS, Hannah DC, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev., 2017, 117: 4287-4341.

[46]

Massé RC, Uchaker E, Cao G Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater., 2015, 58: 715-766.

[47]

Levi E, Gofer Y, Aurbach D On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem. Mater., 2010, 22: 860-868.

[48]

Saha P, Datta MK, Velikokhatnyi OI, et al. Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater Sci., 2014, 66: 1-86.

[49]

Elia GA, Marquardt K, Hoeppner K, et al. An overview and future perspectives of aluminum batteries. Adv. Mater., 2016, 28: 7564-7579.

[50]

Pan HL, Shao YY, Yan PF, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy, 2016, 1: 16039.

[51]

Gershinsky G, Yoo HD, Gofer Y, et al. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir, 2013, 29: 10964-10972.

[52]

Aurbach D, Weissman I, Gofer Y, et al. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec., 2003, 3: 61-73.

[53]

Brissot C, Rosso M, Chazalviel JN, et al. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources, 1999, 81–82: 925-929.

[54]

Shterenberg I, Salama M, Gofer Y, et al. The challenge of developing rechargeable magnesium batteries. MRS Bull., 2014, 39: 453-460.

[55]

Yoo HD, Shterenberg I, Gofer Y, et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci., 2013, 6: 2265-2279.

[56]

Besenhard JO, Winter M Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem, 2002, 3: 155-159.

[57]

Cheng Y, Liu T, Shao Y, et al. Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J. Mater. Chem. A, 2014, 2: 2473-2477.

[58]

Gregory TD, Hoffman RJ, Winterton RC Nonaqueous electrochemistry of magnesium; applications to energy storage. J. Electrochem. Soc., 1990, 137: 775-780.

[59]

Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407: 724-727.

[60]

Gershinsky G, Haik O, Salitra G, et al. Ultra fast elemental synthesis of high yield copper Chevrel phase with high electrochemical performance. J. Solid State Chem., 2012, 188: 50-58.

[61]

Levi E, Mitelman A, Isnard O, et al. Phase diagram of Mg insertion into Chevrel phases, Mg xMo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. Inorg. Chem., 2008, 47: 1975-1983.

[62]

Levi MD, Lancri E, Levi E, et al. The effect of the anionic framework of Mo6X8 Chevrel Phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ion., 2005, 176: 1695-1699.

[63]

Mitelman A, Levi E, Lancry E, et al. On the Mg trapping mechanism in electrodes comprising Chevrel phases. ECS Trans., 2007, 3: 109-115.

[64]

Mitelman A, Levi MD, Lancry E, et al. New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in Cu yMo6S8 compounds. Chem. Commun., 2007, 41: 4212-4214.

[65]

Suresh GS, Levi MD, Aurbach D Effect of chalcogen substitution in mixed Mo6S8−nSe n (n = 0, 1, 2) Chevrel phases on the thermodynamics and kinetics of reversible Mg ions insertion. Electrochim. Acta, 2008, 53: 3889-3896.

[66]

Tao ZL, Xu LN, Gou XL, et al. TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun., 2004, 18: 2080-2081.

[67]

Arthur TS, Zhang R, Ling C, et al. Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. ACS Appl. Mater. Interfaces, 2014, 6: 7004-7008.

[68]

Huang ZD, Masese T, Orikasa Y, et al. MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A, 2014, 2: 11578-11582.

[69]

Ichitsubo T, Adachi T, Yagi S, et al. Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem., 2011, 21: 11764-11772.

[70]

Kim C, Phillips PJ, Key B, et al. Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv. Mater., 2015, 27: 3377-3384.

[71]

Ling C, Zhang R, Arthur TS, et al. How general is the conversion reaction in Mg battery cathode: a case study of the magnesiation of α-MnO2. Chem. Mater., 2015, 27: 5799-5807.

[72]

Muldoon J, Bucur CB, Gregory T Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev., 2014, 114: 11683-11720.

[73]

Orikasa Y, Masese T, Koyama Y, et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep., 2014, 4: 5622.

[74]

Wang RY, Wessells CD, Huggins RA, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett., 2013, 13: 5748-5752.

[75]

Zhang R, Mizuno F, Ling C Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. Chem. Commun., 2015, 51: 1108-1111.

[76]

Zheng Y, Nuli Y, Chen Q, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage. Electrochim. Acta, 2012, 66: 75-81.

[77]

Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc., 2002, 149: A115-A121.

[78]

Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed., 2012, 51: 933-935.

[79]

Mclarnon FR, Cairns EJ The secondary alkaline zinc electrode. J. Electrochem. Soc., 1991, 138: 645-664.

[80]

Lee B, Lee HR, Kim H, et al. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun., 2015, 51: 9265-9268.

[81]

Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater., 2015, 27: 3609-3620.

[82]

Hertzberg BJ, Huang A, Hsieh A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn–MnO2 alkaline battery. Chem. Mater., 2016, 28: 4536-4545.

[83]

Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun., 2017, 8: 405.

[84]

Zhang, L., Chen, L., Zhou, X., et al.: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy. Mater. 5, 1400930 (2015)

[85]

Trócoli R, La Mantia F An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem, 2015, 8: 481-485.

[86]

Jayaprakash N, Das SK, Archer LA The rechargeable aluminum-ion battery. Chem. Commun., 2011, 47: 12610-12612.

[87]

Li Q, Bjerrum NJ Aluminum as anode for energy storage and conversion: a review. J. Power Sources, 2002, 110: 1-10.

[88]

Zafar ZA, Imtiaz S, Razaq R, et al. Cathode materials for rechargeable aluminum batteries: current status and progress. J. Mater. Chem. A, 2017, 5: 5646-5660.

[89]

He YJ, Peng JF, Chu W, et al. Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A., 2014, 2: 1721-1731.

[90]

Lin MC, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520: 325-328.

[91]

Jung SC, Kang Y-J, Yoo D-J, et al. Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J. Phys. Chem. C, 2016, 120: 13384-13389.

[92]

Chen, H., Guo, F., Liu, Y., et al.: A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv. Mater. 29, 1605958 (2017)

[93]

Takami N, Koura N Electrochemical behavior of FeS2 cathodes for aluminum secondary cells around 100 °C. J. Electrochem. Soc., 1993, 140: 928-932.

[94]

Wang, S., Yu, Z., Tu, J., et al.: A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene. Adv. Energy Mater. 6, 1600137 (2016)

[95]

Wang S, Jiao S, Wang J, et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano, 2017, 11: 469-477.

[96]

Donahue FM, Mancini SE, Simonsen L Secondary aluminium-iron (III) chloride batteries with a low temperature molten salt electrolyte. J. Appl. Electrochem., 1992, 22: 230-234.

[97]

Zhao Y, Han C, Yang J, et al. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett., 2015, 15: 2180-2185.

[98]

An Q, Wei Q, Zhang P, et al. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small, 2015, 11: 2654-2660.

[99]

An Q, Zhang P, Wei Q, et al. Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. J. Mater. Chem. A., 2014, 2: 3297-3302.

[100]

Huie MM, Bock DC, Takeuchi ES, et al. Cathode materials for magnesium and magnesium-ion based batteries. Coordin. Chem. Rev., 2015, 287: 15-27.

[101]

Liu M, Rong Z, Malik R, et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci., 2015, 8: 964-974.

[102]

Novák P, Imhof R, Haas O Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium?. Electrochim. Acta, 1999, 45: 351-367.

[103]

Novák P, Scheifele W, Joho F, et al. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc., 1995, 142: 2544-2550.

[104]

Novák P, Desilvestro J Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc., 1993, 140: 140-144.

[105]

Le DB, Passerini S, Coustier F, et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater., 1998, 10: 682-684.

[106]

Wang Z, Su Q, Deng H Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study. Phys. Chem. Chem. Phys., 2013, 15: 8705-8709.

[107]

Zhou B, Shi H, Cao R, et al. Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys., 2014, 16: 18578-18585.

[108]

Gautam GS, Canepa P, Richards WD, et al. Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett., 2016, 16: 2426-2431.

[109]

Tepavcevic S, Liu Y, Zhou D, et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano, 2015, 9: 8194-8205.

[110]

Lee SH, Dileo R, Marschilok AC, et al. Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem. Lett., 2014, 3: A87-A90.

[111]

Imamura D, Miyayama M, Hibino M, et al. Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc., 2003, 150: A753-A758.

[112]

Tang PE, Sakamoto JS, Baudrin E, et al. V2O5 aerogel as a versatile host for metal ions. J. Non-Cryst. Solids, 2004, 350: 67-72.

[113]

Cheng Y, Shao Y, Raju V, et al. Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater., 2016, 26: 3446-3453.

[114]

An Q, Li Y, Yoo H, et al. Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano. Energy, 2015, 18: 265-272.

[115]

Du X, Huang G, Qin Y, et al. Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv., 2015, 5: 76352-76355.

[116]

Park SH, Lee YS, Sun YK Synthesis and electrochemical properties of sulfur doped-Li xMnO2−yS y materials for lithium secondary batteries. Electrochem. Commun., 2003, 5: 124-128.

[117]

Inamoto M, Kurihara H, Yajima T Vanadium pentoxide-based composite synthesized using microwave water plasma for cathode material in rechargeable magnesium batteries. Materials, 2013, 6: 4514-4522.

[118]

Arthur T, Kato K, Germain J, et al. Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun., 2015, 51: 15657-15660.

[119]

Guerra EM, Ciuffi KJ, Oliveira HP V2O5 xerogel-poly(ethylene oxide) hybrid material: synthesis, characterization, and electrochemical properties. J. Solid State Chem., 2006, 179: 3814-3823.

[120]

Chao D, Xia X, Liu J, et al. A V2O5/conductive-polymer core/shell nanobelt array on three- dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater., 2014, 26: 5794-5800.

[121]

Huguenin F, Torresi RM Investigation of the electrical and electrochemical properties of nanocomposites from V2O5, polypyrrole, and polyaniline. J. Phys. Chem. C, 2008, 112: 2202-2209.

[122]

Reddy CVS, Wei J, Quan-Tao Z, et al. Cathodic performance of (V2O5 + PEG) nanobelts for Li ion rechargeable battery. J. Power Sources, 2007, 166: 244-249.

[123]

Shao L, Jeon JW, Lutkenhaus J Porous polyaniline nanofiber/vanadium pentoxide layer-by-layer electrodes for energy storage. J. Mater. Chem. A, 2013, 1: 7648-7656.

[124]

Perera SD, Archer RB, Damin CA, et al. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J. Power Sources, 2017, 343: 580-591.

[125]

Kulish VV, Manzhos S Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides. RSC Adv., 2017, 7: 18643-18649.

[126]

Niu C, Meng J, Han C, et al. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett., 2014, 14: 2873-2878.

[127]

Luo T, Liu Y, Su H, et al. Nanostructured-VO2(B): a high-capacity magnesium-ion cathode and its electrochemical reaction mechanism. Electrochim. Acta, 2018, 260: 805-813.

[128]

Won JM, You NK, Lee JK, et al. Superior electrochemical properties of rutile VO2-carbon composite microspheres as a promising anode material for lithium ion batteries. Electrochim. Acta, 2015, 156: 179-187.

[129]

Pei C, Xiong F, Sheng J, et al. VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS. Appl. Mater. Inter., 2017, 9: 17060-17066.

[130]

Jiao L, Yuan H, Si Y, et al. Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes. J. Power Sources, 2006, 156: 673-676.

[131]

Kim RH, Kim JS, Kim HJ, et al. Highly reduced VO x nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J. Mater. Chem. A., 2014, 2: 20636-20641.

[132]

Jiao L, Yuan H, Wang Y, et al. Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem. Commun., 2005, 7: 431-436.

[133]

Patzke GR, Krumeich F, Nesper R Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed., 2002, 41: 2446-2461.

[134]

Novák P, Scheifele W, Haas O Magnesium insertion batteries-an alternative to lithium?. J. Power Sources, 1995, 54: 479-482.

[135]

Rashad M, Zhang H, Asif M, et al. Low cost room temperature synthesis of NaV3O8.1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces, 2018, 10: 4757-4766.

[136]

Cabello M, Nacimiento F, Alcántara R, et al. Nanobelts of beta-sodium vanadate as electrode for magnesium and dual magnesium-sodium batteries. J. Electrochem. Soc., 2016, 163: A2781-A2790.

[137]

Chen B, Laverock J, Dave Newby J, et al. Electronic structure of β-Na xV2O5 (x ≈ 0.33) polycrystalline films: growth, spectroscopy, and theory. J. Phys. Chem. C, 2014, 118: 1081-1094.

[138]

Delmas C, Nadiri A, Soubeyroux JL The nasicon-type titanium phosphates ATi2(PO4)3 (A = Li, Na) as electrode materials. Solid State Ion., 1988, 28–30((Part 1)): 419-423.

[139]

Ong SP, Chevrier VL, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci., 2011, 4: 3680-3688.

[140]

Shi, J.J., Yin, G.Q., Jing, L.M., et al.: Lithium and sodium diffusion in solid electrolyte materials of AM2(PO4)3(A = Li, Na, M = Ti, Sn and Zr). Int. J. Mod. Phys. B 28, 1450176 (2014)

[141]

Kang J, Chung H, Doh C, et al. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources, 2015, 293: 11-16.

[142]

Goodenough JB, Hong YP, Kafalas JA Fast Na+-ion transport in skeleton structures. Mater. Res. Bull., 1976, 11: 203-220.

[143]

Makino K, Katayama Y, Miura T, et al. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J. Power Sources, 2001, 99: 66-69.

[144]

Huang ZD, Masese T, Orikasa Y, et al. Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv., 2015, 5: 8598-8603.

[145]

Kim J, Yoo JK, Jung YS, et al. Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv. Energy Mater., 2013, 3: 1004-1007.

[146]

Liu H, Gao P, Fang J, et al. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun., 2011, 47: 9110-9112.

[147]

Muldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci., 2012, 5: 5941-5950.

[148]

Canepa P, Gautam GS, Malik R, et al. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes. Chem. Mater., 2015, 27: 3317-3325.

[149]

Canepa P, Jayaraman S, Cheng L, et al. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy Environ. Sci., 2015, 8: 3718-3730.

[150]

Cabello M, Alcántara R, Nacimiento F, et al. Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. Electrochim. Acta, 2017, 246: 908-913.

[151]

Li Y, An Q, Cheng Y, et al. A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34: 188-194.

[152]

Zeng J, Yang Y, Lai S, et al. A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries. Chem-Eur. J., 2017, 23: 16898-16905.

[153]

Prosini PP, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion., 2002, 148: 45-51.

[154]

Rui XH, Ding N, Liu J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta, 2010, 55: 2384-2390.

[155]

Böckenfeld N, Balducci A Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J. Solid State Electrochem., 2014, 18: 959-964.

[156]

Kaveevivitchai W, Jacobson AJ High capacity rechargeable magnesium-ion batteries based on a microporous molybdenum–vanadium oxide cathode. Chem. Mater., 2016, 28: 4593-4601.

[157]

Miao X, Chen Z, Wang N, et al. Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy, 2017, 34: 26-35.

[158]

Cho JH, Aykol M, Kim S, et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc., 2014, 136: 16116-16119.

[159]

Gao, T., Han, F., Zhu, Y., et al.: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5, 1401507 (2015)

[160]

Zhang Z, Xu H, Cui Z, et al. High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A, 2016, 4: 2277-2285.

[161]

Minella CB, Gao P, Zhao-Karger Z, et al. Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries. ChemElectroChem, 2017, 4: 738-745.

[162]

Hannah DC, Gautam GS, Canepa P, et al. Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem. Commun., 2017, 53: 5171-5174.

[163]

Ling C, Mizuno F Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem. Mater., 2013, 25: 3062-3071.

[164]

Sun X, Blanc L, Nolis GM, et al. NaV1.25Ti0.75O4: a potential post spinel cathode material for Mg batteries. Chem. Mater., 2018, 30: 121-128.

[165]

Yan, M., He, P., Chen, Y., et al.: Water-lubricated intercalation in V2O5·H2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018)

[166]

Senguttuvan P, Han SD, Kim S, et al. A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater., 2016, 6: 1600826.

[167]

Kundu D, Adams BD, Ort VD, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy, 2016, 1: 16119.

[168]

Baghbanzadeh M, Carbone L, Cozzoli PD, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed., 2011, 50: 11312-11359.

[169]

He, P., Zhang, G., Liao, X., et al.: Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy. Mater 8, 1702463 (2018)

[170]

Xia, C., Guo, J., Lei, Y., et al.: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30, 1705580 (2018)

[171]

Alfaruqi MH, Mathew V, Song J, et al. Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater., 2017, 29: 1684-1694.

[172]

Tang H, Xu N, Pei C, et al. H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS. Appl. Mater. Interfaces, 2017, 9: 28667-28673.

[173]

He, P., Quan, Y., Xu, X., et al.: High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13, 1702551 (2017)

[174]

Li H, He P, Wang Y, et al. High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J. Mater. Chem. A, 2011, 21: 10999-11009.

[175]

Sarkar S, Bhowmik A, Pan J, et al. Preparation, structure study and electrochemistry of layered H2V3O8 materials: high capacity lithium-ion battery cathode. J. Power Sources, 2016, 329: 179-189.

[176]

Su D, Wang G Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano, 2013, 7: 11218-11226.

[177]

Li G, Yang Z, Jiang Y, et al. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3 V2(PO4)3. Nano Energy, 2016, 25: 211-217.

[178]

Wang D, Wei Q, Sheng J, et al. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys. Chem. Chem. Phys., 2016, 18: 12074-12079.

[179]

Mason CW, Lange F Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett., 2015, 4: A79-A82.

[180]

He, P., Yan, M., Zhang, G., et al.: Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017)

[181]

Jo JH, Sun YK, Myung ST Hollandite-type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. J. Mater. Chem. A, 2017, 5: 8367-8375.

[182]

Xu HT, Zhang H, Liu L, et al. Fabricating hexagonal Al-doped LiCoO2 nanomeshes based on crystal-mismatch strategy for ultrafast lithium storage. ACS Appl. Mater. Interfaces, 2015, 7: 20979-20986.

[183]

Reed LD, Menke E The roles of V2O5 and stainless steel in rechargeable Al-ion batteries. J. Electrochem. Soc., 2013, 160: A915-A917.

[184]

Wang H, Bai Y, Chen S, et al. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces, 2015, 7: 80-84.

[185]

Gu S, Wang H, Wu C, et al. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater., 2017, 6: 9-17.

[186]

Chiku M, Takeda H, Matsumura S, et al. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces, 2015, 7: 24385-24389.

[187]

Endres F Physical chemistry of ionic liquids. Phys. Chem. Chem. Phys., 2010, 12: 1648.

[188]

Koketsu T, Ma J, Morgan BJ, et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater., 2017, 16: 1142-1148.

[189]

Wang H, Gu S, Bai Y, et al. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS. Appl. Mater. Interfaces, 2016, 8: 27444-27448.

[190]

Wang H, Gu S, Bai Y, et al. Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A, 2015, 3: 22677-22686.

[191]

González JR, Nacimiento F, Cabello M, et al. Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Adv., 2016, 6: 62157-62164.

[192]

Wang, W., Jiang, B., Xiong, W., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3, 3383 (2013)

[193]

Zhang C, Song H, Liu C, et al. Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater., 2015, 25: 3497-3504.

[194]

Li, Q., Wei, Q., Sheng, J., et al.: Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2, 1500284 (2015)

[195]

Jiang J, Li H, Huang J, et al. Investigation of the reversible intercalation/deintercalation of Al into the novel Li3VO4@C microsphere composite cathode material for aluminum-ion batteries. ACS. Appl. Mater. Interfaces, 2017, 9: 28486-28494.

[196]

Nacimiento F, Cabello M, Alcántara R, et al. NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. Electrochim. Acta, 2017, 260: 798-804.

[197]

Sun XG, Zhang Z, Guan HY, et al. A sodium-aluminum hybrid battery. J. Mater. Chem. A, 2017, 5: 6589-6596.

[198]

Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

[199]

Vahidmohammadi A, Hadjikhani A, Shahbazmohamadi S, et al. Two-dimensional vanadium carbide (MXene) as a high capacity cathode material for rechargeable aluminum batteries. ACS Nano, 2017, 11: 11135-11144.

[200]

Zhang X, Wang S, Tu J, et al. Flower-like vanadium sulfide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. ChemSusChem, 2018, 11: 709-715.

Funding

the National Natural Science Foundation of China(51602239, 51521001)

the National Key Research and Development Program of China(2016YFA0202603, 2016YFA0202601)

the National Basic Research Program of China(2013CB934103)

the Programme of Introducing Talents of Discipline to Universities(B17034)

the Hubei Provincial Natural Science Foundation of China(2016CFB267)

the International Science & Technology Cooperation Program of China(2013DFA50840)

the Fundamental Research Funds for the Central Universities(WUT: 2017III009, 2017III005)

AI Summary AI Mindmap
PDF

291

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/