High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries

Jun Lu , Zhongwei Chen , Feng Pan , Yi Cui , Khalil Amine

Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (1) : 35 -53.

PDF
Electrochemical Energy Reviews ›› 2018, Vol. 1 ›› Issue (1) : 35 -53. DOI: 10.1007/s41918-018-0001-4
Review Article

High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Transformational changes in battery technologies are critically needed to enable the effective use of renewable energy sources, such as solar and wind, and to allow for the expansion of the electrification of vehicles. Developing high-performance batteries is critical to meet these requirements, which certainly relies on material breakthroughs. This review article presents the recent progresses and challenges in discovery of high-performance anode materials for Li-ion batteries related to their applications in future electrical vehicles and grid energy storage. The advantages and disadvantages of a series of anode materials are highlighted.

Keywords

Li-ion battery / Anode materials / Graphite / Silicon / Lithium metal / Metal oxides / TiO2

Cite this article

Download citation ▾
Jun Lu, Zhongwei Chen, Feng Pan, Yi Cui, Khalil Amine. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1(1): 35-53 DOI:10.1007/s41918-018-0001-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Z, Zhang J, Kintner-Meyer M, et al. Electrochemical energy storage for green grid. Chem. Rev., 2011, 111: 3577-3613.

[2]

Armand M, Tarascon JM Building better batteries. Nature, 2008, 451: 652-657.

[3]

Tarascon JM, Armand M Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359-367.

[4]

Scrosati B Challenge of portable power. Nature, 1995, 373: 557-558.

[5]

Aricò AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater., 2005, 4: 366-377.

[6]

Sun YK, Myung ST, Park BC, et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater., 2009, 8: 320-324.

[7]

Ji X, Lee KT, Nazar LF A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater., 2009, 8: 500-506.

[8]

Whittingham MS Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev., 2014, 114: 11414-11443.

[9]

Xu K Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 2004, 104: 4303-4417.

[10]

Xu K Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, 114: 11503-11618.

[11]

Bruce PG, Scrosati B, Tarascon JM Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47: 2930-2946.

[12]

Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater., 2010, 22: E170-E192.

[13]

David J Nickel–cadmium battery recycling evolution in Europe. J. Power Sources, 1995, 57: 71-73.

[14]

Kanda M, Yamamoto K, Kanno Y, et al. Cyclic behaviour of metal hydride electrodes and the cell characteristics of nickel-metal hydride batteries. J. Less Common Met., 1991, 172–174: 1227-1235.

[15]

Amine K, Kanno R, Tzeng YH Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull., 2014, 39: 395-401.

[16]

Goodenough JB, Kim Y Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22: 587-603.

[17]

Armstrong AR, Bruce PG Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381: 499-500.

[18]

Kang KS, Meng YS, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311: 977-980.

[19]

Yabuuchi N, Ohzuku T Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources, 2003, 119: 171-174.

[20]

Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc., 2007, 129: 7444-7452.

[21]

Guerard D, Herold A Intercalation of lithium into graphite and other carbons. Carbon, 1975, 13: 337-345.

[22]

Scrosati B, Garche J Lithium batteries: status, prospects and future. J. Power Sources, 2010, 195: 2419-2430.

[23]

Cho J, Kim YJ, Park B Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater., 2000, 12: 3788-3791.

[24]

Song SW, Zhuang GV, Ross PN Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J. Electrochem. Soc., 2004, 151: A1162-A1167.

[25]

Tran HY, Greco G, Täubert C, et al. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries. J. Power Sources, 2012, 210: 276-285.

[26]

Wang ZX, Sun YC, Chen LQ, et al. Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries. J. Electrochem. Soc., 2004, 151: A914-A921.

[27]

Rao CV, Reddy ALM, Ishikawa Y, et al. LiNi1/3Co1/3Mn1/3O2-Graphene composite as a promising cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2011, 3: 2966-2972.

[28]

Tarascon JM, McKinnon WR, Coowar F, et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc., 1994, 141: 1421-1431.

[29]

Chung SY, Bloking JT, Chiang YM Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater., 2002, 1: 123-128.

[30]

Thackeray MM, Kang SH, Johnson C, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem., 2007, 17: 3112-3125.

[31]

Yabuuchi N, Yoshii K, Myung ST, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc., 2011, 133: 4404-4419.

[32]

Zheng JM, Gu M, Xiao J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett., 2013, 13: 3824-3830.

[33]

Zheng JM, Gu M, Genc A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett., 2014, 14: 2628-2635.

[34]

Zhu Z, Kushima A, Yin Z, et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy, 2016, 1: 16111.

[35]

Lu J, Lee Y, Luo X, et al. A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529: 377-382.

[36]

Tan G, Xu R, Xing Z, et al. Burning lithium in CS2 for high-performing compact Li2 S–graphene nanocapsules for Li–S batteries. Nature Energy, 2017, 2: 17090.

[37]

Whittingham MS Lithium batteries and cathode materials. Chem. Rev., 2004, 104: 4271-4301.

[38]

Grey CP, Dupre N NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev., 2004, 104: 4493-4512.

[39]

Ellis BL, Lee KT, Nazar LF Positive electrode materials for Li-ion and Li-batteries. Chem. Mater., 2010, 22: 691-714.

[40]

Luntz AC, McCloskey BD Nonaqueous Li–air batteries: a status report. Chem. Rev., 2014, 114: 11721-11750.

[41]

Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O2 and Li–S batteries with high energy storage. Nat. Mater., 2012, 11: 19-29.

[42]

Chen J, Cheng FY Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res., 2009, 42: 713-723.

[43]

Yang Y, Zheng G, Cui Y Nanostructured sulfur cathodes. Chem. Soc. Rev., 2013, 42: 3018-3032.

[44]

Long JW, Dunn B, Rolison DR, et al. Three-dimensional battery architectures. Chem. Rev., 2004, 104: 4463-4492.

[45]

Goriparti S, Miele E, Angelis FD, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources, 2014, 257: 421-443.

[46]

Hassoun J, Scrosati B Review-advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J. Electrochem. Soc., 2015, 162: A2582-A2588.

[47]

Landi BJ, Ganter MJ, Cress CD, et al. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci., 2009, 2: 638-654.

[48]

Lee SW, Yabuuchi N, Gallant BM, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol., 2010, 5: 531-537.

[49]

Qie L, Chen WM, Wang ZH, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater., 2012, 24: 2047-2050.

[50]

Su FY, He YB, Li BH, et al. Could graphene construct an effective conducting network in a high-power lithium ion battery?. Nano Energy, 2012, 1: 429-439.

[51]

Ambrosi A, Chua CK, Bonanni A, et al. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114: 7150-7188.

[52]

Fang Y, Lv YY, Che RC, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc., 2013, 135: 1524-1530.

[53]

Stein A, Wang ZY, Fierke MA Functionalization of porous carbon materials with designed pore architecture. Adv. Mater., 2009, 21: 265-293.

[54]

Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 2012, 7: 310-315.

[55]

Park CM, Kim JH, Kim H, et al. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010, 39: 3115-3141.

[56]

Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc., 2005, 152: A2089-A2091.

[57]

Xue DJ, Xin S, Yan Y, et al. Improving the electrode performance of Ge through Ge@C core–shell nanoparticles and graphene networks. J. Am. Chem. Soc., 2012, 134: 2512-2515.

[58]

Seo MH, Park M, Lee KT, et al. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci., 2011, 4: 425-428.

[59]

Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 1997, 276: 1395-1397.

[60]

Lee KT, Jung YS, Oh SM Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc., 2003, 125: 5652-5653.

[61]

Lee K, Mazare A, Schmuki P One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev., 2014, 114: 9385-9454.

[62]

Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499.

[63]

Ji LW, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci., 2011, 4: 2682-2699.

[64]

Rowsell JLC, Pralong V, Nazar LF Layered lithium iron nitride: a promising anode material for Li-ion batteries. J. Am. Chem. Soc., 2001, 123: 8598-8599.

[65]

Sun Y, Zhao L, Pan HL, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun., 2013, 4: 1870.

[66]

Wagemaker M, Simon DR, Kelder EM, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv. Mater., 2006, 18: 3169-3173.

[67]

Lu X, Gu L, Hu YS, et al. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12anode. J. Am. Chem. Soc., 2015, 137: 1581-1586.

[68]

Wang YQ, Gu L, Guo YG, et al. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc., 2012, 134: 7874-7879.

[69]

Dahl M, Liu Y, Yin Y Composite titanium dioxide nanomaterials. Chem. Rev., 2014, 114: 9853-9889.

[70]

De Angelis F, Di Valentin C, Fantacci S, et al. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev., 2014, 114: 9708-9753.

[71]

Liu L, Chen X Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev., 2014, 114: 9890-9918.

[72]

Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39: 228-240.

[73]

Park S, Ruoff RS Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4: 217-224.

[74]

Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4: 4806-4814.

[75]

Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 2008, 8: 2277-2282.

[76]

Dahn JR, Zheng T, Liu YH, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270: 590-593.

[77]

Van der Ven A, Bhattacharya J, Belak AA Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res., 2013, 46: 1216-1225.

[78]

Kaskhedikar NA, Maier J Lithium storage in carbon nanostructures. Adv. Mater., 2009, 21: 2664-2680.

[79]

Wang GX, Shen XP, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47: 2049-2053.

[80]

Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage. Nat. Mater., 2015, 14: 271-279.

[81]

Xu YX, Lin Z, Zhong X, et al. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed., 2015, 54: 5345-5350.

[82]

David L, Singh G Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C, 2014, 118: 28401-28408.

[83]

Pan DY, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem. Mater., 2009, 21: 3136-3142.

[84]

Zhou LJ, Hou ZF, Wu LM First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C, 2012, 116: 21780-21787.

[85]

Zheng T, Xing W, Dahn JR Carbons prepared from coals for anodes of lithium-ion cells. Carbon, 1996, 34: 1501-1507.

[86]

Xue JS, Dahn JR Dramatic effect of oxidation on lithium insertion in carbons made from epoxy-resins. J. Electrochem. Soc., 1995, 142: 3668-3677.

[87]

Mapasha RE, Chetty N Ab initio studies of staggered Li adatoms on graphene. Comput. Mater. Sci., 2010, 49: 787-791.

[88]

Yang CK A metallic graphene layer adsorbed with lithium. Appl. Phys. Lett., 2009, 94: 163115.

[89]

Medeiros PVC, Mota FD, Mascarenhas AJS, et al. Adsorption of monovalent metal atoms on graphene: a theoretical approach. Nanotechnology, 2010, 21: 11.

[90]

Fan XF, Zheng W, Kuo JL, et al. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. ACS Appl. Mater. Interfaces, 2013, 5: 7793-7797.

[91]

Zhou J, Sun Q, Wang Q, et al. Tailoring Li adsorption on graphene. Phys. Rev. B, 2014, 90: 205427.

[92]

Takamura T, Endo K, Fu L, et al. Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim. Acta, 2007, 53: 1055-1061.

[93]

Wang CY, Li D, Too CO, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater., 2009, 21: 2604-2606.

[94]

Abouimrane A, Compton OC, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C, 2010, 114: 12800-12804.

[95]

Liu X, Hu YS, Muller JO, et al. Composites of molecular-anchored graphene and nanotubes with multitubular structure: a new type of carbon electrode. Chemsuschem, 2010, 3: 261-265.

[96]

Wu ZS, Ren WC, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5: 5463-5471.

[97]

Li XF, Geng DS, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun., 2011, 13: 822-825.

[98]

Reddy ALM, Srivastava A, Gowda SR, et al. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337-6342.

[99]

Wang HB, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem., 2011, 21: 5430-5434.

[100]

Wang ZL, Xu D, Wang HG, et al. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano, 2013, 7: 2422-2430.

[101]

Huang X, Qi XY, Boey F, et al. Graphene-based composites. Chem. Soc. Rev., 2012, 41: 666-686.

[102]

Guo SJ, Dong SJ Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev., 2011, 40: 2644-2672.

[103]

Xu CH, Xu BH, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci., 2013, 6: 1388-1414.

[104]

Jiang Y, Jiang ZJ, Cheng S, et al. Fabrication of 3-dimensional porous graphene materials for lithium ion batteries. Electrochim. Acta, 2014, 146: 437-446.

[105]

Fan ZJ, Yan J, Ning G, et al. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon, 2013, 60: 558-561.

[106]

Zhang LL, Zhao X, Stoller MD, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett., 2012, 12: 1806-1812.

[107]

Lv W, Tang DM, He YB, et al. Low-Temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano, 2009, 3: 3730-3736.

[108]

Vargas O, Caballero A, Morales J, et al. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces, 2014, 6: 3290-3298.

[109]

Vargas OA, Caballero A, Morales J Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?. Nanoscale, 2012, 4: 2083-2092.

[110]

Winter M, Besenhard JO, Spahr ME, et al. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998, 10: 725-763.

[111]

Wang H, Cui LF, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 2010, 132: 13978-13980.

[112]

Wu ZS, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4: 3187-3194.

[113]

Yang SB, Cui G, Pang S, et al. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. Chemsuschem, 2010, 3: 236-239.

[114]

Wang DH, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3: 907-914.

[115]

Wang GX, Wang B, Wang X, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem., 2009, 19: 8378-8384.

[116]

Chou SL, Wang JZ, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun., 2010, 12: 303-306.

[117]

Lee JK, Smith KB, Hayner CM, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun., 2010, 46: 2025-2027.

[118]

Bandhauer TM, Garimella S, Fuller TF A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc., 2011, 158: R1-R25.

[119]

Yi TF, Yang SY, Xie Y Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A, 2015, 3: 5750-5777.

[120]

Kitta M, Akita T, Maeda Y, et al. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir, 2012, 28: 12384-12392.

[121]

Borghols WJH, Wagemaker M, Lafont U, et al. Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc., 2009, 131: 17786-17792.

[122]

Du Pasquier A, Laforgue A, Simon P, et al. A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device. J. Electrochem. Soc., 2002, 149: A302-A306.

[123]

Abouimrane A, Abu-Lebdeb Y, Alarco PJ, et al. Plastic crystal-lithium batteries: an effective ambient temperature all-solid-state power source. J. Electrochem. Soc., 2004, 151: A1028-A1031.

[124]

Du Pasquier A, Laforgue A, Simon P Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J. Power Sources, 2004, 125: 95-102.

[125]

Sha YJ, Zhao BT, Ran R, et al. Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J. Mater. Chem. A, 2013, 1: 13233-13243.

[126]

Xiao LL, Chen G, Sun J, et al. Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J. Mater. Chem. A, 2013, 1: 14618-14626.

[127]

Chen Z, Belharouak I, Sun YK, et al. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater., 2013, 23: 959-969.

[128]

Shen LF, Yan C, Luo H, et al. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem., 2010, 20: 6998-7004.

[129]

Sorensen EM, Barry SJ, Jung HK, et al. Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater., 2006, 18: 482-489.

[130]

Xu W, Chen X, Wang W, et al. Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. J. Power Sources, 2013, 236: 169-174.

[131]

Li W, Li X, Chen M, et al. AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim. Acta, 2014, 139: 104-110.

[132]

Dambournet D, Belharouak I, Amine K Tailored preparation methods of TiO2anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem. Mater., 2010, 22: 1173-1179.

[133]

Dambournet D, Chapman KW, Koudriachova MV, et al. Combining the pair distribution function and computational methods to understand lithium insertion in brookite (TiO2). Inorg. Chem., 2011, 50: 5855-5857.

[134]

Amine K, Belharouak I, Chen Z, et al. Nanostructured anode material for high-power battery system in electric vehicles. Adv. Mater., 2010, 22: 3052-3057.

[135]

Armstrong AR, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater., 2005, 17: 862-865.

[136]

Obrovac MN, Chevrier VL Alloy negative electrodes for li-ion batteries. Chem. Rev., 2014, 114: 11444-11502.

[137]

Zhang WJ A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources, 2011, 196: 13-24.

[138]

Simon GK, Goswami T Improving anodes for lithium ion batteries. Metall. Mater. Trans. A, 2011, 42a: 231-238.

[139]

Huggins RA Lithium alloy negative electrodes. J. Power Sources, 1999, 81: 13-19.

[140]

Beaulieu LY, Eberman KW, Turner RL, et al. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett., 2001, 4: A137-A140.

[141]

Ruffo R, Hong SS, Chan CK, et al. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C, 2009, 113: 11390-11398.

[142]

Chan CK, Ruffo R, Hong SS, et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources, 2009, 189: 1132-1140.

[143]

Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 2008, 3: 31-35.

[144]

Ryu I, Choi JW, Cui Y, et al. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids, 2011, 59: 1717-1730.

[145]

Hatchard TD, Dahn JR In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc., 2004, 151: A838-A842.

[146]

Bang BM, Kim H, Lee JP, et al. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci., 2011, 4: 3395-3399.

[147]

Chen XL, Gerasopoulos K, Guo J, et al. A patterned 3d silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv. Funct. Mater., 2011, 21: 380-387.

[148]

Foll H, Hartz H, Ossei-Wusu E, et al. Si nanowire arrays as anodes in Li ion batteries. Phys. Status Solidi, 2010, 4: 4-6.

[149]

Peng KQ, Wang X, Li L, et al. Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013, 8: 75-97.

[150]

Chakrapani V, Rusli F, Filler MA, et al. Silicon nanowire anode: improved battery life with capacity-limited cycling. J. Power Sources, 2012, 205: 433-438.

[151]

Du N, Zhang H, Fan X, et al. Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. J. Alloys Compd., 2012, 526: 53-58.

[152]

Chockla AM, Harris JT, Akhavan VA, et al. Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc., 2011, 133: 20914-20921.

[153]

Nguyen HT, Yao H, Zamfir MR, et al. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater., 2011, 1: 1154-1161.

[154]

Cui LF, Ruffo R, Chan CK, et al. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett., 2009, 9: 491-495.

[155]

Liao HW, Karki K, Zhang Y, et al. Interfacial mechanics of carbon nanotube@ amorphous-si coaxial nanostructures. Adv. Mater., 2011, 23: 4318-4322.

[156]

Wang W, Kumta PN Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano, 2010, 4: 2233-2241.

[157]

Liu WR, Wu NL, Shieh DT, et al. Synthesis and characterization of nanoporous NiSi–Si composite anode for lithium-ion batteries. J. Electrochem. Soc., 2007, 154: A97-A102.

[158]

Yao Y, Huo K, Hu L, et al. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano, 2011, 5: 8346-8351.

[159]

Ma H, Cheng F, Chen JY, et al. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater., 2007, 19: 4067-4070.

[160]

Li X, Gu M, Hu S, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun., 2014, 5: 4105.

[161]

Yao Y, McDowell MT, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett., 2011, 11: 2949-2954.

[162]

Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol., 2012, 7: 309-314.

[163]

Luo LL, Zhao P, Yang H, et al. Surface coating constraint induced self-discharging of silicon nanoparticles as anodes for lithium ion batteries. Nano Lett., 2015, 15: 7016-7022.

[164]

Liu N, Wu H, McDowell MT, et al. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett., 2012, 12: 3315-3321.

[165]

Liu N, Lu Z, Zhao J A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol., 2014, 9: 187-192.

[166]

Wu H, Yu GH, Liu N, et al. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun., 2013, 4: 1943.

[167]

Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem., 2013, 5: 1042-1048.

[168]

Yu SH, Lee SH, Lee DJ, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small, 2015, 16: 2146-2172.

[169]

Yuan CZ, Wu HB, Xie Y, et al. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed., 2014, 53: 1488-1504.

[170]

Wang F, Rober R, Chernova NA, et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc., 2011, 133: 18828-18836.

[171]

Li LS, Meng F, Jin S High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett., 2012, 12: 6030-6037.

[172]

Yu DYW, Hoster HE, Batabyal SK Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep., 2014, 4: 4562.

[173]

Reddy MV, Subba Rao GV, Chowdari BVR Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev., 2013, 113: 5364-5457.

[174]

Mukherjee R, Krishnan R, Lu TM, et al. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy, 2012, 1: 518-533.

[175]

Taberna L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater., 2006, 5: 567-573.

[176]

Zhang H, Zhou L, Noonan O, et al. Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater., 2014, 24: 4337-4342.

[177]

Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, 7: 513-537.

[178]

Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion, 2002, 148: 405-416.

[179]

Huang JY, Zhong L, Wang CM, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 2010, 330: 1515-1520.

[180]

Harry KJ, Hallinan DT, Parkinson DY, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater., 2014, 13: 69-73.

[181]

Bhattacharyya R, Key B, Chen H, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater., 2010, 9: 504-510.

[182]

Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat. Commun., 2015, 6: 6362.

[183]

Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc., 2013, 135: 4450-4456.

[184]

Li WY, Yao HB, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun., 2015, 6: 7436.

[185]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat. Mater., 2011, 10: 682-686.

[186]

Murugan R, Thangadurai V, Weppner W Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 2007, 46: 7778-7781.

[187]

Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol., 2014, 9: 618-623.

[188]

Yan K, Lee HW, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett., 2014, 14: 6016-6022.

[189]

Kozen AC, Lin CF, Pearse AJ, et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 2015, 9: 5884-5892.

Funding

Office of Energy Efficiency and Renewable Energy(DE-AC0206CH11357)

AI Summary AI Mindmap
PDF

454

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/