Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer

Keming Cheng , Kai Shen , Chuang Li , Daqian Guo , Hao Wang , Jiang Wu

Electron ›› 2024, Vol. 2 ›› Issue (4) : e73

PDF
Electron ›› 2024, Vol. 2 ›› Issue (4) : e73 DOI: 10.1002/elt2.73
RESEARCH ARTICLE

Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer

Author information +
History +
PDF

Abstract

Weak response in long-wavelength infrared (LWIR) detection has long been a perennial concern, significantly limiting the reliability of applications. Avalanche photodetectors (APDs) offer excellent responsivity but are plagued by high dark current during the multiplication process. Here, we propose a high-performance type-II superlattices (T2SLs) LWIR APD to address these issues. The low Auger recombination rate of the InAs/ InAsSb T2SLs absorption layer is exploited to reduce the dark current initially. AlAsSb with a low k value is employed as the multiplication layer to suppress device noise while maintaining sufficient gain. To facilitate carrier transport, the conduction band discontinuity is optimized by inserting an InAs/AlSb T2SLs stepped grading layer between the absorption and multiplication layers. As a result, the device exhibits excellent photoresponse at 8.4 µm at 100 K and maintains a low dark current density of 5.48 × 10−2 A/cm2. Specifically, it achieves a maximum gain of 366, a responsivity of 650 A/W, and a quantum efficiency of 26.28% under breakdown voltage. This design offers a promising solution for the advancement of LWIR detection.

Keywords

AlAsSb / avalanche photodetector / InAs/InAsSb type-II superlattice

Cite this article

Download citation ▾
Keming Cheng, Kai Shen, Chuang Li, Daqian Guo, Hao Wang, Jiang Wu. Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer. Electron, 2024, 2(4): e73 DOI:10.1002/elt2.73

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Haddadi A, Chen G, Chevallier R, Hoang AM, Razeghi M. InAs/InAS1-xSbx type-II superlattices for high performance long wavelength infrared detection. Appl Phys Lett. 2014;105(12):121104.

[2]

Hoang AM, Chen G, Chevallier R, Haddadi A, Razeghi M. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Appl Phys Lett. 2014;104(25):251105.

[3]

Ting DZ, Khoshakhlagh A, Soibel A, Gunapala SD. Long wavelength InAs/InAsSb infrared superlattice challenges: a theoretical investigation. J Electron Mater. 2020;49(11):6936-6945.

[4]

Ting DZ, Khoshakhlagh A, Soibel A, et al. Long and very long wavelength InAs/InAsSb superlattice complementary barrier infrared detectors. J Electron Mater. 2022;51(9):4666-4674.

[5]

Li J, Dehzangi A, Brown G, Razeghi M. Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice. Sci Rep. 2021;11(1):7104.

[6]

Madejczyk P, Gawron W, Sobieski J, Martyniuk P, Rutkowski J. MCT heterostructures for higher operating temperature infrared detectors designed in Poland. Opto-Electron Rev. 2023;31:e144551.

[7]

Cui X, Yuan Q, Guo D, Li C, Shen K, Wu J. Multistep InAs/InAsSb staircase nBn long-wavelength infrared detectors with enhanced charge carrier transport. Infrared Phys Technol. 2023;134:104856.

[8]

Ting DZ, Soibel A, Khoshakhlagh A, et al. Complementary barrier infrared detector architecture for long-wavelength infrared InAs/InAsSb type-II superlattice. Appl Sci. 2022;12(24):12508.

[9]

Gawron W, Kubiszyn Ł Michalczewsk K, Piotrowski J, Martyniuk P. Demonstration of the longwave type-II superlattice InAs/InAsSb cascade photodetector for high operating temperature. IEEE Electron Device Lett. 2022;43(9):1487-1490.

[10]

He J, Li Q, Wang P, et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Opt Express. 2020;28(22):33556-33563.

[11]

Zhu L, Ge H, Guo H, Chen L, Lin C, Chen B. Gain and excess noise in HgCdTe e-avalanche photodiodes at various temperatures and wavelengths. IEEE Trans Electron Dev. 2023;70(5):2384-2388.

[12]

Ciura Ł, Kopytko M, Martyniuk P. Low-frequency noise limitations of InAsSb-, and HgCdTe-base. infrared detectors. Sens Actuators A Phys. 2020;305:111908.

[13]

Yang D, Guo H, Yang L, et al. Characterization of gain and excess noise for mid-wavelength infrared HgCdTe electron avalanche photodiodes. In: Chu J, ed. Earth and Space: From Infrared to Terahertz (ESIT 2022). SPIE;2023.

[14]

Li Q, Wang F, Wang P, et al. Enhanced performance of HgCdTe midwavelength infrared electron avalanche photodetectors with guard ring designs. IEEE Trans Electron Dev. 2020;67(2):542-546.

[15]

Christol P, Bouschet M, Tornay M, et al. Performance analysis of Ga-free T2SL infrared barrier detector. In: Infrared Technology and Applications XLIX. SPIE;2023;116-126.

[16]

Kim YH, Jung H, Lee HJ, Nah J. HOT MWIR detector development with InAs/InAsSb T2SL nBn structure. In:2021 International Conference on Electronics, Information, and Communication (ICEIC). IEEE;2021:1-2.

[17]

Ting DZ, Rafol SB, Khoshakhlagh A, et al. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors. Micromachines. 2020;11(11):958.

[18]

Christol P, Rodriguez JB. Progress on type-II InAs/GaSb superlattice (T2SL) infrared photodetector: from MWIR to VLWIR spectral domains. In: International Conference on Space Optics—ICSO 2014. 2017:694-700.

[19]

Ting DZ, Soibel A, Khoshakhlagh A, et al. InAs/InAsSb superlattice infrared detectors. Opto-Electron Rev. 2023;31.

[20]

Alshahrani DO, Kesaria M, Anyebe EA, Srivastava V, Huffaker DL. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors. Adv Photonics Res. 2022;3(2):2100094.

[21]

Prins AD, Lewis MK, Bushell ZL, Sweeney SJ, Liu S, Zhang YH. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors. Appl Phys Lett. 2015;106(17):171111.

[22]

Jin X, Xie S, Liang B, et al. Temperature dependence of the impact ionization coefficients in AlAsSb lattice matched to InP. IEEE J Sel Top Quant Electron. 2021;28(2):1-8.

[23]

Liang Y, Veeramalai CP, Lin G, et al. A review on III–V compound semiconductor short wave infrared avalanche photodiodes. Nanotechnology. 2022;33(22):222003.

[24]

Campbell JC, Bank SR. Low-noise digital alloy avalanche photodiodes. In: Advanced Photonics Congress (BGPP, IPR, NP, Networks, NOMA, Sensors, SOF, SPPCom). OSA;2018.

[25]

Jung H, Lee S, Schwartz M, et al. Growth and characterization of InGaAs/GaAsSb type II superlattice absorbers for 2 µm avalanche photodiodes. Infrared Technol Appl. 2022;12107:96-104.

[26]

Kodati SH, Lee S, Guo B, et al. Low noise AlInAsSb avalanche photodiodes on InP substrates for 1.55 µm infrared applications. Infrared Technol Appl. 2021;11741:382-389.

[27]

Yi X, Xie S, Liang B, et al. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat Photonics. 2019;13(10):683-686.

[28]

Huang J, Zhao C, Nie B, et al. High-performance mid-wavelength InAs avalanche photodiode using AlAs0.13Sb0.87 as the multiplication layer. Photon Res. 2020;8(5):755-759.

[29]

Jin X, Xie S, Liang B, et al. Comparison of the temperature dependence of impact ionization coefficients in AlAsSb, InAlAs, and InP. Opt Compon Mater. 2022;11997:63-73.

[30]

Yan S, Huang J, Zhang Y, Ma W. Mid wavelength type II InAs/GaSb superlattice avalanche photodiode with AlAsSb multiplication layer. IEEE Electron Device Lett. 2021;42(11):1634-1637.

[31]

Kanedy K, Lopez F, Wood MR, et al. Visualizing period fluctuations in strained-layer superlattices with scanning tunneling microscopy. Appl Phys Lett. 2018;112(4):042105.

[32]

Sarney WL, Svensson SP, Yakes MK, Xu Y, Donetsky D, Belenky G. Ultra-short period Ga-free superlattice growth on GaSb. J Appl Phys. 2018;124(3):035304.

[33]

Milosavljevic MS, Webster PT, Johnson SR. Impact of unintentional Sb in the tensile InAs layer of strain-balanced type-II InAs/InAsSb superlattices grown on GaSb by molecular beam epitaxy. J Appl Phys. 2023;134(5):053103.

[34]

Christol P, Bouschet M, Perez JP, Péré-Laperne N. Barrier structure for Ga-free type-II superlattice midwave infrared photodetector. Photoptics. 2023:21-27.

[35]

Michalczewski K, Tsai TT, Martyniuk P, et al. Higher operating temperature photoresponse of MWIR T2SLs InAs/InAsSb photodetector. In:13th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods. SPIE;2018:217-222.

[36]

Manyk T, Michalczewski K, Murawski K, Martyniuk P, Rutkowski J. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors. Sensors. 2019;19(8):1907.

[37]

Adachi S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and in1-xGaxAsyP1-y. J Appl Phys. 1989;66(12):6030-6040.

[38]

Höglund L, Ting DZ, Khoshakhlagh A, et al. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl Phys Lett. 2013;103(222):221908.

[39]

Schuler-Sandy T, Myers S, Klein B, et al. Gallium free type II InAs/InAsxSb1-x superlattice photodetectors. Appl Phys Lett. 2012;101(7):071111.

[40]

Steenbergen EH, Connelly BC, Metcalfe GD, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl Phys Lett. 2011;99(25):251110.

[41]

Jones AH, March SD, Dadey AA, Muhowski AJ, Bank SR, Campbell JC. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes for mid-infrared detection. IEEE J Quant Electron. 2022;58(4):1-6.

[42]

Dadey AA, McArthur JA, Kamboj A, Bank SR, Wasserman D, Campbell JC. High-gain low-excess-noise MWIR detection with a 3.5-µm cutoff AlInAsSb-based separate absorption, charge, and multiplication avalanche photodiode. APL Photonics. 2023;8(3):036101.

[43]

Huang JJS, Jan YH, Chang HS, et al. Nanoscale III-V semiconductor photodetectors for high-speed optical communications. Two-Dimens Mater Photodetector. 2018;3:49-73.

[44]

Zhang J, Liu A, Xing H, Yang Y. Study on surface leakage current at sidewall in InP-based avalanche photodiodes with mesa structure. AIP Adv. 2022;12(3):035336.

[45]

Ma Y, Zhang Y, Gu Y, et al. Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors. Opt Express. 2016;24(7):7823-7834.

[46]

Woodson ME, Ren M, Maddox SJ, et al. Low-Noise AlInAsSb avalanche photodiode. Appl Phys Lett. 2016;108(8):129901.

[47]

Cao P, Peng H, Wang T, et al. Surface passivation of random alloy AlGaAsSb avalanche photodiode. Electron Lett. 2023;59(18):e12956.

[48]

Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors. Opto-Electron Rev. 2014;22(2):127-146.

[49]

Klipstein P. “XBn” barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Infrared Technol Appl. 2008;6940:935-946.

[50]

Deng G, Yang W, Zhao P, Zhang Y. High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier. Appl Phys Lett. 2020;116(3):031104.

[51]

Qiu WC, Hu WD, Chen L, et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Trans Electron Dev. 2015;62(6):1926-1931.

[52]

Li Q, He J, Hu W, Chen L, Chen X, Lu W. Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe pin electron-avalanche photodiodes. IEEE Trans Electron Dev. 2018;65(2):572-576.

[53]

Lee S, Jin X, Jung H, et al. High gain, low noise 1550 nm GaAsSb/AlGaAsSb avalanche photodiodes. Optica. 2023;10(2):147-154.

[54]

Zhao WL, Wang W, Liu C, et al. Simulation of extended wavelength avalanche photodiode with the type-II superlattice absorption layer. Crystals. 2021;11(10):1210.

[55]

Meier HTJ. Design, Characterization and Simulation of Avalanche Photodiodes [dissertation] Rämistrasse. ETH Zurich;2011.

[56]

Lim H, Tsao S, Zhang W, and Razeghi M, High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl Phys Lett. 2007;90(13):131112.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/