Functional organic 7,7,8,8-tetracyanoquinodimethane artificial layers for the dendrite suppressed lithium metal anodes

Qing Liu , Zhiyong Zheng , Peixun Xiong , Chun Huang , Shengyang Huang , Baohuai Zhao , Yongan Wu , Yi Zhang , Bo-Kyong Kim , Xu Yu , Ho Seok Park

Electron ›› 2024, Vol. 2 ›› Issue (4) : e72

PDF
Electron ›› 2024, Vol. 2 ›› Issue (4) : e72 DOI: 10.1002/elt2.72
RESEARCH ARTICLE

Functional organic 7,7,8,8-tetracyanoquinodimethane artificial layers for the dendrite suppressed lithium metal anodes

Author information +
History +
PDF

Abstract

The large-scale industrialization of lithium metal (Li), as a potential anode for a high energy density energy storage system, has been hindered by dendrite growth. The construction of an artificial solid electrolyte interphase layer featuring high ionic and low electronic conductivity has been verified to be a high-performance strategy to confine the dendrite growth and promote the Li anode stability. Therefore, a functional organic protective layer is homogeneously deposited on the Li anode surface via an in situ chemical reaction between tetracyanoquinodimethane (TCNQ) and Li. The as-synthesized Lin-TCNQ organic film could efficiently trap non-uniform Li deposition and restrain dendrite propagation. Particularly, an asymmetric M-TCNQ-Li|Cu cell with the Lin-TCNQ layer breezed through a high Coulombic efficiency of 91.15% after 100 cycles at 1.0 mA cm−2. The M-TCNQ-Li|NCM622 cell delivered a high capacity of 143.40 mAh g−1 at 0.2 C and maintained a good cyclic stability of 110.44 mAh g−1 after 160 cycles. The analysis results of spectroscopic tests further demonstrate that the Lin-TCNQ with the enhanced absorption energy is conducive to lithiophilicity and decreases the overpotential of Li deposition.

Keywords

artificial layer / dendrite / lithiophilicity / lithium metal / organic protective layer

Cite this article

Download citation ▾
Qing Liu, Zhiyong Zheng, Peixun Xiong, Chun Huang, Shengyang Huang, Baohuai Zhao, Yongan Wu, Yi Zhang, Bo-Kyong Kim, Xu Yu, Ho Seok Park. Functional organic 7,7,8,8-tetracyanoquinodimethane artificial layers for the dendrite suppressed lithium metal anodes. Electron, 2024, 2(4): e72 DOI:10.1002/elt2.72

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai W, Yan C, Yao Y, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew Chem Int Ed. 2021;60(23):13007-13012.

[2]

Yao Y, Chen X, Yan C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew Chem Int Ed. 2021;60(8):4090-4097.

[3]

Liu Q, Han X, Zheng Z, et al. Crystallinity regulated functional separator based on bimetallic NixFey alloy nanoparticles for facilitated redox kinetics of lithium–sulfur batteries. Adv Funct Mater. 2022;32(47):2207094.

[4]

Liu Q, Han X, Park H, et al. Layered double hydroxide quantum dots for use in a bifunctional separator of lithium–sulfur batteries. ACS Appl Mater Interfaces. 2021;13(15):17978-17987.

[5]

Zhang Y, Qian J, Xu W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014;14(12):6889-6896.

[6]

Li N, Yin Y, Yang C, Guo Y. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853-1858.

[7]

Yao Y, Chen X, Yao N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries. Angew Chem Int Ed. 2023;62(4):e202214828.

[8]

Choi NS, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed. 2012;51(40):9994-10024.

[9]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359-367.

[10]

Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4(3):180-186.

[11]

Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403-10473.

[12]

Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1:16114.

[13]

Cheng X, Zhang R, Zhao C, Wei F, Zhang J, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

[14]

Lu Y, Das SK, Moganty SS, Archer LA. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv Mater. 2012;24(32):4430-4435.

[15]

Lu Y, Tu Z, Archer LA. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014;13(10):961-969.

[16]

Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135(11):4450-4456.

[17]

Zuo T, Wu X, Yang C, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29(29):1700389.

[18]

Yang C, Yin Y, Zhang S, Li N, Guo Y. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6(1):8058.

[19]

Chen K, Sanchez AJ, Kazyak E, Davis AL, Dasgupta NP. Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes. Adv Energy Mater. 2019;9(4):1802534.

[20]

Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017;29(2):1603755.

[21]

Liu H, Zhou H, Lee BS, Xing X, Gonzalez M, Liu P. Suppressing lithium dendrite growth with a single-component coating. ACS Appl Mater Interfaces. 2017;9(36):30635-30642.

[22]

Wang L, Zhang L, Wang Q, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018;10:16-23.

[23]

Liang X, Pang Q, Kochetkov I, et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy. 2017;2(9):17119.

[24]

Zhao Q, Tu Z, Wei S, et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew Chem Int Ed. 2018;57(4):992-996.

[25]

Gao Y, Zhao Y, Li YC, Huang Q, Mallouk TE, Wang D. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc. 2017;139(43):15288-15291.

[26]

Liu F, Xiao Q, Wu H, et al. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv Energy Mater. 2018;8(6):1701744.

[27]

Yan C, Cheng X, Yao Y, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv Mater. 2018;30(45):1804461.

[28]

Yang J, Hu C, Jia Y, et al. Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode. ACS Appl Mater Interfaces. 2019;11(9):8717-8724.

[29]

Zhang W, Zhang S, Fan L, et al. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019;4(3):644-650.

[30]

Kang D, Hart N, Koh J, et al. Rearrange SEI with artificial organic layer for stable lithium metal anode. Energy Storage Mater. 2020;24:618-625.

[31]

Kang T, Wang Y, Guo F, et al. Self-assembled monolayer enables slurry-coating of Li anode. ACS Cent Sci. 2019;5(3):468-476.

[32]

Hanyu Y, Honma I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Sci Rep. 2012;2(1):453.

[33]

Chen Y, Manzhos S. A comparative computational study of lithium and sodium insertion into van der Waals and covalent tetracyanoethylene (TCNE)-based crystals as promising materials for organic lithium and sodium ion batteries. Phys Chem Chem Phys. 2016;18(13):8874-8880.

[34]

Han X, Qing G, Sun J, Sun T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed. 2012;51(21):5147-5151.

[35]

Zhao RR, Cao YL, Ai XP, Yang HX. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li-and Na-ion batteries. J Electroanal Chem. 2013;688:93-97.

[36]

Precht R, Stolz S, Mankel E, Mayer T, Jaegermann W, Hausbrand R. Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): results for a TCNQ thin film obtained by a surface science approach. Phys Chem Chem Phys. 2016;18(4):3056-3064.

[37]

Bond AM, Symons PG, Fletcher S. The relationship between the electrochemistry and the crystallography of microcrystals. The case of TCNQ (7, 7, 8, 8-tetracyanoquinodimethane). Analyst. 1998;123(10):1891-1904.

[38]

Wu Q, Thißen A, Jaegermann W. Photoelectron spectroscopic study of Li intercalation into V2O5 thin films. Surf Sci. 2005;578(1/2/3):203-212.

[39]

Precht R, Hausbrand R, Jaegermann W. Electronic structure and electrode properties of tetracyanoquinodimethane (TCNQ): a surface science investigation of lithium intercalation into TCNQ. Phys Chem Chem Phys. 2015;17(9):6588-6596.

[40]

Jaegermann W, Pettenkofer C, Schellenberger A, et al. Photoelectron spectroscopy of UHV in situ intercalated Li/TiSe2. Experimental proof of the rigid band model. Chem Phys Lett. 1994;221(5/6):441-446.

[41]

Li X, Guo S, Deng H, et al. An ultrafast rechargeable lithium metal battery. J Mater Chem A. 2018;6(32):15517-15522.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/