Strategies for improving the performance of practical Li-CO2 battery

Kaige Zhu , Shuai Yin , Feiyue Zhai , Dezhi Yan , Diyin Tang , Yalan Xing , Shichao Zhang

Electron ›› 2025, Vol. 3 ›› Issue (1) : e71

PDF
Electron ›› 2025, Vol. 3 ›› Issue (1) : e71 DOI: 10.1002/elt2.71
REVIEW

Strategies for improving the performance of practical Li-CO2 battery

Author information +
History +
PDF

Abstract

The Li-CO2 battery represented an enticing energy storage/output system characterized by its high-specific energy capacity and simultaneously achieving CO2 fixation and conversion, which held significant promise in mitigating global warming and advancing toward carbon neutrality. Nonetheless, the current Li-CO2 battery's practical capacity and energy efficiency lagged behind traditional lithium-ion battery considerably, posing great challenges for practical applications and commercialization. This review comprehensively summarized recent advancements and prospective strategies aimed at enhancing the effectiveness of practical Li-CO2 battery, encompassing insights into the cycling reaction mechanisms, anode electrode protection, key interface optimization, electrolyte design, and cathode catalyst innovations. Furthermore, insights into the prospects and key obstacles that lay ahead in advancing the Li-CO2 battery toward practical applications were provided.

Keywords

cathode catalyst / discharge-charge mechanism / electrolyte / Li-CO 2 battery / lithium anode

Cite this article

Download citation ▾
Kaige Zhu, Shuai Yin, Feiyue Zhai, Dezhi Yan, Diyin Tang, Yalan Xing, Shichao Zhang. Strategies for improving the performance of practical Li-CO2 battery. Electron, 2025, 3(1): e71 DOI:10.1002/elt2.71

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Takechi K, Shiga T, Asaoka T. A Li-O2/CO2 battery. Chem Commun. 2011;47(12):3463.

[2]

Xu S, Das SK, Archer LA. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 2013;3(18):6656-6660.

[3]

Liu Y, Wang R, Lyu Y, Li H, Chen L. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ Sci. 2014;7(2):677.

[4]

Yang S, Qiao Y, He P, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ Sci. 2017;10(4):972-978.

[5]

Zhu K, Li X, Choi J, et al. Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime. Adv Funct Mater. 2023;33(25):2213841.

[6]

Deng Q, Yang Y, Qu S, et al. Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: a free-standing cathode for flexible and advanced Li-CO2 batteries. Energy Storage Mater. 2021;42:484-492.

[7]

Li S, Liu Y, Gao X, et al. Improving areal capacity of flexible Li-CO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers. J Mater Chem A. 2020;8(20):10354-10362.

[8]

Wang Q, Lu T, Xiao Y, et al. Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem Energy Rev. 2023;6(1):22.

[9]

Li X, Yang S, Feng N, He P, Zhou H. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance. Chin J Catal. 2016;37(7):1016-1024.

[10]

Vetter KJ. Diffusionsüberspannung bei beliebig vorgegebener Stromdichte-Zeit-Funktion. Z Phys Chem. 1967;52(1_4):47-59.

[11]

Dong W, Ye B, Cai M, et al. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries. ACS Energy Lett. 2023;8(2):881-888.

[12]

Li Y, Lu J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017;2(6):1370-1377.

[13]

Cao W, Zhang J, Li H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020;26:46-55.

[14]

Sarkar A, Dharmaraj VR, Yi C-H, et al. Recent advances in rechargeable metal-CO2 batteries with nonaqueous electrolytes. Chem Rev. 2023;123(15):9497-9564.

[15]

Chang F, Xiao M, Miao R, et al. Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products. Electrochem Energy Rev. 2022;5(3):4.

[16]

Chen J, Chen X-Y, Liu Y, et al. Recent progress of transition metal-based catalysts as cathodes in O2/H2O-involved and pure Li-CO2 batteries. Energy Environ Sci. 2023;16(3):792-829.

[17]

Zhao W, Yang Y, Deng Q, et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv Funct Mater. 2023;33(5):2210037.

[18]

Lv W, Shen Z, Li X, et al. Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 2024;16(1):109.

[19]

Wang K, Liu D, Liu L, et al. Isolated metalloid tellurium atomic cluster on nitrogen-doped carbon nanosheet for high-capacity rechargeable lithium-CO2 battery. Adv Sci. 2023;10(7):2205959.

[20]

Qie L, Lin Y, Connell JW, Xu J, Dai L. Highly rechargeable lithium-CO2 batteries with a boron-and nitrogen-codoped holey-graphene cathode. Angew Chem Int Ed. 2017;56(24):6970-6974.

[21]

Cai F, Hu Z, Chou S-L. Progress and future perspectives on Li(Na)-CO2 batteries. Adv Sustain Syst. 2018;2(8/9):1800060.

[22]

Yin W, Grimaud A, Azcarate I, Yang C, Tarascon JM. Electrochemical reduction of CO2 mediated by quinone 2024derivatives: implication for Li-CO2 battery. J Phys Chem C. 2018;122(12):6546-6554.

[23]

Fan L, Shen H, Ji D, et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries. Adv Mater. 2022;34(30):2204134.

[24]

Yang S, He P, Zhou H. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen. Energy Environ Sci. 2016;9(5):1650-1654.

[25]

Qiao Y, Yi J, Wu S, et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule. 2017;1(2):359-370.

[26]

Zhao Z, Huang J, Peng Z. Achilles’ heel of lithium-air batteries: lithium carbonate. Angew Chem Int Ed. 2018;57(15):3874-3886.

[27]

Liang H, Zhang Y, Chen F, Jing S, Yin S, Tsiakaras P. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries. Appl Catal B: Environ. 2019;244:559-567.

[28]

Ma W, Lu S, Lei X, Liu X, Ding Y. Porous MN2O3 cathode for highly durable Li-CO2 batteries. J Mater Chem A. 2018;6(42):20829-20835.

[29]

Xu S-M, Ren Z-C, Liu X, Liang X, Wang K-X, Chen J-S. Carbonate decomposition: low-overpotential Li-CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 2018;15:291-298.

[30]

Liu L, Qin Y, Zhao H, et al. Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li-CO2 batteries. Energy Storage Mater. 2023;57:260-268.

[31]

Qiu F, Ren S, Mu X, et al. Towards a stable Li-CO2 battery: the effects of CO2 to the Li metal anode. Energy Storage Mater. 2020;26:443-447.

[32]

Chen C-J, Yang J-J, Chen C-H, Wei D-H, Hu S-F, Liu R-S. Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li-CO2 batteries. Nanoscale. 2020;12(15):8385-8396.

[33]

Li S, Liu Y, Zhou J, et al. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy Environ Sci. 2019;12(3):1046-1054.

[34]

Chen B, Wang D, Tan J, et al. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J Am Chem Soc. 2022;144(7):3106-3116.

[35]

Qian H, Li X, Chen Q, et al. LiZn/Li2O induced chemical confinement enabling dendrite-free Li-metal anode. Adv Funct Mater. 2024;34(19):2310143.

[36]

Li X, Zhang J, Qi G, Cheng J, Wang B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy Storage Mater. 2021;35:148-156.

[37]

Zhang Z, Zhang Q, Chen Y, et al. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew Chem Int Ed. 2015;54(22):6550-6553.

[38]

Hou Y, Wang J, Liu L, et al. MO2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv Funct Mater. 2017;27(27):1700564.

[39]

Zhang X, Zhang Q, Zhang Z, et al. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. Chem Commun. 2015;51(78):14636-14639.

[40]

Wang X-G, Wang C, Xie Z, et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator. Chemelectrochem. 2017;4(9):2145-2149.

[41]

Zhu Q-C, Xu S-M, Cai Z-P, Harris MM, Wang K-X, Chen J-S. Towards real Li-air batteries: a binder-free cathode with high electrochemical performance in CO2 and O2. Energy Storage Mater. 2017;7:209-215.

[42]

Jin Y, Hu C, Dai Q, et al. High-performance Li-CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts. Adv Funct Mater. 2018;28(47):1804630.

[43]

Li S, Dong Y, Zhou J, et al. Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy Environ Sci. 2018;11(5):1318-1325.

[44]

Mushtaq M, Guo X-W, Bi J-P, Wang Z-X, Yu H-J. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery. Rare Met. 2018;37(6):520-526.

[45]

Pipes R, Bhargav A, Manthiram A. Nanostructured anatase titania as a cathode catalyst for Li-CO2 batteries. ACS Appl Mater Interfaces. 2018;10(43):37119-37124.

[46]

Wang C, Zhang Q, Zhang X, Wang X-G, Xie Z, Zhou Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small. 2018;14(28):1800641.

[47]

Zhang Z, Wang X-G, Zhang X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv Sci. 2018;5(2):1700567.

[48]

Zhang Z, Zhang ZW, Liu P, Xie Y, Cao K, Zhou Z. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene. J Mater Chem A. 2018;6(7):3218-3223.

[49]

Ahmadiparidari A, Warburton RE, Majidi L, et al. A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv Mater. 2019;31(40):1902518.

[50]

Bie S, Du M, He W, et al. Carbon nanotube@RuO2 as a high performance catalyst for Li-CO2 batteries. ACS Appl Mater Interfaces. 2019;11(5):5146-5151.

[51]

Chen U, Zou K, Ding P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries. Adv Mater. 2019;31(2):1805484.

[52]

Huang S, Chen D, Meng C, et al. CO2 nanoenrichment and nanoconfinement in cage of imine covalent organic frameworks for high-performance CO2 cathodes in Li-CO2 batteries. Small. 2019;15(49):1904830.

[53]

Jin Y, Chen F, Wang J, Johnston RL. Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries. Chem Eng J. 2019;375:121978.

[54]

Li X, Wang H, Chen Z, et al. Covalent-organic-framework-based Li-CO2 batteries. Adv Mater. 2019;31(48):1905879.

[55]

Li X, Zhou J, Zhang J, et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv Mater. 2019;31(39):1903852.

[56]

Qiao Y, Xu S, Liu Y, et al. Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li-CO2 battery. Energy Environ Sci. 2019;12(3):1100-1107.

[57]

Song L, Wang T, Wu C, Fan X, He J. A long-life Li-CO2 battery employing a cathode catalyst of cobalt-embedded nitrogen-doped carbon nanotubes derived from a Prussian blue analogue. Chem Commun. 2019;55(85):12781-12784.

[58]

Wang H, Xie K, You Y, et al. Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li-CO2 batteries. Adv Energy Mater. 2019;9(34):1901806.

[59]

Zhang B-W, Jiao Y, Chao D-L, et al. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv Funct Mater. 2019;29(49):1904206.

[60]

Zhang Z, Yang C, Wu S, et al. Exploiting synergistic effect by integrating ruthenium–copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv Energy Mater. 2019;9(8):1802805.

[61]

Zhao H, Li D, Li H, et al. Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li-CO2 batteries. Electrochim Acta. 2019;299:592-599.

[62]

Zhou J, Li X, Yang C, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv Mater. 2019;31(3):1804439.

[63]

Hu C, Gong L, Xiao Y, et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv Mater. 2020;32(16):1907436.

[64]

Jin Y, Chen F, Wang J. Achieving low charge overpotential in a Li-CO2 battery with bimetallic RuCo nanoalloy decorated carbon nanofiber cathodes. ACS Sustainable Chem Eng. 2020;8(7):2783-2792.

[65]

Pipes R, He J, Bhargav A, Manthiram A. Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li-CO2 batteries. Energy Storage Mater. 2020;31:95-104.

[66]

Qiao Y, Wu J, Zhao J, et al. Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li-CO2 batteries. Energy Storage Mater. 2020;27:133-139.

[67]

Song L, Hu C, Xiao Y, et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy. 2020;71:104595.

[68]

Thoka S, Chen C-J, Jena A, et al. Spinel zinc cobalt oxide (ZnCO2O4) porous nanorods as a cathode material for highly durable Li-CO2 batteries. ACS Appl Mater Interfaces. 2020;12(15):17353-17363.

[69]

Xing Y, Wang K, Li N, et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter. 2020;2(6):1494-1508.

[70]

Chen C-J, Huang C-S, Huang Y-C, et al. Catalytically active site identification of molybdenum disulfide as gas cathode in a nonaqueous Li-CO2 battery. ACS Appl Mater Interfaces. 2021;13(5):6156-6167.

[71]

Chen M, Liu Y, Liang X, Wang F, Li Y, Chen Q. Integrated carbon nanotube/MoO3 core/shell arrays as freestanding air cathodes for flexible Li-CO2 batteries. Energy Technol. 2021;9(10):2100547.

[72]

Dong L-Z, Zhang Y, Lu Y-F, et al. A well-defined dual Mn-site based metal–organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chem Commun. 2021;57(71):8937-8940.

[73]

Du Y, Liu Y, Yang S, et al. A rechargeable all-solid-state Li-CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst. J Mater Chem A. 2021;9(15):9581-9585.

[74]

Jiang C, Zhang Y, Zhang M, et al. Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries. Cell Rep Phys Sci. 2021;2(4):100392.

[75]

Kim H-S, Lee J-Y, Yoo J-K, Ryu W-H. Capillary-driven formation of iron nanoparticles embedded in nanotubes for catalyzed lithium-carbon dioxide reaction. ACS Mater Lett. 2021;3(6):815-825.

[76]

Kong Y, Gong H, Song L, Jiang C, Wang T, He J. Nano-sized Au particle-modified carbon nanotubes as an effective and stable cathode for Li-CO2 batteries. Eur J Inorg Chem. 2021;2021(6):590-596.

[77]

Thoka S, Tsai C-M, Tong Z, et al. Comparative study of Li-CO2 and Na-CO2 batteries with Ru@CNT as a cathode catalyst. ACS Appl Mater Interfaces. 2021;13(1):480-490.

[78]

Wang C, Lu Y, Lu S, et al. Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. J Power Sources. 2021;495:229782.

[79]

Wang D, Yang J, He P, Zhou H. A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ Sci. 2021;14(7):4107-4114.

[80]

Wang J-H, Zhang Y, Liu M, et al. Single-metal site-embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li-CO2 batteries. Cell Rep Phys Sci. 2021;2(10):100583.

[81]

Wang X, Liu H, Wang Q, et al. Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li-CO2 battery. Appl Surf Sci. 2021;540(Pt 1):148351.

[82]

Wang X-X, Ji G-J, She P, et al. Bio-inspired design of strong self-standing cathode toward highly stable reversible Li-CO2 batteries. Chem Eng J. 2021;426:131101.

[83]

Wang Y, Wang X, Ge B, Guo J, Fernandez C, Peng Q. Free-standing MXene-MnO2 films for Li-CO2 cathodes with low overpotential and long-term cycling. ACS Appl Energy Mater. 2021;4(9):9961-9968.

[84]

Xiao X, Zhang Z, Yu W, et al. Ultrafine Co-doped NiO nanoparticles decorated on carbon nanotubes improving the electrochemical performance and cycling stability of Li-CO2 batteries. ACS Appl Energy Mater. 2021;4(10):11858-11866.

[85]

Ye F, Gong L, Long Y, et al. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv Energy Mater. 2021;11(30):2101390.

[86]

Zhai Y, Tong H, Deng J, et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy Storage Mater. 2021;43:391-401.

[87]

Zhang J, Wang F, Qi G, et al. Rechargeable Li-CO2 batteries with graphdiyne as efficient metal-free cathode catalysts. Adv Funct Mater. 2021;31(26):2101423.

[88]

Zhang X, Wang T, Yang Y, et al. Breaking the stable triangle of carbonate via W-O bonds for Li-CO2 batteries with low polarization. ACS Energy Lett. 2021;6(10):3503-3510.

[89]

Zhang Y, Zhong R, Lu M, et al. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS Cent Sci. 2021;7(1):175-182.

[90]

Zou L, Li R, Wang Z, Yu F, Chi B, Pu J. Synergistic effect of Cu-La0.96Sr0.04Cu0.3MN0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries. Electrochim Acta. 2021;395:139209.

[91]

Cheng J, Bai Y, Lian Y, et al. Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction. ACS Appl Mater Interfaces. 2022;14(16):18561-18569.

[92]

Ding J, Xue H, Xiao R, et al. Atomically dispersed Fe-Nx species within a porous carbon framework: an efficient catalyst for Li-CO2 batteries. Nanoscale. 2022;14(12):4511-4518.

[93]

Hong H, He J, Wang Y, et al. An amino-functionalized metal–organic framework achieving efficient capture–diffusion–conversion of CO2 towards ultrafast Li-CO2 batteries. J Mater Chem A. 2022;10(35):18396-18407.

[94]

Jin Y, Liu Y, Song L, et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery. Chem Eng J. 2022;430(pt 3):133029.

[95]

Lin J, Ding J, Wang H, et al. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv Mater. 2022;34(17):2200559.

[96]

Liu Y, Zhao S, Wang D, et al. Toward an understanding of the reversible Li-CO2 batteries over metal–N4-functionalized graphene electrocatalysts. ACS Nano. 2022;16(1):1523-1532.

[97]

Ma X, Zhao W, Deng Q, et al. In-situ construction of Cu-CO4N@CC hierarchical binder-free cathode for advanced and flexible Li-CO2 batteries: electron structure and mass transfer modulation. J Power Sources. 2022;535:231446.

[98]

Qi G, Zhang J, Chen L, Wang B, Cheng J. Binder-free Mon nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv Funct Mater. 2022;32(22):2112501.

[99]

Wang Y, Zhou J, Lin C, et al. Decreasing the overpotential of aprotic Li-CO2 batteries with the in-plane alloy structure in ultrathin 2D Ru-based nanosheets. Adv Funct Mater. 2022;32(30):2202737.

[100]

Xie H, Zhang B, Hu C, Xiao N, Liu D. Boosting Li-CO2 battery performances by creating holey structure on CNT cathodes. Electrochim Acta. 2022;417:140310.

[101]

Xu Y, Gong H, Ren H, et al. Highly efficient Cu-Porphyrin-Based metal–organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small. 2022;18(45):2203917.

[102]

Xu Y, Jiang C, Gong H, et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 2022;15(5):4100-4107.

[103]

Zhou J, Wang T, Chen L, et al. Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proc Natl Acad Sci. 2022;119(40):e2204666119.

[104]

Zhu Q, He Z-R, Mao D-Y, Lu W-N, Yi S-L, Wang K-X. Nanofibrous cathode catalysts with MoC nanoparticles embedded in N-rich carbon shells for low-overpotential Li-CO2 batteries. ACS Appl Mater Interfaces. 2022;14(33):38090-38097.

[105]

Bai Y, Wei L, Lian Y, et al. Electrolyte-impregnated mesoporous hollow microreactor to supplement an inner reaction pathway for boosting the cyclability of Li-CO2 batteries. ACS Appl Mater Interfaces. 2023;15(35):41457-41465.

[106]

Chen L, Zhou J, Wang Y, et al. Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density. Adv Energy Mater. 2023;13(1):2202933.

[107]

Chen L, Zhou J, Zhang J, Qi G, Wang B, Cheng J. Copper indium sulfide enables Li-CO2 batteries with boosted reaction kinetics and cycling stability. Energy Environ Mater. 2023;6(5):e12415.

[108]

Chen S, Yang K, Zhu H, et al. Rational catalyst structural design to facilitate reversible Li-CO2 batteries with boosted CO2 conversion kinetics. Nano Energy. 2023;117:108872.

[109]

Chen Z, Yuan M, Tang Z, Zhu H, Zeng G. Magnetron sputtering of platinum on nitrogen-doped polypyrrole carbon nanotubes as an efficient and stable cathode for lithium–carbon dioxide batteries. Phys Chem Chem Phys. 2023;25(11):7662-7668.

[110]

Cheng Z, Fang Y, Dai W, Zhang J, Xiang S, Zhang Z. Structural engineering of metal–organic layers toward stable Li-CO2 batteries. J Mater Chem A. 2023;11(3):1180-1187.

[111]

Cheng Z, Fang Y, Yang Y, et al. Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries. Angew Chem Int Ed. 2023;62(45):e202311480.

[112]

Cheng Z, Wu Z, Chen J, et al. MO2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small. 2023;19(28):2301685.

[113]

Chourasia AK, Naik KM, Sharma CS. Modulating bidirectional catalytic activity through a RuNi nanoalloy on facile candle soot carbon towards efficient lithium-CO2Mars batteries. Batteries Supercaps. 2023;6(11):e202300328.

[114]

Deng Q, Yang Y, Yin K, Yi J, Zhou Y, Zhang Y. Boosting active species Ru-O-Zr/Ce construction at the interface of phase-transformed zirconia-ceria isomerism toward advanced catalytic cathodes for Li-CO2 batteries. Adv Energy Mater. 2023;13(40):2302398.

[115]

Gu Y, Liu B, Zeng X, et al. A flexible Li-CO2 batteries with enhanced cycling stability enabled by a IrO2/carbon fiber self-standing cathode. Electrochim Acta. 2023;443:141951.

[116]

Lu B, Min Z, Xiao X, et al. Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv Mater. 2024;36(1):2309264.

[117]

Naik KM, Chourasia AK, Shavez M, Sharma CS. Bimetallic RuNi electrocatalyst coated MWCNTs cathode for an efficient and stable Li-CO2 and Li-CO2 Mars batteries performance with low overpotential. ChemSusChem. 2023;16(18):e202300734.

[118]

Sun X, Mu X, Zheng W, et al. Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V. Nat Commun. 2023;14(1):536.

[119]

Tseng C-M, Huang C-C, Pai J-Y, Li Y-Y. Co single atom-FeCo alloy-carbon nanotube catalysts on graphene for lithium-oxygen and lithium-carbon dioxide batteries. ACS Sustainable Chem Eng. 2023;11(21):8120-8130.

[120]

Wang M, Yao Y, Tian Y, et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv Mater. 2023;35(12):2210658.

[121]

Wu C, Qi G, Zhang J, Cheng J, Wang B. Porous MO3P/Mo nanorods as efficient mott-Schottky cathode catalysts for low polarization Li-CO2 battery. Small. 2023;19(44):2302078.

[122]

Zhang J, Qi G, Cheng J, et al. Boosted reaction kinetics of Li-CO2 batteries by atomic layer-deposited MO2N on hydrogen substituted graphdiyne. ACS Sustainable Chem Eng. 2023;11(45):16185-16193.

[123]

Zhu Y, Li P, Yang X, et al. Confinement of SnCuxO2+x nanoclusters in zeolites for high-efficient electrochemical carbon dioxide reduction. Adv Energy Mater. 2023;13(24):2204143.

[124]

Khurram A, Yin Y, Yan L, Zhao L, Gallant BM. Governing role of solvent on discharge activity in lithium–CO2 batteries. J Phys Chem Lett. 2019;10(21):6679-6687.

[125]

Zhao Z, Su Y, Peng Z. Probing lithium carbonate formation in trace-O2-assisted aprotic Li-CO2 batteries using in situ surface-enhanced Raman spectroscopy. J Phys Chem Lett. 2019;10(3):322-328.

[126]

Wu M, Kim JY, Park H, et al. Understanding reaction pathways in high dielectric electrolytes using β-MO2C as a catalyst for Li-CO2 batteries. ACS Appl Mater Interfaces. 2020;12(29):32633-32641.

[127]

Zhang W, Zhang F, Liu S, et al. Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO2 chemistry. Proc Natl Acad Sci. 2023;120(14):e2219692120.

[128]

Wang Y-F, Ji G-J, Song L, Wang X-X, Xu J-J. A highly reversible lithium–carbon dioxide battery based on soluble oxalate. ACS Energy Lett. 2023;8(2):1026-1034.

[129]

Wu Y, Zhao Z, Peng Z. Tailoring Li-CO2 electrochemistry based on 4, 4′-bipyridine redox cycle. ACS Energy Lett. 2023;8(8):3430-3436.

[130]

Qi G, Zhang J, Cheng J, Chen L, Su Y, Wang B. Flexible Li-CO2 batteries with boosted reaction kinetics and cyclelife enabled by heterostructured MO3N2@TiN cathode and interface-protected Li anode. Small. 2024;20(17):2309064.

[131]

Qi G, Zhang J, Cheng J, Wang B. Freestanding Mo3N2 nanotubes for long-term stabilized 2e intermediate-based high energy efficiency Li-CO2 batteries. Susmat. 2023;3(2):276-288.

[132]

Iputera K, Huang J-Y, Haw S-C, Chen J-M, Hu S-F, Liu R-S. Revealing the absence of carbon in aprotic Li-CO2 batteries: a mechanism study toward CO2 reduction under a pure CO2 environment. J Mater Chem A. 2022;10(7):3460-3468.

[133]

Xiao X, Zhang Z, Tan P. Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries. Proc Natl Acad Sci USA. 2023;120(6):e2217454120.

[134]

Zhao Z, Pang L, Su Y, et al. Deciphering CO2 reduction reaction mechanism in aprotic Li-CO2 batteries using in situ vibrational spectroscopy coupled with theoretical calculations. ACS Energy Lett. 2022;7(2):624-631.

[135]

Xing Y, Yang Y, Li D, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium–CO2 batteries. Adv Mater. 2018;30(51):1803124.

[136]

Yang C, Guo K, Yuan D, Cheng J, Wang B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J Am Chem Soc. 2020;142(15):6983-6990.

[137]

Hu J, Yang C, Guo K. Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li-CO2 batteries. J Mater Chem A. 2022;10(26):14028-14040.

[138]

Guo C, Zhang F, Han X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery. Adv Mater. 2023;35(33):2302325.

[139]

Zhang K, Li J, Zhai W, et al. Boosting cycling stability and rate capability of Li-CO2 Batteries via synergistic photoelectric effect and plasmonic interaction. Angew Chem Int Ed. 2022;61(17):e202201718.

[140]

Lian Z, Lu Y, Wang C, et al. Single-atom Ru implanted on CO3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries. Adv Sci. 2021;8(23):2102550.

[141]

Lu B, Wu X, Xiao X, et al. Energy band engineering guided design of bidirectional catalyst for reversible Li-CO2 batteries. Adv Mater. 2024;36(1):2308889.

[142]

Shi Y, Wei B, Legut D, Du S, Francisco JS, Zhang R. Highly stable single-atom modified MXenes as cathode-active bifunctional catalysts in Li-CO2 battery. Adv Funct Mater. 2022;32(48):2210218.

[143]

Xie J, Liu Q, Huang Y, Wu M, Wang Y. A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO. J Mater Chem A. 2018;6(28):13952-13958.

[144]

Yang R, Peng Z, Xie J, et al. Reversible hybrid aqueous Li–CO2 batteries with high energy density and formic acid production. ChemSusChem. 2020;13(10):2621-2627.

[145]

Yang T, Li H, Chen J, et al. In situ imaging electrocatalytic CO2 reduction and evolution reactions in all-solid-state Li-CO2 nanobatteries. Nanoscale. 2020;12(47):23967-23974.

[146]

Chen X, Chen J, Liu Y, et al. Advanced Li/Na-CO2 batteries enabled by the γ-MnO2 catalyst with enhanced carbonate decomposition. ACS Appl Mater Interfaces. 2023;15(23):28106-28115.

[147]

Hao Y, Shao J, Yuan Y, et al. Design of phosphide anodes harvesting superior sodium storage: progress, challenges, and perspectives. Adv Funct Mater. 2023;33(13):2212692.

[148]

Zhang S, Liu X, Feng Y, et al. Protecting Li-metal anode with ethylenediamine-based layer and in-situ formed gel polymer electrolyte to construct the high-performance Li-CO2 battery. J Power Sources. 2021;506:230226.

[149]

Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci. 2021;14(7):4115-4124.

[150]

Qi G, Zhang J, Cheng J, Chen L, Su Y, Wang B. Flexible Li-CO2 batteries with boosted reaction kinetics and cyclelife enabled by heterostructured MO3N2@TiN cathode and interface-protected Li anode. Small. 2023;20(17):2309064.

[151]

Asadi M, Sayahpour B, Abbasi P, et al. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature. 2018;555(7697):502-506.

[152]

Lim H-K, Lim H-D, Park K-Y, et al. Toward a Lithium–“Air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J Am Chem Soc. 2013;135(26):9733-9742.

[153]

Lu Z, Xiao M, Wang S, et al. A rechargeable Li-CO2 battery based on the preservation of dimethyl sulfoxide. J Mater Chem A. 2022;10(26):13821-13828.

[154]

Shiga T, Kato Y, Inoue M, Hase Y. Bifunctional catalytic activity of iodine species for lithium–carbon dioxide battery. ACS Sustainable Chem Eng. 2019;7(16):14280-14287.

[155]

Bharti A, Achutharao G, Bhattacharyya AJ. Efficient rechargeable Li-CO2 battery with a liquid electrolyte-soluble CuCl2 electrocatalyst. ACS Appl Mater Interfaces. 2023;15(46):53342-53350.

[156]

Ma S, Lu Y, Yao H, Liu Q, Li Z. Enhancing the process of CO2 reduction reaction by using CTAB to construct contact ion pair in Li-CO2 battery. Chin Chem Lett. 2022;33(6):2933-2936.

[157]

Ko S, Yoo Y, Choi J, Lim H-D, Park CB, Lee M. Discovery of organic catalysts boosting lithium carbonate decomposition toward ambient air operational lithium–air batteries. J Mater Chem A. 2022;10(38):20464-20472.

[158]

Lian Z, Lu Y, Ma S, Wang L, Li Z, Liu Q. An integrated strategy for upgrading Li-CO2 batteries: redox mediator and separator modification. Chem Eng J. 2022;450:138400.

[159]

Wang L, Lu Y, Ma S, et al. Optimizing CO2 reduction and evolution reaction mediated by o-phenylenediamine toward high performance Li-CO2 battery. Electrochim Acta. 2022;419:140424.

[160]

Hu X, Li Z, Chen J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew Chem Int Ed. 2017;56(21):5785-5789.

[161]

Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew Chem Int Ed. 2017;56(31):9126-9130.

[162]

Wang R, Zhang X, Cai Y, Nian Q, Tao Z, Chen J. Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Res. 2019;12(10):2543-2548.

[163]

Guan D-H, Wang X-X, Li F, et al. All-solid-state photo-assisted Li-CO2 battery working at an ultra-wide operation temperature. ACS Nano. 2022;16(8):12364-12376.

[164]

Chen B, Wang D, Zhang B, et al. Engineering the active sites of graphene catalyst: from CO2 activation to activate Li-CO2 batteries. ACS Nano. 2021;15(6):9841-9850.

[165]

Xiao Y, Du F, Hu C, et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 2020;5(3):916-921.

[166]

Yu W, Liu L, Yang Y, et al. N, O-diatomic dopants activate catalytic activity of 3D self-standing graphene carbon aerogel for long-cycle and high-efficiency Li-CO2 batteries. Chem Eng J. 2023;465:142787.

[167]

Xu Y, Gong H, Song L, et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries. Mater Today Energy. 2022;25:100967.

[168]

Wang H, Zheng R, Shu C, Long J. Promoting the electrocatalytic activity of Ti3C2Tx MXene by modulating CO2 adsorption through oxygen vacancies for high-performance lithium-carbon dioxide batteries. Chemelectrochem. 2020;7(24):4922-4930.

[169]

Guo Z, Li J, Qi H, et al. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode. Small. 2019;15(29):1803246.

[170]

Xu S, Chen C, Kuang Y, et al. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energy Environ Sci. 2018;11:3231-3237.

[171]

Xiao X, Yu W, Shang W, et al. Investigation on the strategies for discharge capacity improvement of aprotic Li-CO2 batteries. Energy Fuels. 2020;34(12):16870-16878.

[172]

Guan D-H, Wang X-X, Li M-L, et al. Light/electricity energy conversion and storage for a hierarchical porous IN2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew Chem Int Ed. 2020;59(44):19518-19524.

[173]

Khurram A, He M, Gallant B. Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry. Joule. 2018;2(12):2649-2666.

[174]

Song L-N, Zheng L-J, Wang X-X, et al. Unraveling the mechanism of field-induced Li+ concentration for improved kinetics in rechargeable Li-CO2 batteries. ACS Appl Mater Interfaces. 2022;14(47):52907-52917.

[175]

Xiao X, Zhang Z, Yu W, Shang W, Ma Y, Tan P. Achieving a high-specific-energy lithium-carbon dioxide battery by implementing a bi-side-diffusion structure. Appl Energy. 2022;328:120186.

[176]

Peng L, Yin H, Zou L, Yu F. The influence of current density dependent Li2CO3 properties on the discharge and charge reactions of Li-CO2/O2 battery. Colloid Surf A: Physicochem Eng Asp. 2023;657:130480.

[177]

Yin Q, Liu Q, Liu Y, et al. General fabrication of robust alloyed metal anodes for high-performance metal batteries. Adv Mater. 2024;36(30):2404689.

[178]

Xu Q, Li J-Y, Sun J-K, Yin Y-X, Wan L-J, Guo Y-G. Watermelon-Inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater. 2017;7(3):1601481.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/