Effect of V-Pits Coverage Optoelectronic Characteristics in Green GaN-Based Mini-Light-Emitting Diodes Grown by MOCVD

Shenglong Wei , Xiuheng Zhou , Xiaofeng Chen , Rongkun Chen , Feifan Ma , Yihong Chen , Vedaste Uwihoreye , Freddy E. Oropeza , Yongxing Liu , Likai Xun , Haihui Xin , Kaiyi Wu , Xitian Liu , Yongzhou Zhao , Kelvin H. L. Zhang

Electron ›› 2025, Vol. 3 ›› Issue (3) : e70014

PDF
Electron ›› 2025, Vol. 3 ›› Issue (3) : e70014 DOI: 10.1002/elt2.70014
RESEARCH ARTICLE

Effect of V-Pits Coverage Optoelectronic Characteristics in Green GaN-Based Mini-Light-Emitting Diodes Grown by MOCVD

Author information +
History +
PDF

Abstract

V-pits have been intensively studied for their role in light-emitting diodes (LEDs). The coverage of V-pits in InGaN/GaN multi-quantum wells (MQWs) is critical for suppressing leakage path through electron blocking layer (EBL). In this study, we have investigated the coverage of V-pits in green mini-LEDs modulated via growth parameters optimization and systematically analyzed the characteristics of the photoelectric properties associated with V-pits coverage on device. Elevated temperatures and pressures result in enhanced adatoms migration, which can achieve a coverage up to 98.8% of V-pits, improving the crystal quality due to stable surface. Electrical characterization reveals that although high-coverage devices exhibit suppressed leakage current, their peak external quantum efficiency (EQE) decreases, more seriously spectral blue shift and operating voltage increase due to compromised hole transport uniformity. Intriguingly, intermediate-coverage samples demonstrate superior breakdown voltage characteristics. Current–voltage curve analysis shows the ideality factor increases from 1.8 to 2.5 with improved coverage, indicating aggravated Shockley–Read–Hall (SRH) recombination with covered V-pits.

Keywords

GaN / green LED / InGaN / miniaturization / multiple-quantum-wells / V-pits

Cite this article

Download citation ▾
Shenglong Wei, Xiuheng Zhou, Xiaofeng Chen, Rongkun Chen, Feifan Ma, Yihong Chen, Vedaste Uwihoreye, Freddy E. Oropeza, Yongxing Liu, Likai Xun, Haihui Xin, Kaiyi Wu, Xitian Liu, Yongzhou Zhao, Kelvin H. L. Zhang. Effect of V-Pits Coverage Optoelectronic Characteristics in Green GaN-Based Mini-Light-Emitting Diodes Grown by MOCVD. Electron, 2025, 3(3): e70014 DOI:10.1002/elt2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, et al., “High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications,” IEEE Photonics Technology Letter 28, no. 19 (2016): 2023–2026, https://doi.org/10.1109/LPT.2016.2581318.

[2]

F. Feng, Y. Liu, K. Zhang, et al., “AlGaN Multiple Quantum Well Deep-Ultraviolet Micro-Light-Emitting Diodes for High Color Conversion Efficiency Quantum Dots Display,” Journal of the Society for Information Display 30, no. 7 (2022): 556–566, https://doi.org/10.1002/jsid.1107.

[3]

Y. Liu, B.-R. Hyun, Y. Wang, K. Zhang, H. S. Kwok, and Z. Liu, “R/G/B Micro-LEDs for In-Pixel Integrated Arrays and Temperature Sensing,” ACS Applied Electronic Materials 3, no. 1 (2021): 3–10, https://doi.org/10.1021/acsaelm.0c00757.

[4]

K. Wang, D. Huang, X. Li, et al., “Unconventional Strategies to Break Through the Efficiency of Light-Driven Water Splitting: A Review,” Electron 1, no. 1 (2023): e4, https://doi.org/10.1002/elt2.4.

[5]

V. Uwihoreye, Y. Hu, G. Cao, X. Zhang, F. E. Oropeza, and K. H. L. Zhang, “Recent Progress on Heteroepitaxial Growth of Single Crystal Diamond Films,” Electron 2, no. 4 (2024): e70, https://doi.org/10.1002/elt2.70.

[6]

K. Hölz, J. Lietard, and M. M. Somoza, “High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography,” ACS Sustainable Chemistry & Engineering 5, no. 1 (2017): 828–834, https://doi.org/10.1021/acssuschemeng.6b02175.

[7]

F. Feng, Y. Liu, K. Zhang, et al., “High-Power AlGaN Deep-Ultraviolet Micro-Light-Emitting Diode Displays for Maskless Photolithography,” Nature Photonics 19, no. 1 (2025): 101–108, https://doi.org/10.1038/s41566-024-01551-7.

[8]

H. Wu, X. Lin, Q. Shuai, et al., “Ultra-High Brightness Micro-LEDs With Wafer-Scale Uniform GaN-On-Silicon Epilayers,” Light: Science & Applications 13, no. 1 (2024): 284, https://doi.org/10.1038/s41377-024-01639-3.

[9]

H. Jia, L. Guo, W. Wang, and H. Chen, “Recent Progress in GaN-Based Light-Emitting Diodes,” Advanced Materials 21, no. 45 (2009): 4641–4646, https://doi.org/10.1002/adma.200901349.

[10]

X. Yang, L. Ma, L. Li, et al., “Towards Micro-PeLED Displays,” Nature Review Materials 8, no. 5 (2023): 341–353, https://doi.org/10.1038/s41578-022-00522-0.

[11]

Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, “Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives,” Light: Science & Applications 9, no. 1 (2020): 105, https://doi.org/10.1038/s41377-020-0341-9.

[12]

V. K. Bandari and O. G. Schmidt, “A Bright Future for Micro-LED Displays,” Light: Science & Applications 13, no. 1 (2024): 317, https://doi.org/10.1038/s41377-024-01683-z.

[13]

S. Gao, C. Lu, D. Guo, et al., “Optimizing Etching Depth for Ultra-High Brightness Green Micro-LED Display Development,” AIP Advances 14, no. 8 (2024): 085307, https://doi.org/10.1063/5.0213539.

[14]

P. Li, J. Ewing, M. S. Wong, et al., “Advances in InGaN-Based RGB Micro-Light-Emitting Diodes for AR Applications: Status and Perspective,” APL Materials 12, no. 8 (2024): 080901, https://doi.org/10.1063/5.0222618.

[15]

S. Mohan, J. Jeong, M. Kim, et al., “Size-Dependent Characteristics of InGaN-Based Blue and Green Micro-Light-Emitting Diodes,” Physica Status Solidi 221, no. 13 (2024): 2300642, https://doi.org/10.1002/pssa.202300642.

[16]

S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, “From Large-Size to Micro-LEDs: Scaling Trends Revealed by Modeling,” Physica Status Solidi 215, no. 10 (2018): 1700508, https://doi.org/10.1002/pssa.201700508.

[17]

F. Olivier, S. Tirano, L. Dupré, et al., “Influence of Size-Reduction on the Performances of GaN-Based Micro-LEDs for Display Application,” Journal of Luminescence 191 (2017): 112–116, https://doi.org/10.1016/j.jlumin.2016.09.052.

[18]

C. Zhang, Y. Wu, B. Xia, P. Su, and J. Ma, “Improvement in Quantum Efficiency of Green GaN-Based Micro-LED by Trapezoidal Quantum Well,” Journal of Luminescence 263 (2023): 120027, https://doi.org/10.1016/j.jlumin.2023.120027.

[19]

H. Li, M. S. Wong, M. Khoury, et al., “Study of Efficient Semipolar (11-22) InGaN Green Micro-Light-Emitting Diodes on High-Quality (11-22) GaN/Sapphire Template,” Optics Express 27, no. 17 (2019): 24154, https://doi.org/10.1364/OE.27.024154.

[20]

L. Yu, B. Lu, P. Yu, et al., “Ultra-Small Size (1-20 μm) Blue and Green Micro-LEDs Fabricated by Laser Direct Writing Lithography,” Applied Physics Letters 121, no. 4 (2022): 042106, https://doi.org/10.1063/5.0099642.

[21]

C. Zhao, C. W. Tang, B. Lai, G. Cheng, J. Wang, and K. M. Lau, “Low-Efficiency-Droop InGaN Quantum Dot Light-Emitting Diodes Operating in the ‘Green Gap’,” Photonics Research 8, no. 5 (2020): 750, https://doi.org/10.1364/PRJ.380158.

[22]

Q. Wang, X. Gao, Y. Xu, and J. Leng, “Carrier Localization in Strong Phase-Separated InGaN/GaN Multiple-Quantum-Well Dual-Wavelength LEDs,” Journal of Alloys and Compounds 726 (2017): 460–465, https://doi.org/10.1016/j.jallcom.2017.07.326.

[23]

S. Zhu, S. Lin, J. Li, et al., “Influence of Quantum Confined Stark Effect and Carrier Localization Effect on Modulation Bandwidth for GaN-based LEDs,” Applied Physics Letters 111, no. 17 (2017): 171105, https://doi.org/10.1063/1.4993230.

[24]

S.-C. Tsai, C.-H. Lu, and C.-P. Liu, “Piezoelectric Effect on Compensation of the Quantum-Confined Stark Effect in InGaN/GaN Multiple Quantum Wells Based Green Light-Emitting Diodes,” Nano Energy 28 (2016): 373–379, https://doi.org/10.1016/j.nanoen.2016.08.061.

[25]

M. S. Wong, C. Lee, D. J. Myers, et al., “Size-Independent Peak Efficiency of III-Nitride Micro-Light-Emitting-Diodes Using Chemical Treatment and Sidewall Passivation,” Applied Physics Express 12, no. 9 (2019): 097004, https://doi.org/10.7567/1882-0786/ab3949.

[26]

S. Nakamura, “The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes,” Science 281, no. 5379 (1998): 956–961, https://doi.org/10.1126/science.281.5379.956.

[27]

X. H. Wu, C. R. Elsass, A. Abare, et al., “Structural Origin of V-Defects and Correlation With Localized Excitonic Centers in InGaN/GaN Multiple Quantum Wells,” Applied Physics Letters 72, no. 6 (1998): 692–694, https://doi.org/10.1063/1.120844.

[28]

S. Zhou, X. Liu, H. Yan, et al., “The Effect of Nanometre-Scale V-Pits on Electronic and Optical Properties and Efficiency Droop of GaN-Based Green Light-Emitting Diodes,” Scientific Reports 8, no. 1 (2018): 11053, https://doi.org/10.1038/s41598-018-29440-4.

[29]

R. Yapparov, T. Tak, J. Ewing, et al., “Carrier Diffusion in Long Wavelength InGaN Quantum Well LEDs After Injection through V-Defects,” Applied Physics Letters 125, no. 3 (2024): 031108, https://doi.org/10.1063/5.0215336.

[30]

R. Loganathan, K. Prabakaran, S. Pradeep, S. Surender, S. Singh, and K. Baskar, “Influence of TMIn Flow Rate on Structural and Optical Quality of AlInGaN/GaN Epilayers Grown by MOCVD,” Journal of Alloys and Compounds 656 (2016): 640–646, https://doi.org/10.1016/j.jallcom.2015.10.019.

[31]

Z. Pan, Z. Chen, H. Zhang, et al., “Isolated Red Quantum Wells With Strain Relaxation Induced by V-Pits and Trench Structures,” Optics Express 32, no. 24 (2024): 43184, https://doi.org/10.1364/OE.542926.

[32]

S. Liu, D. Li, C. Lai, et al., “Impacts of the Area-Ratios of V-Pit for the Optoelectronic Performance of Green Micro-LEDs,” Journal of Alloys and Compounds 1010 (2025): 178100, https://doi.org/10.1016/j.jallcom.2024.178100.

[33]

M. H. Zoellner, G. A. Chahine, L. Lahourcade, et al., “Correlation of Optical, Structural, and Compositional Properties With V-Pit Distribution in InGaN/GaN Multiquantum Wells,” ACS Applied Materials & Interfaces 11, no. 25 (2019): 22834–22839, https://doi.org/10.1021/acsami.9b04431.

[34]

Q. Feng, L. Liu, Y. Zhang, et al., “Mechanism of V-Shaped Pits on Promoting Hole Injection in the InGaN MQWs: First-Principles Investigation,” ACS Omega 9, no. 6 (2024): 7163–7172, https://doi.org/10.1021/acsomega.3c09221.

[35]

S. Marcinkevičius, T. Tak, Y. C. Chow, et al., “Dynamics of Carrier Injection Through V-Defects in Long Wavelength GaN LEDs,” Applied Physics Letters 124, no. 18 (2024): 181108, https://doi.org/10.1063/5.0206357.

[36]

J. J. Ewing, C. Lynsky, M. S. Wong, et al., “High External Quantum Efficiency (6.5%) InGaN V-Defect LEDs at 600 nm on Patterned Sapphire Substrates,” Optics Express 31, no. 25 (2023): 41351, https://doi.org/10.1364/OE.503732.

[37]

G. Wang, J. Huang, Y. Wang, et al., “Growth and Characterization of Micro-LED Based on GaN Substrate,” Optics Express 32, no. 18 (2024): 31463, https://doi.org/10.1364/OE.529771.

[38]

D.-H. Kim, Y. S. Park, D. Kang, K. K. Kim, T. Y. Seong, and H. Amano, “Combined Effects of V Pits and Chip Size on the Electrical and Optical Properties of Green InGaN-Based Light-Emitting Diodes,” Journal of Alloys and Compounds 796 (2019): 146–152, https://doi.org/10.1016/j.jallcom.2019.05.070.

[39]

A. Hangleiter, F. Hitzel, C. Netzel, et al., “Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency,” Physical Review Letters 95, no. 12 (2005): 127402, https://doi.org/10.1103/PhysRevLett.95.127402.

[40]

A. Hospodková, F. Hájek, T. Hubáček, et al., “Electron Transport Properties in High Electron Mobility Transistor Structures Improved by V-Pit Formation on the AlGaN/GaN Interface,” ACS Applied Materials & Interfaces 15, no. 15 (2023): 19646–19652, https://doi.org/10.1021/acsami.3c00799.

[41]

S.-W. Chen, H. Li, C.-J. Chang, and T.-C. Lu, “Effects of Nanoscale V-Shaped Pits on GaN-Based Light Emitting Diodes,” Materials 10, no. 2 (2017): 113, https://doi.org/10.3390/ma10020113.

[42]

C.-Y. Chang, H. Li, Y.-T. Shih, and T.-C. Lu, “Manipulation of Nanoscale V-Pits to Optimize Internal Quantum Efficiency of InGaN Multiple Quantum Wells,” Applied Physics Letters 106, no. 9 (2015): 091104, https://doi.org/10.1063/1.4914116.

[43]

C. Xu, C. Zheng, X. Wu, et al., “Effects of V-Pits Covering Layer Position on the Optoelectronic Performance of InGaN Green LEDs,” Journal of Semiconductors 40, no. 5 (2019): 052801, https://doi.org/10.1088/1674-4926/40/5/052801.

[44]

N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, “Chemical Mapping and Formation of V-Defects in InGaN Multiple Quantum Wells,” Applied Physics Letters 77, no. 9 (2000): 1274–1276, https://doi.org/10.1063/1.1289904.

[45]

J.-D. Gao, J.-L. Zhang, X. Zhu, et al., “Detailed Surface Analysis of V-Defects in GaN Films on Patterned Silicon(111) Substrates by Metal–Organic Chemical Vapour Deposition,” Journal of Applied Crystallography 52, no. 3 (2019): 637–642, https://doi.org/10.1107/S1600576719005521.

[46]

Y. Liu, G. Wang, F. Feng, et al., “Low Dislocation Density Homoepitaxy Ultraviolet-A Micro-LEDs Scale Down to 3 μm,” IEEE Electron Device Letters 45, no. 4 (2024): 641–644, https://doi.org/10.1109/LED.2024.3368513.

[47]

J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The Origin of Stress Reduction by Low-Temperature AlN Interlayers,” Applied Physics Letters 81, no. 15 (2002): 2722–2724, https://doi.org/10.1063/1.1512331.

[48]

Y. Cao, Q. Lv, T. Yang, et al., “Effect of EBL Thickness on the Performance of AlGaN Deep Ultraviolet Light-Emitting Diodes With Polarization-Induced Doping Hole Injection Layer,” Micro Nanostruct 175 (2023): 207489, https://doi.org/10.1016/j.micrna.2022.207489.

[49]

C. K. Li, C. K. Wu, C. C. Hsu, et al., “3D Numerical Modeling of the Carrier Transport and Radiative Efficiency for InGaN/GaN Light Emitting Diodes With V-Shaped Pits,” AIP Advances 6, no. 5 (2016): 055208, https://doi.org/10.1063/1.4950771.

[50]

L. Wang, C. Lu, J. Lu, et al., “Influence of Carrier Screening and Band Filling Effects on Efficiency Droop of InGaN Light Emitting Diodes,” Optics Express 19, no. 15 (2011): 14182–14187, https://doi.org/10.1364/OE.19.014182.

[51]

S. Lai, C. Lai, S. Li, et al., “Green InGaN/GaN Multiple-Quantum-Wells With Pre-Layer for High-Efficiency Mini-LEDs,” IEEE Electron Device Letters 44, no. 6 (2023): 907–910, https://doi.org/10.1109/led.2023.3264983.

[52]

M.-C. Shen, W. Guo, J. Chen, et al., “Improve Characteristics of GaN-Based Green Mini-LEDs With Double Dielectric Sidewall Passivation,” Physica Scripta 98, no. 11 (2023): 115524, https://doi.org/10.1088/1402-4896/acfb4d.

[53]

T. Gong, Y. Yang, T. Xuan, et al., “Local Light Field Control Enables Efficient Quantum Dot Color Conversion Films for Mini-LED Backlit Displays,” Laser & Photonics Reviews 18, no. 10 (2024): 2301097, https://doi.org/10.1002/lpor.202301097.

[54]

T. Xuan, S. Guo, W. Bai, T. Zhou, L. Wang, and R. J. Xie, “Ultrastable and Highly Efficient Green-Emitting Perovskite Quantum Dot Composites for Mini-LED Displays or Backlights,” Nano Energy 95 (2022): 107003, https://doi.org/10.1016/j.nanoen.2022.107003.

[55]

J. Zhang, J. Wang, L. Cai, et al., “Fine-Tuning Crystal Structures of Lead Bromide Perovskite Nanocrystals Through Trace Cadmium(II) Doping for Efficient Color-Saturated Green LEDs,” Angewandte Chemie, International Edition in English 63, no. 26 (2024): e202403996, https://doi.org/10.1002/anie.202403996.

[56]

J. Du, S. Liu, Z. Song, and Q. Liu, “All-Inorganic Green Synthesis of Small-Sized and Efficient K2SiF6:Mn4+ Phosphor for Mini-LED Displays,” ACS Applied Materials & Interfaces 15, no. 46 (2023): 53738–53745, https://doi.org/10.1021/acsami.3c13038.

[57]

E. L. Routh, M. Abdelhamid, P. C. Colter, A. J. Bonner, N. A. El-Masry, and S. M. Bedair, “Reduction of V-Pit Density and Depth in InGaN Semibulk Templates and Improved LED Performance With Insertion of High Temperature Semibulk Layers,” Semiconductor Science and Technology 37, no. 7 (2022): 075003, https://doi.org/10.1088/1361-6641/ac6d01.

[58]

R. C. White, M. Khoury, F. Wu, et al., “MOCVD Growth of Thick V-Pit-Free InGaN Films on Semi-Relaxed InGaN Substrates,” Semiconductor Science and Technology 36, no. 1 (2020): 015011, https://doi.org/10.1088/1361-6641/abc51c.

[59]

K. S. Son, D. G. Kim, H. K. Cho, K. Lee, and K. Park, “Formation of V-Shaped Pits in GaN Thin Films Grown on High Temperature GaN,” Journal of Crystal Growth 261, no. 1 (2004): 50–54, https://doi.org/10.1016/j.jcrysgro.2003.08.075.

[60]

M. S. Kumar, Y. S. Lee, J. Y. Park, S. Chung, C. H. Hong, and E. K. Suh, “Surface Morphological Studies of Green InGaN/GaN Multi-Quantum Wells Grown by Using MOCVD,” Materials Chemistry and Physics 113, no. 1 (2009): 192–195, https://doi.org/10.1016/j.matchemphys.2008.07.068.

RIGHTS & PERMISSIONS

2025 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

49

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/