Oxygen Vacancy Engineering of Metal Oxide Materials for Photoelectrochemical Water Splitting

Xiao-Fan Yang , Guang-Ping Yi , Peng-Fei Lv , Si-Jie Wen , Yi-Ping Zhao , Zhao Jing , Qiang Wang , Bing Li , Peng-Yi Tang

Electron ›› 2025, Vol. 3 ›› Issue (3) : e70011

PDF
Electron ›› 2025, Vol. 3 ›› Issue (3) : e70011 DOI: 10.1002/elt2.70011
REVIEW

Oxygen Vacancy Engineering of Metal Oxide Materials for Photoelectrochemical Water Splitting

Author information +
History +
PDF

Abstract

Photoelectrochemical (PEC) water splitting presents a promising route for sustainable hydrogen production, yet the efficiency of metal oxide photoanodes remains limited by suboptimal light absorption, charge carrier recombination, and sluggish surface reaction kinetics. This review critically examines the strategic engineering of oxygen vacancies (OVs) as a powerful tool for overcoming these intrinsic limitations. We systematically analyze established methodologies for the deliberate introduction and modulation of OVs in metal oxides, including techniques such as the hydrothermal method, thermal treatment, chemical reduction, plasma processing, elemental doping, and microwave heating. Furthermore, we critically evaluate the applicability, strengths, and limitations of key characterization techniques for detecting and quantifying OVs. Crucially, the review delves into the profound mechanistic impacts of OVs on the PEC process chain: Their roles in tailoring electronic band structures to alter the photoelectrochemical properties of metal oxide photoanodes, thereby enhancing visible light absorption, acting as shallow donors to improve charge carrier density, functioning as electron traps to suppress bulk recombination, and modifying surface states to accelerate the oxygen evolution reaction. We also present detailed case studies focusing on five prominent photoanode materials: TiO2, α-Fe2O3, BiVO4, WO3, and ZnFe2O4. This review elucidates the specific roles and operational principles of OVs within these materials and summarizes the intrinsic relationship among OV generation, characterization, and functional enhancement, providing valuable insights for the rational design of OV-engineered photoanodes toward efficient solar fuel production.

Keywords

metal oxide photoanode / oxygen vacancies / photoelectrochemical water splitting / solar energy conversion

Cite this article

Download citation ▾
Xiao-Fan Yang, Guang-Ping Yi, Peng-Fei Lv, Si-Jie Wen, Yi-Ping Zhao, Zhao Jing, Qiang Wang, Bing Li, Peng-Yi Tang. Oxygen Vacancy Engineering of Metal Oxide Materials for Photoelectrochemical Water Splitting. Electron, 2025, 3(3): e70011 DOI:10.1002/elt2.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, and J. S. Lee, “Toward Practical Solar Hydrogen Production—An Artificial Photosynthetic Leaf-to-Farm Challenge,” Chemical Society Reviews 48, no. 7 (2019): 1908–1971, https://doi.org/10.1039/c8cs00699g.

[2]

S. Chu and A. Majumdar, “Opportunities and Challenges for a Sustainable Energy Future,” Nature 488, no. 7411 (2012): 294–303, https://doi.org/10.1038/nature11475.

[3]

S. J. Davis, N. S. Lewis, M. Shaner, et al., “Net-Zero Emissions Energy Systems,” Science 360, no. 6396 (2018): eaas9793, https://doi.org/10.1126/science.aas9793.

[4]

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238, no. 5358 (1972): 37–38, https://doi.org/10.1038/238037a0.

[5]

X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, “Semiconductor-Based Photocatalytic Hydrogen Generation,” Chemical Reviews 110, no. 11 (2010): 6503–6570, https://doi.org/10.1021/cr1001645.

[6]

P. G. Wu, R. C. Xie, J. A. Imlay, and J. K. Shang, “Visible-Light-Induced Photocatalytic Inactivation of Bacteria by Composite Photocatalysts of Palladium Oxide and Nitrogen-Doped Titanium Oxide,” Applied Catalysis B: Environmental 88, no. 3–4 (2009): 576–581, https://doi.org/10.1016/j.apcatb.2008.12.019.

[7]

S. Kment, F. Riboni, S. Pausova, et al., “Photoanodes Based on TiO2 and α-Fe2O3 for Solar Water Splitting—Superior Role of 1D Nanoarchitectures and of Combined Heterostructures,” Chemical Society Reviews 46, no. 12 (2017): 3716–3769, https://doi.org/10.1039/c6cs00015k.

[8]

J. H. Yang, D. G. Wang, H. X. Han, and C. Li, “Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis,” Accounts of Chemical Research 46, no. 8 (2013): 1900–1909, https://doi.org/10.1021/ar300227e.

[9]

H. L. Tuller and S. R. Bishop, “Point Defects in Oxides: Tailoring Materials Through Defect Engineering,” Annual Review of Materials Research 41, no. 41 (2011): 369–398, https://doi.org/10.1146/annurev-matsci-062910-100442.

[10]

R. Fernández-Climent, S. Giménez, and M. García-Tecedor, “The Role of Oxygen Vacancies in Water Splitting Photoanodes,” Sustainable Energy Fuels 4, no. 12 (2020): 5916–5926, https://doi.org/10.1039/d0se01305f.

[11]

Z. Wang, R. Lin, Y. Huo, H. Li, and L. Wang, “Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion,” Advanced Functional Materials 32, no. 7 (2022): 2109503, https://doi.org/10.1002/adfm.202109503.

[12]

Y. Huang, Y. Yu, Y. Yu, and B. Zhang, “Oxygen Vacancy Engineering in Photocatalysis,” Solar RRL 4, no. 8 (2020): 2000037, https://doi.org/10.1002/solr.202000037.

[13]

G. Wang, Y. Ling, and Y. Li, “Oxygen-Deficient Metal Oxide Nanostructures for Photoelectrochemical Water Oxidation and Other Applications,” Nanoscale 4, no. 21 (2012): 6682, https://doi.org/10.1039/c2nr32222f.

[14]

S. Wang, C. Meng, Y. Bai, et al., “Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe2O3 Nanorods for Photoelectrochemical Water Splitting,” ACS Applied Nano Materials 5, no. 5 (2022): 6781–6791, https://doi.org/10.1021/acsanm.2c00777.

[15]

N. Li, Y. Wei, S. Liu, Z. Yu, Y. Shen, and M. Wang, “Boosting Oxygen Evolution Reaction Performance on BiVO4 Photoanode via Gradient Oxygen Vacancies,” ACS Energy Letters 10, no. 5 (2025): 2162–2170, https://doi.org/10.1021/acsenergylett.5c00507.

[16]

G. Xi, S. Ouyang, P. Li, et al., “Ultrathin W18O49 Nanowires With Diameters Below 1 Nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide,” Angewandte Chemie International Edition 51, no. 10 (2012): 2395–2399, https://doi.org/10.1002/anie.201107681.

[17]

L. Zhao, W. Wang, H. Zhao, et al., “Controlling Oxygen Vacancies Through Gas-Assisted Hydrothermal Method and Improving the Capacitive Properties of MnO2 Nanowires,” Applied Surface Science 491 (2019): 24–31, https://doi.org/10.1016/j.apsusc.2019.06.074.

[18]

S. Chen, H. Wang, Z. Kang, et al., “Oxygen Vacancy Associated Single-Electron Transfer for Photofixation of CO2 to Long-Chain Chemicals,” Nature Communications 10, no. 1 (2019): 788, https://doi.org/10.1038/s41467-019-08697-x.

[19]

G. Wang, H. Wang, Y. Ling, et al., “Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting,” Nano Letters 11, no. 7 (2011): 3026–3033, https://doi.org/10.1021/nl201766h.

[20]

L. Shi, Z. Li, T. D. Dao, T. Nagao, and Y. Yang, “A Synergistic Interaction Between Isolated Au Nanoparticles and Oxygen Vacancies in an Amorphous Black TiO2 Nanoporous Film: Toward Enhanced Photoelectrochemical Water Splitting,” Journal of Materials Chemistry A 6, no. 27 (2018): 12978–12984, https://doi.org/10.1039/c8ta04621b.

[21]

R. Liang, H. Wu, Z. Hu, et al., “Novel Photoelectrocatalytic System of Oxygen Vacancy-Rich Black TiO2-X Nanocones Photoanode and Natural Air Diffusion Cathode for Efficient Water Purification and Simultaneous H2O2 Production,” Applied Catalysis B: Environment and Energy 352 (2024): 124042, https://doi.org/10.1016/j.apcatb.2024.124042.

[22]

H. Liang, Z. Cao, C. Xia, et al., “Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering,” CCS Chemistry 3, no. 3 (2021): 1553–1561, https://doi.org/10.31635/ccschem.020.202000325.

[23]

H. C. Wang, H. M. Li, T. Yang, et al., “Enhanced Water Oxidation of Hematite Photoanodes via Localized N-p Homojunctions Induced by Gradient Zn2+ Doping,” Advanced Functional Materials 34, no. 45 (2024): 2406545, https://doi.org/10.1002/adfm.202406545.

[24]

J. H. Kim, J. H. Kim, J. W. Jang, et al., “Awakening Solar Water-Splitting Activity of ZnFe2O4 Nanorods by Hybrid Microwave Annealing,” Advanced Energy Materials 5, no. 6 (2014): 1401933, https://doi.org/10.1002/aenm.201401933.

[25]

L. Ye, L. Zan, L. Tian, T. Peng, and J. Zhang, “The {001} Facets-dependent High Photoactivity of BiOCl Nanosheets,” Chemical Communications 47, no. 24 (2011): 6951–6953, https://doi.org/10.1039/c1cc11015b.

[26]

Q. Zhang, P. Yang, H. Zhang, et al., “Oxygen Vacancies in Co3O4 Promote CO2 Photoreduction,” Applied Catalysis B: Environmental 300 (2022): 120729, https://doi.org/10.1016/j.apcatb.2021.120729.

[27]

K. H. Kim, C. W. Choi, S. Choung, et al., “Continuous Oxygen Vacancy Gradient in TiO2 Photoelectrodes by a Photoelectrochemical-Driven ‘Self-Purification’ Process,” Advanced Energy Materials 12, no. 7 (2022): 2103495, https://doi.org/10.1002/aenm.202103495.

[28]

G. Wang, Y. Yang, Y. Ling, et al., “An Electrochemical Method to Enhance the Performance of Metal Oxides for Photoelectrochemical Water Oxidation,” Journal of Materials Chemistry A 4, no. 8 (2016): 2849–2855, https://doi.org/10.1039/c5ta10477g.

[29]

T. Zhou, L. Li, J. Li, et al., “Electrochemically Reduced TiO2 Photoanode Coupled With Oxygen Vacancy-Rich Carbon Quantum Dots for Synergistically Improving Photoelectrochemical Performance,” Chemical Engineering Journal 425 (2021): 131770, https://doi.org/10.1016/j.cej.2021.131770.

[30]

D. Liu, C. Wang, Y. Yu, et al., “Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides,” Chem 5, no. 2 (2019): 376–389, https://doi.org/10.1016/j.chempr.2018.11.001.

[31]

Z. Wang and L. Wang, “Role of Oxygen Vacancy in Metal Oxide Based Photoelectrochemical Water Splitting,” EcoMat 3, no. 1 (2021): e12075, https://doi.org/10.1002/eom2.12075.

[32]

Z. Su, X. Li, W. Si, et al., “Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence From In Situ XPS/NEXAFS and DFT +UCalculation,” ACS Catalysis 13, no. 6 (2023): 3444–3455, https://doi.org/10.1021/acscatal.3c00333.

[33]

M. Guan, C. Xiao, J. Zhang, et al., “Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets,” Journal of the American Chemical Society 135, no. 28 (2013): 10411–10417, https://doi.org/10.1021/ja402956f.

[34]

H. Feng, Z. Xu, L. Ren, et al., “Activating Titania for Efficient Electrocatalysis by Vacancy Engineering,” ACS Catalysis 8, no. 5 (2018): 4288–4293, https://doi.org/10.1021/acscatal.8b00719.

[35]

Y. Yang, L. C. Yin, Y. Gong, et al., “An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies,” Advanced Materials 30, no. 6 (2018): 1704479, https://doi.org/10.1002/adma.201704479.

[36]

J. Yano and V. K. Yachandra, “X-Ray Absorption Spectroscopy,” Photosynthesis Research 102, no. 2–3 (2009): 241–254, https://doi.org/10.1007/s11120-009-9473-8.

[37]

N. Zhang, X. Li, H. Ye, et al., “Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation,” Journal of the American Chemical Society 138, no. 28 (2016): 8928–8935, https://doi.org/10.1021/jacs.6b04629.

[38]

Q. Huang, G.-J. Xia, B. Huang, et al., “Activating Lattice Oxygen by a Defect-Engineered Fe2O3–CeO2 Nano-Heterojunction for Efficient Electrochemical Water Oxidation,” Energy & Environmental Science 17, no. 14 (2024): 5260–5272, https://doi.org/10.1039/d4ee01588f.

[39]

C. M. Yim, C. L. Pang, and G. Thornton, “Oxygen Vacancy Origin of the Surface Band-Gap State of TiO2(110),” Physical Review Letters 104, no. 3 (2010): 036806, https://doi.org/10.1103/physrevlett.104.036806.

[40]

Z. Dong, M. Huo, J. Li, et al., “Visualization of Oxygen Vacancies and Self-Doped Ligand Holes in La3Ni2O7−δ,” Nature 630, no. 8018 (2024): 847–852, https://doi.org/10.1038/s41586-024-07482-1.

[41]

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing Solar Absorption for Photocatalysis With Black Hydrogenated Titanium Dioxide Nanocrystals,” Science 331, no. 6018 (2011): 746–750, https://doi.org/10.1126/science.1200448.

[42]

Z. Tian, P. Zhang, P. Qin, et al., “Novel Black BiVO4/TiO2−x Photoanode With Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting,” Advanced Energy Materials 9, no. 27 (2019): 1901287, https://doi.org/10.1002/aenm.201901287.

[43]

J. Wang, X. Leng, S. Kan, Y. Cui, J. Bai, and L. Xu, “Oxygen Vacancies Boosted Photoelectrochemical Performance of α-Fe2O3 Photoanode via Butane Flame Annealing,” Journal of Alloys and Compounds (2024): 976.

[44]

S. S. Kalanur, I.-H. Yoo, I.-S. Cho, and H. Seo, “Effect of Oxygen Vacancies on the Band Edge Properties of WO3 Producing Enhanced Photocurrents,” Electrochimica Acta 296 (2019): 517–527, https://doi.org/10.1016/j.electacta.2018.11.061.

[45]

J. H. Kim, Y. J. Jang, J. H. Kim, J.-W. Jang, S. H. Choi, and J. S. Lee, “Defective ZnFe2O4 Nanorods With Oxygen Vacancy for Photoelectrochemical Water Splitting,” Nanoscale 7, no. 45 (2015): 19144–19151, https://doi.org/10.1039/c5nr05812k.

[46]

S. Wang, P. Chen, J. H. Yun, Y. Hu, and L. Wang, “An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting,” Angewandte Chemie International Edition 56, no. 29 (2017): 8500–8504, https://doi.org/10.1002/anie.201703491.

[47]

M. K. Nowotny, T. Bak, and J. Nowotny, “Electrical Properties and Defect Chemistry of TiO2 Single Crystal. I. Electrical Conductivity,” Journal of Physical Chemistry B 110, no. 33 (2006): 16270–16282, https://doi.org/10.1021/jp0606210.

[48]

Z. Wang, X. Mao, P. Chen, et al., “Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes,” Angewandte Chemie International Edition 58, no. 4 (2018): 1030–1034, https://doi.org/10.1002/anie.201810583.

[49]

S. Corby, L. Francàs, A. Kafizas, and J. R. Durrant, “Determining the Role of Oxygen Vacancies in the Photoelectrocatalytic Performance of WO3 for Water Oxidation,” Chemical Science 11, no. 11 (2020): 2907–2914, https://doi.org/10.1039/c9sc06325k.

[50]

K.-A. Tsai, C.-C. Lai, Y.-H. Chen, et al., “Exploring the Impact of Surface Oxygen Vacancies on Charge Carrier Dynamics in BiVO4 Photoanodes Through Atmospheric Pressure Plasma Jet Post-Treatment for Efficiency Improvement in Photoelectrochemical Water Oxidation,” Applied Catalysis B: Environmental 341 (2024): 123288, https://doi.org/10.1016/j.apcatb.2023.123288.

[51]

J. Hu, X. Zhao, W. Chen, H. Su, and Z. Chen, “Theoretical Insight Into the Mechanism of Photoelectrochemical Oxygen Evolution Reaction on BiVO4 Anode With Oxygen Vacancy,” Journal of Physical Chemistry C 121, no. 34 (2017): 18702–18709, https://doi.org/10.1021/acs.jpcc.7b05884.

[52]

X. Ouyang, C. Feng, X. Zhu, et al., “3D Printed Bionic Self-Powered Sensing Device Based on Fern-Shaped Nitrogen Doped BiVO4 Photoanode With Enriched Oxygen Vacancies,” Biosensors and Bioelectronics 220 (2023): 114817, https://doi.org/10.1016/j.bios.2022.114817.

[53]

S. Wang, T. He, P. Chen, et al., “In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO4 Photoanodes,” Advanced Materials 32, no. 26 (2020): e2001385, https://doi.org/10.1002/adma.202001385.

[54]

C. Li, F. Feng, J. Jian, et al., “Boosting Carrier Dynamics of BiVO4 Photoanode via Heterostructuring With Ultrathin BiOI Nanosheets for Enhanced Solar Water Splitting,” Journal of Materials Science & Technology 79 (2021): 21–28, https://doi.org/10.1016/j.jmst.2020.11.037.

[55]

S. Feng, T. Wang, B. Liu, et al., “Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching With Enhanced Charge Separation,” Angewandte Chemie International Edition 59, no. 5 (2019): 2044–2048, https://doi.org/10.1002/anie.201913295.

[56]

J. Wang, G. Ni, W. Liao, et al., “Subsurface Engineering Induced Fermi Level De-Pinning in Metal Oxide Semiconductors for Photoelectrochemical Water Splitting,” Angewandte Chemie International Edition 62, no. 9 (2023): e202217026, https://doi.org/10.1002/anie.202217026.

[57]

H. Chen, J. Li, W. Yang, et al., “The Role of Surface States on Reduced TiO2@BiVO4 Photoanodes: Enhanced Water Oxidation Performance Through Improved Charge Transfer,” ACS Catalysis 11, no. 13 (2021): 7637–7646, https://doi.org/10.1021/acscatal.1c00686.

[58]

T. W. Kim, Y. Ping, G. A. Galli, and K.-S. Choi, “Simultaneous Enhancements in Photon Absorption and Charge Transport of Bismuth Vanadate Photoanodes for Solar Water Splitting,” Nature Communications 6, no. 1 (2015): 8769, https://doi.org/10.1038/ncomms9769.

[59]

G. Wang, Y. Ling, X. Lu, et al., “Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate,” Journal of Physical Chemistry C 117, no. 21 (2013): 10957–10964, https://doi.org/10.1021/jp401972h.

[60]

S. Tang, W. Qiu, X. Xu, et al., “Harvesting of Infrared Part of Sunlight to Enhance Polaron Transport and Solar Water Splitting,” Advanced Functional Materials 32, no. 18 (2022): 2110284, https://doi.org/10.1002/adfm.202110284.

[61]

J. Hu, X. Zhao, W. Chen, and Z. Chen, “Enhanced Charge Transport and Increased Active Sites on α-Fe2O3 (110) Nanorod Surface Containing Oxygen Vacancies for Improved Solar Water Oxidation Performance,” ACS Omega 3, no. 11 (2018): 14973–14980, https://doi.org/10.1021/acsomega.8b01195.

[62]

A. Grimaud, O. Diaz-Morales, B. Han, et al., “Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution,” Nature Chemistry 9, no. 5 (2017): 457–465, https://doi.org/10.1038/nchem.2695.

[63]

X. Zhao, J. Hu, X. Yao, S. Chen, and Z. Chen, “Clarifying the Roles of Oxygen Vacancy in W-Doped BiVO4 for Solar Water Splitting,” ACS Applied Energy Materials 1, no. 7 (2018): 3410–3419, https://doi.org/10.1021/acsaem.8b00559.

[64]

S. Qu, H. Wu, and Y. H. Ng, “Solar Oxidative Hydrogen Peroxide Production: Is the Oxygen Vacancy Always a Promoter in Solar Water Oxidation?,” ACS Catalysis 14, no. 7 (2024): 5297–5304, https://doi.org/10.1021/acscatal.3c05764.

[65]

G. Dong, H. Hu, X. Huang, Y. Zhang, and Y. Bi, “Rapid Activation of Co3O4 Cocatalysts With Oxygen Vacancies on TiO2 Photoanodes for Efficient Water Splitting,” Journal of Materials Chemistry A 6, no. 42 (2018): 21003–21009, https://doi.org/10.1039/c8ta08342h.

[66]

Y. Zhang, Z. Xu, G. Li, X. Huang, W. Hao, and Y. Bi, “Direct Observation of Oxygen Vacancy Self-Healing on TiO2 Photocatalysts for Solar Water Splitting,” Angewandte Chemie International Edition 58, no. 40 (2019): 14229–14233, https://doi.org/10.1002/anie.201907954.

[67]

W. Zhang, R. Tian, J. Wang, Y. Liu, and W. Mai, “Mechanism of High PEC Performance of B-Doped TiO2 Nanotube Arrays: Highly Reactive Surface Defects and Lattice Stress,” Applied Surface Science 638 (2023): 158066, https://doi.org/10.1016/j.apsusc.2023.158066.

[68]

Y. Zhang, X. Zhang, D. Wang, F. Wan, and Y. Liu, “Protecting Hydrogenation-Generated Oxygen Vacancies in BiVO4 Photoanode for Enhanced Water Oxidation With Conformal Ultrathin Amorphous TiO2 Layer,” Applied Surface Science 403 (2017): 389–395, https://doi.org/10.1016/j.apsusc.2017.01.195.

[69]

Y. Liu, L. Tian, X. Tan, X. Li, and X. Chen, “Synthesis, Properties, and Applications of Black Titanium Dioxide Nanomaterials,” Science Bulletin 62, no. 6 (2017): 431–441, https://doi.org/10.1016/j.scib.2017.01.034.

[70]

X. B. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing Solar Absorption for Photocatalysis With Black Hydrogenated Titanium Dioxide Nanocrystals,” Science. 331, no. 6018 (2011): 746–750, https://doi.org/10.1126/science.1200448.

[71]

X. Lv, L. Tao, M. Cao, X. Xiao, M. Wang, and Y. Shen, “Enhancing Photoelectrochemical Water Oxidation Efficiency via Self-Catalyzed Oxygen Evolution: A Case Study on TiO2,” Nano Energy 44 (2018): 411–418, https://doi.org/10.1016/j.nanoen.2017.12.024.

[72]

I. S. Cho, M. Logar, C. H. Lee, L. Cai, F. B. Prinz, and X. Zheng, “Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting,” Nano Letters 14, no. 1 (2013): 24–31, https://doi.org/10.1021/nl4026902.

[73]

H. Li, J. Chen, Z. Xia, and J. Xing, “Microwave-Assisted Preparation of Self-Doped TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Water Splitting,” Journal of Materials Chemistry A 3, no. 2 (2015): 699–705, https://doi.org/10.1039/c4ta05021e.

[74]

L. Liu, K. Hou, Z. Zhang, et al., “Dual Active Sites Over TiO2 Homojunction Through Tungsten Doping and Oxygen Vacancies for Enhanced Photoelectrochemical Properties,” Journal of Alloys and Compounds (2023): 962.

[75]

M. A. Rahman, S. Bazargan, S. Srivastava, et al., “Defect-Rich Decorated TiO2 Nanowires for Super-Efficient Photoelectrochemical Water Splitting Driven by Visible Light,” Energy & Environmental Science 8, no. 11 (2015): 3363–3373, https://doi.org/10.1039/c5ee01615k.

[76]

H. Cui, W. Zhao, C. Yang, et al., “Black TiO2 Nanotube Arrays for High-Efficiency Photoelectrochemical Water-Splitting,” Journal of Materials Chemistry A 2, no. 23 (2014): 8612–8616, https://doi.org/10.1039/c4ta00176a.

[77]

Y.-S. Chang, M. Choi, M. Baek, P.-Y. Hsieh, K. Yong, and Y.-J. Hsu, “CdS/CdSe Co-Sensitized Brookite H:TiO2 Nanostructures: Charge Carrier Dynamics and Photoelectrochemical Hydrogen Generation,” Applied Catalysis B: Environmental. 225 (2018): 379–385, https://doi.org/10.1016/j.apcatb.2017.11.063.

[78]

Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, and J. Ye, “Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting,” Journal of Materials Chemistry A 1, no. 18 (2013): 5766, https://doi.org/10.1039/c3ta10689f.

[79]

X. Shang, R. Xv, Z. Li, Y. Zheng, and L. Fu, “Heterophase Homojunction Construction by Amorphous TiOx and N–TiO2 Photoanode for Oxygen Evolution Reaction Kinetics and Charge Carriers’ Transportation Enhancement,” International Journal of Hydrogen Energy 87 (2024): 595–605, https://doi.org/10.1016/j.ijhydene.2024.09.051.

[80]

W. Dong, H. Li, J. Xi, et al., “Reduced TiO2 Nanoflower Structured Photoanodes for Superior Photoelectrochemical Water Splitting,” Journal of Alloys and Compounds 724 (2017): 280–286, https://doi.org/10.1016/j.jallcom.2017.06.246.

[81]

X. Liang, Q. He, J. Zhang, et al., “Enhanced Photo-Carrier Transportation at Semiconductor/Electrolyte Interface of TiO2 Photoanode by Oxygen Vacancy Engineering,” Applied Surface Science 597 (2022): 153744, https://doi.org/10.1016/j.apsusc.2022.153744.

[82]

S. Zhang, Z. Liu, D. Chen, Z. Guo, and M. Ruan, “Oxygen Vacancies Engineering in TiO2 homojunction/ZnFe-LDH for Enhanced Photoelectrochemical Water Oxidation,” Chemical Engineering Journal 395 (2020): 125101, https://doi.org/10.1016/j.cej.2020.125101.

[83]

K. Sivula, F. Le Formal, and M. Grätzel, “Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes,” ChemSusChem 4, no. 4 (2011): 432–449, https://doi.org/10.1002/cssc.201000416.

[84]

B. K. Jha, S. Chaule, and J.-H. Jang, “Enhancing Photocatalytic Efficiency With Hematite Photoanodes: Principles, Properties, and Strategies for Surface, Bulk, and Interface Charge Transfer Improvement,” Materials Chemistry Frontiers 8, no. 10 (2024): 2197–2226, https://doi.org/10.1039/d3qm01100c.

[85]

G. Wang, Y. Ling, D. A. Wheeler, et al., “Facile Synthesis of Highly Photoactive α-Fe2O3-Based Films for Water Oxidation,” Nano Letters 11, no. 8 (2011): 3503–3509, https://doi.org/10.1021/nl202316j.

[86]

M. Li, J. Deng, A. Pu, et al., “Hydrogen-Treated Hematite Nanostructures With Low Onset Potential for Highly Efficient Solar Water Oxidation,” Journal of Materials Chemistry A 2, no. 19 (2014): 6727, https://doi.org/10.1039/c4ta00729h.

[87]

J. Moir, N. Soheilnia, K. Liao, et al., “Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment,” ChemSusChem 8, no. 9 (2015): 1557–1567, https://doi.org/10.1002/cssc.201402945.

[88]

Q. Yang, J. Du, J. Li, et al., “Thermodynamic and Kinetic Influence of Oxygen Vacancies on the Solar Water Oxidation Reaction of α-Fe2O3 Photoanodes,” ACS Applied Materials & Interfaces 12, no. 10 (2020): 11625–11634, https://doi.org/10.1021/acsami.9b21622.

[89]

H.-M. Li, Z.-Y. Wang, H.-J. Jing, et al., “Synergetic Integration of Passivation Layer and Oxygen Vacancy on Hematite Nanoarrays for Boosted Photoelectrochemical Water Oxidation,” Applied Catalysis B: Environmental. 284 (2021): 119760, https://doi.org/10.1016/j.apcatb.2020.119760.

[90]

Z. Zhang, I. Karimata, H. Nagashima, et al., “Interfacial Oxygen Vacancies Yielding Long-Lived Holes in Hematite Mesocrystal-Based Photoanodes,” Nature Communications 10, no. 1 (2019): 4832, https://doi.org/10.1038/s41467-019-12581-z.

[91]

B. Lei, D. Xu, B. Wei, et al., “In Situ Synthesis of α-Fe2O3/Fe3O4 Heterojunction Photoanode via Fast Flame Annealing for Enhanced Charge Separation and Water Oxidation,” ACS Applied Materials & Interfaces 13, no. 3 (2021): 4785–4795, https://doi.org/10.1021/acsami.0c19927.

[92]

A. Wei, J. Deng, C. Lu, H. Wang, B. Yang, and J. Zhong, “Fe2(MoO4)3 Modified Hematite With Oxygen Vacancies for High-Efficient Water Oxidation,” Chemical Engineering Journal 395 (2020): 125127, https://doi.org/10.1016/j.cej.2020.125127.

[93]

Y. Zhang, S.-Y. Yuan, Y. Zou, T.-T. Li, H. Liu, and J.-J. Wang, “Enhanced Charge Separation and Conductivity of Hematite Enabled by Versatile NiSe2 Nanoparticles for Improved Photoelectrochemical Water Oxidation,” Applied Materials Today 28 (2022): 101552, https://doi.org/10.1016/j.apmt.2022.101552.

[94]

C. Feng, Y. Bi, F. Zhan, and Y. Bi, “Boosting Interfacial Bonding Between FeOOH Catalysts and Fe2O3 Photoanodes Toward Efficient Water Oxidation,” Journal of Materials Chemistry A 12, no. 27 (2024): 16361–16366, https://doi.org/10.1039/d4ta02403f.

[95]

R.-T. Gao, J. Zhang, T. Nakajima, et al., “Single-Atomic-Site Platinum Steers Photogenerated Charge Carrier Lifetime of Hematite Nanoflakes for Photoelectrochemical Water Splitting,” Nature Communications 14, no. 1 (2023): 2640, https://doi.org/10.1038/s41467-023-38343-6.

[96]

X. Hu, J. Huang, Y. Cao, et al., “Photothermal-Boosted Polaron Transport in Fe2O3 Photoanodes for Efficient Photoelectrochemical Water Splitting,” Carbon Energy 5, no. 9 (2023): e369, https://doi.org/10.1002/cey2.369.

[97]

Y. Ling, G. Wang, J. Reddy, C. Wang, J. Z. Zhang, and Y. Li, “The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires,” Angewandte Chemie International Edition 51, no. 17 (2012): 4074–4079, https://doi.org/10.1002/anie.201107467.

[98]

L. Zhang, X. Xue, T. Guo, et al., “Creation of Oxygen Vacancies to Activate Fe2O3 Photoanode by Simple Solvothermal Method for Highly Efficient Photoelectrochemical Water Oxidation,” International Journal of Hydrogen Energy 46, no. 24 (2021): 12897–12905, https://doi.org/10.1016/j.ijhydene.2021.01.120.

[99]

C. Zhu, C. Li, M. Zheng, and J.-J. Delaunay, “Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation,” ACS Applied Materials & Interfaces 7, no. 40 (2015): 22355–22363, https://doi.org/10.1021/acsami.5b06131.

[100]

H. Zhang, J. H. Park, W. J. Byun, M. H. Song, and J. S. Lee, “Activating the Surface and Bulk of Hematite Photoanodes to Improve Solar Water Splitting,” Chemical Science 10, no. 44 (2019): 10436–10444, https://doi.org/10.1039/c9sc04110a.

[101]

Z. Zhou, S. Wu, L. Qin, L. Li, L. Li, and X. Li, “Modulating Oxygen Vacancies in Sn-Doped Hematite Film Grown on Silicon Microwires for Photoelectrochemical Water Oxidation,” Journal of Materials Chemistry A 6, no. 32 (2018): 15593–15602, https://doi.org/10.1039/c8ta03643h.

[102]

J. Wu, M. Meng, X.-D. Du, M. Li, L. Jin, and W. Liu, “Enhancing Iron(III) Oxide Photoelectrochemical Water Splitting Performance Using Defect Engineering and Heterostructure Construction,” Inorganic Chemistry 63, no. 14 (2024): 6192–6201, https://doi.org/10.1021/acs.inorgchem.3c04310.

[103]

H. Zhang, P. Li, H. Zhou, et al., “Unravelling the Synergy of Oxygen Vacancies and Gold Nanostars in Hematite for the Electrochemical and Photoelectrochemical Oxygen Evolution Reaction,” Nano Energy 94 (2022): 106968, https://doi.org/10.1016/j.nanoen.2022.106968.

[104]

L. Zhou, W. Z. Wang, L. Zhang, H. L. Xu, and W. Zhu, “Single-crystalline BiVO4 Microtubes With Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property,” Journal of Physical Chemistry C 111, no. 37 (2007): 13659–13664, https://doi.org/10.1021/jp065155t.

[105]

F. F. Abdi, S. P. Berglund, and R. van de Krol, “ Multinary Metal Oxide Photoelectrodes,” in Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices, eds. S. Giménez and J. Bisquert (Springer International Publishing, 2016), 355–391.

[106]

J. T. Li and N. Q. Wu, “Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review,” Catalysis Science and Technology 5, no. 3 (2015): 1360–1384, https://doi.org/10.1039/c4cy00974f.

[107]

Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, and L. Wang, “Nanostructured Bismuth Vanadate-Based Materials for Solar-Energy-Driven Water Oxidation: A Review on Recent Progress,” Nanoscale 6, no. 23 (2014): 14044–14063, https://doi.org/10.1039/c4nr05245e.

[108]

S. Wang, G. Liu, and L. Wang, “Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting,” Chemical Reviews 119, no. 8 (2019): 5192–5247, https://doi.org/10.1021/acs.chemrev.8b00584.

[109]

W. Luo, Z. Yang, Z. Li, et al., “Solar Hydrogen Generation From Seawater With a Modified BiVO4 Photoanode,” Energy & Environmental Science 4, no. 10 (2011): 4046, https://doi.org/10.1039/c1ee01812d.

[110]

Y. Liu, Z. Zhang, K. Wang, et al., “Efficient BiVO4 Photoanode With an Excellent Hole Transport Layer of CuSCN for Solar Water Oxidation,” Advanced Energy Materials 14, no. 17 (2024): 2304223, https://doi.org/10.1002/aenm.202304223.

[111]

D. Cardenas-Morcoso, R. Ifraemov, M. García-Tecedor, I. Liberman, S. Gimenez, and I. Hod, “A Metal–Organic Framework Converted Catalyst That Boosts Photo-Electrochemical Water Splitting,” Journal of Materials Chemistry A 7, no. 18 (2019): 11143–11149, https://doi.org/10.1039/c9ta01559k.

[112]

Q. Pan, K. Yang, G. Wang, et al., “BiVO4 Nanocrystals With Controllable Oxygen Vacancies Induced by Zn-Doping Coupled With Graphene Quantum Dots for Enhanced Photoelectrochemical Water Splitting,” Chemical Engineering Journal 372 (2019): 399–407, https://doi.org/10.1016/j.cej.2019.04.161.

[113]

M. Arunachalam, Y. Jun Seo, S. Jeon, K.-S. Ahn, C. Soo Kim, and K. S. Hyung, “Colloidal Metal Ag Nanowire as an Efficient Co-Catalyst for Enhancing the Solar Water Oxidation of Fluorinated BiVO4 Photoelectrode,” Chemical Engineering Journal 394 (2020): 125016, https://doi.org/10.1016/j.cej.2020.125016.

[114]

T. Zhou, S. Chen, J. Wang, et al., “Dramatically Enhanced Solar-Driven Water Splitting of BiVO4 Photoanode via Strengthening Hole Transfer and Light Harvesting by Co-Modification of CQDs and Ultrathin β-FeOOH Layers,” Chemical Engineering Journal 403 (2021): 126350, https://doi.org/10.1016/j.cej.2020.126350.

[115]

S. Akrami, Y. Murakami, M. Watanabe, et al., “Enhanced CO2 Conversion on Highly-Strained and Oxygen-Deficient BiVO4 Photocatalyst,” Chemical Engineering Journal 442 (2022): 136209, https://doi.org/10.1016/j.cej.2022.136209.

[116]

P. Nikačević, F. S. Hegner, J. R. Galán-Mascarós, and N. López, “Influence of Oxygen Vacancies and Surface Facets on Water Oxidation Selectivity Toward Oxygen or Hydrogen Peroxide With BiVO4,” ACS Catalysis 11, no. 21 (2021): 13416–13422, https://doi.org/10.1021/acscatal.1c03256.

[117]

S. Sun, R. Gao, X. Liu, et al., “Engineering Interfacial Band Bending Over Bismuth Vanadate/Carbon Nitride by Work Function Regulation for Efficient Solar-Driven Water Splitting,” Science Bulletin 67, no. 4 (2022): 389–397, https://doi.org/10.1016/j.scib.2021.10.009.

[118]

Y. Huang, H. Li, M.-S. Balogun, et al., “Oxygen Vacancy Induced Bismuth Oxyiodide With Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance,” ACS Applied Materials & Interfaces 6, no. 24 (2014): 22920–22927, https://doi.org/10.1021/am507641k.

[119]

B. Ryu, H.-K. Noh, E.-A. Choi, and K. J. Chang, “O-Vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In–Ga–Zn–O Thin Film Transistors,” Applied Physics Letters 97, no. 2 (2010): 022108, https://doi.org/10.1063/1.3464964.

[120]

S. Ren, M. Sun, X. Guo, X. Liu, X. Zhang, and L. Wang, “Interface-Confined Surface Engineering via Photoelectrochemical Etching Toward Solar Neutral Water Splitting,” ACS Catalysis 12, no. 3 (2022): 1686–1696, https://doi.org/10.1021/acscatal.1c05263.

[121]

B. Liu, X. Wang, Y. Zhang, et al., “A BiVO4 Photoanode With a VOx Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting,” Angewandte Chemie International Edition 62, no. 10 (2023): e202217346, https://doi.org/10.1002/anie.202217346.

[122]

Y. Xin, J. Tian, X. Xiong, et al., “Enhanced Photocatalytic Efficiency Through Oxygen Vacancy-Driven Molecular Epitaxial Growth of Metal–Organic Frameworks on BiVO4,” Advanced Materials 37, no. 9 (2025): e2417589, https://doi.org/10.1002/adma.202417589.

[123]

Y. Bu, J. Tian, Z. Chen, et al., “Optimization of the Photo-Electrochemical Performance of Mo-Doped BiVO4 Photoanode by Controlling the Metal–Oxygen Bond State on (020) Facet,” Advanced Materials Interfaces 4, no. 10 (2017): 1601235, https://doi.org/10.1002/admi.201601235.

[124]

X. Chen, D. Wang, Y. Huang, et al., “Spray-Processed Nanoporous BiVO4 Photoanodes With High Charge Separation Efficiency for Oxygen Evolution,” APL Materials 8, no. 3 (2020): 031112, https://doi.org/10.1063/1.5144107.

[125]

Q. Qin, Q. Cai, J. Li, C. Jian, W. Hong, and W. Liu, “High Quantum Efficiency Achieved on BiVO4 Photoanode for Efficient Solar Water Oxidation,” Solar RRL 3, no. 12 (2019): 1900301, https://doi.org/10.1002/solr.201900301.

[126]

S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, and L. Wang, “New BiVO4 Dual Photoanodes With Enriched Oxygen Vacancies for Efficient Solar-Driven Water Splitting,” Advanced Materials 30, no. 20 (2018): e1800486, https://doi.org/10.1002/adma.201800486.

[127]

W. Tian, C. Chen, L. Meng, W. Xu, F. Cao, and L. Li, “PVP Treatment Induced Gradient Oxygen Doping in In2S3 Nanosheet to Boost Solar Water Oxidation of WO3 Nanoarray Photoanode,” Advanced Energy Materials 10, no. 18 (2020): 1903951, https://doi.org/10.1002/aenm.201903951.

[128]

Z. Wei, W. Wang, W. Li, et al., “Steering Electron–Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance,” Angewandte Chemie International Edition 60, no. 15 (2021): 8236–8242, https://doi.org/10.1002/anie.202016170.

[129]

Y. Zhao, G. Brocks, H. Genuit, R. Lavrijsen, M. A. Verheijen, and A. Bieberle-Hütter, “Boosting the Performance of WO3/n-Si Heterostructures for Photoelectrochemical Water Splitting: From the Role of Si to Interface Engineering,” Advanced Energy Materials 9, no. 26 (2019): 1900940, https://doi.org/10.1002/aenm.201900940.

[130]

J. Huang, P. Yue, L. Wang, H. She, and Q. Wang, “A Review on Tungsten-Trioxide-Based Photoanodes for Water Oxidation,” Chinese Journal of Catalysis 40, no. 10 (2019): 1408–1420, https://doi.org/10.1016/s1872-2067(19)63399-1.

[131]

G. Wang, Y. Ling, H. Wang, et al., “Hydrogen-Treated WO3 Nanoflakes Show Enhanced Photostability,” Energy & Environmental Science 5, no. 3 (2012): 6180, https://doi.org/10.1039/c2ee03158b.

[132]

J. Yan, T. Wang, G. Wu, et al., “Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting,” Advanced Materials 27, no. 9 (2015): 1580–1586, https://doi.org/10.1002/adma.201404792.

[133]

X. Liu, H. Zhou, S. Pei, S. Xie, and S. You, “Oxygen-Deficient WO3−x Nanoplate Array Film Photoanode for Efficient Photoelectrocatalytic Water Decontamination,” Chemical Engineering Journal 381 (2020): 122740, https://doi.org/10.1016/j.cej.2019.122740.

[134]

Y. Ren, Q. Xu, X. Zheng, et al., “Building of Peculiar Heterostructure of Ag/Two-Dimensional Fullerene Shell-WO3-X for Enhanced Photoelectrochemical Performance,” Applied Catalysis B: Environmental. 231 (2018): 381–390, https://doi.org/10.1016/j.apcatb.2018.03.040.

[135]

Z. Ma, H. Hou, K. Song, et al., “Engineering Oxygen Vacancies by One-Step Growth of Distributed Homojunctions to Enhance Charge Separation for Efficient Photoelectrochemical Water Splitting,” Chemical Engineering Journal 379 (2020): 122266, https://doi.org/10.1016/j.cej.2019.122266.

[136]

H. Li, Q. Shen, H. Zhang, et al., “Oxygen Vacancy-Mediated WO3 Phase Junction to Steering Photogenerated Charge Separation for Enhanced Water Splitting,” Journal of Advanced Ceramics 11, no. 12 (2022): 1873–1888, https://doi.org/10.1007/s40145-022-0653-8.

[137]

M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, and J. H. Park, “Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation,” Angewandte Chemie International Edition 55, no. 39 (2016): 11819–11823, https://doi.org/10.1002/anie.201605247.

[138]

M. Sun, R. T. Gao, J. He, et al., “Photo-Driven Oxygen Vacancies Extends Charge Carrier Lifetime for Efficient Solar Water Splitting,” Angewandte Chemie International Edition 60, no. 32 (2021): 17601–17607, https://doi.org/10.1002/anie.202104754.

[139]

J.-T. Lee, Z.-C. Yan, K.-H. Lin, et al., “Co-Modification of WO3 Nanoplates With β-FeOOH/Carbon Quantum Dots Combined With Plasma Treatment Enables High-Efficiency Photoelectrochemical Characteristics,” Journal of Materials Chemistry A 12, no. 30 (2024): 19277–19287, https://doi.org/10.1039/d4ta02663b.

[140]

M. Sachs, J.-S. Park, E. Pastor, et al., “Effect of Oxygen Deficiency on the Excited State Kinetics of WO3 and Implications for Photocatalysis,” Chemical Science 10, no. 22 (2019): 5667–5677, https://doi.org/10.1039/c9sc00693a.

[141]

J. Zhang, X. Chang, C. Li, et al., “WO3 Photoanodes With Controllable Bulk and Surface Oxygen Vacancies for Photoelectrochemical Water Oxidation,” Journal of Materials Chemistry A 6, no. 8 (2018): 3350–3354, https://doi.org/10.1039/c7ta10056f.

[142]

C. Shao, A. S. Malik, J. Han, et al., “Oxygen Vacancy Engineering With Flame Heating Approach Towards Enhanced Photoelectrochemical Water Oxidation on WO3 Photoanode,” Nano Energy 77 (2020): 105190, https://doi.org/10.1016/j.nanoen.2020.105190.

[143]

L. Yan, G. Dong, X. Huang, Y. Zhang, and Y. Bi, “Unraveling Oxygen Vacancy Changes of WO3 Photoanodes for Promoting Oxygen Evolution Reaction,” Applied Catalysis B: Environmental. 345 (2024): 123682, https://doi.org/10.1016/j.apcatb.2023.123682.

[144]

H. Kong, H. Yang, J. S. Park, et al., “Spatial Control of Oxygen Vacancy Concentration in Monoclinic WO3 Photoanodes for Enhanced Solar Water Splitting,” Advanced Functional Materials 32, no. 36 (2022): 2204106, https://doi.org/10.1002/adfm.202204106.

[145]

X. Zhu, N. Guijarro, Y. Liu, et al., “Spinel Structural Disorder Influences Solar-Water-Splitting Performance of ZnFe2O4 Nanorod Photoanodes,” Advanced Materials 30, no. 34 (2018): 1801612, https://doi.org/10.1002/adma.201801612.

[146]

Y. Liu, M. Xia, L. Yao, et al., “Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe2O4) Photoanodes for Solar Water Oxidation,” Advanced Functional Materials 31, no. 16 (2021): 2010081, https://doi.org/10.1002/adfm.202010081.

[147]

Z. Jiang, X. Zhu, Z. Wang, et al., “Edge-Sharing Octahedrally Coordinated Ni-Fe Dual Active Sites on ZnFe2O4 for Photoelectrochemical Water Oxidation,” Advanced Science 10, no. 22 (2023): 2301869, https://doi.org/10.1002/advs.202301869.

[148]

N. Cheng, L. Kanzler, Y. Jiang, et al., “Activity and Stability of ZnFe2O4 Photoanodes Under Photoelectrochemical Conditions,” ACS Catalysis 14, no. 14 (2024): 10789–10795, https://doi.org/10.1021/acscatal.4c02186.

[149]

K. Miriyala, Sa Shor Peled, D. Klotz, and D. A. Grave, “Quantification of Mobile Charge Carrier Yield and Transport Lengths in Ultrathin Film Light-Trapping ZnFe2O4 Photoanodes,” Journal of Materials Chemistry A 13, no. 4 (2025): 2965–2973, https://doi.org/10.1039/d4ta05448b.

[150]

J. H. Kim, J. H. Kim, J.-W. Jang, et al., “Awakening Solar Water-Splitting Activity of ZnFe2O4 Nanorods by Hybrid Microwave Annealing,” Advanced Energy Materials 5, no. 6 (2015): 1401933, https://doi.org/10.1002/aenm.201401933.

[151]

Y. Guo, N. Zhang, X. Wang, et al., “A Facile Spray Pyrolysis Method to Prepare Ti-Doped ZnFe2O4 for Boosting Photoelectrochemical Water Splitting,” Journal of Materials Chemistry A 5, no. 16 (2017): 7571–7577, https://doi.org/10.1039/c6ta11134c.

[152]

A. Polo, F. Boudoire, C. R. Lhermitte, et al., “Key Factors Boosting the Performance of Planar ZnFe2O4 Photoanodes for Solar Water Oxidation,” Journal of Materials Chemistry A 9, no. 48 (2021): 27736–27747, https://doi.org/10.1039/d1ta07499g.

[153]

S. Saha, D. Maity, D. De, G. G. Khan, and K. Mandal, “Graphene Quantum Dots as Hole Extraction and Transfer Layer Empowering Solar Water Splitting of Catalyst-Coupled Zinc Ferrite Nanorods,” ACS Applied Materials & Interfaces 16, no. 22 (2024): 28441–28451, https://doi.org/10.1021/acsami.4c02723.

[154]

R. Tan, Y. J. Jeong, Q. Li, M. Kang, and I. S. Cho, “Defect-Rich Spinel Ferrites With Improved Charge Collection Properties for Efficient Solar Water Splitting,” Journal of Advanced Ceramics 12, no. 3 (2023): 612–624, https://doi.org/10.26599/jac.2023.9220709.

[155]

G.-P. Yi, H. Liu, Y.-P. Zhao, T. H. Tao, Q. Wang, and P.-Y. Tang, “Revealing the New Role of Surface States in Interfacial Charge Transfer at Zinc Ferrite Photoanodes for Efficient Photoelectrochemical Water Splitting,” Nano Energy 140 (2025): 111066, https://doi.org/10.1016/j.nanoen.2025.111066.

RIGHTS & PERMISSIONS

2025 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/