Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte

Yunfa Dong , Yuhui He , Botao Yuan , Xingyu Ding , Shijie Zhong , Jianze Feng , Yupei Han , Zhezhi Liu , Lin Xu , Ke Feng , Jiecai Han , Haichao Cheng , Chade Lv , Weidong He

Electron ›› 2025, Vol. 3 ›› Issue (3) : e70010

PDF
Electron ›› 2025, Vol. 3 ›› Issue (3) : e70010 DOI: 10.1002/elt2.70010
RESEARCH ARTICLE

Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte

Author information +
History +
PDF

Abstract

Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents, but still face a key challenge: low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li+ distribution across the ionically-inert PVH matrix. Herein, Te vacancies in form of Bi2Te3−x are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte. Te vacancies in the PVH electrolyte doped with Bi2Te3−x (PVBT) induce a high-throughput and homogenous Li+ flow within the PVH matrices and near the Li metal. Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions (TFSI), repulsive effect on Li+, and localized electron distribution, giving rise to a lithium-ion concentration gradient of 30 mol m−3, the smallest among the PVH-based inorganic/organic composite electrolytes. Consequently, the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g−1 at ∼700 mA g−1 and also superior capacity performances with a cathode loading of 12 mg cm−2, outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO4 battery. The work demonstrates an efficient strategy for achieving fast Li+ diffusion dynamics across polymeric matrices of classic solid-state electrolytes.

Keywords

anion vacancy / fast Li+ diffusion / PVH matrix / solid state electrolyte

Cite this article

Download citation ▾
Yunfa Dong, Yuhui He, Botao Yuan, Xingyu Ding, Shijie Zhong, Jianze Feng, Yupei Han, Zhezhi Liu, Lin Xu, Ke Feng, Jiecai Han, Haichao Cheng, Chade Lv, Weidong He. Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte. Electron, 2025, 3(3): e70010 DOI:10.1002/elt2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Liu, Z. Zheng, P. Xiong, et al., “Functional Organic 7,7,8,8-Tetracyanoquinodimethane Artificial Layers for the Dendrite Suppressed Lithium Metal Anodes,” Electron 2, no. 4 (2024): e72, https://doi.org/10.1002/elt2.72.

[2]

J. Zhang, Y. Zhang, J. Fu, et al., “Perspective on Eutectic Electrolytes for Next-Generation Batteries,” Electron 2, no. 3 (2024): e57, https://doi.org/10.1002/elt2.57.

[3]

X. Ma, J. Wang, Z. Wang, et al., “Engineering Strategies for High-Voltage LiCoO2 Based High-Energy Li-Ion Batteries,” Electron 2, no. 3 (2024): e33, https://doi.org/10.1002/elt2.33.

[4]

L. Ye and X. Li, “A Dynamic Stability Design Strategy for Lithium Metal Solid State Batteries,” Nature 593, no. 7858 (2021): 218–222, https://doi.org/10.1038/s41586-021-03486-3.

[5]

D. Chen, Y. Liu, C. Feng, et al., “Unified Throughout-Pore Microstructure Enables Ultrahigh Separator Porosity for Robust High-Flux Lithium Batteries,” Electron 1, no. 1 (2023): e1, https://doi.org/10.1002/elt2.1.

[6]

Z. Zhang, S. Zhang, S. Geng, S. Zhou, Z. Hu, and J. Luo, “Agglomeration-Free Composite Solid Electrolyte and Enhanced Cathode-Electrolyte Interphase Kinetics for All-Solid-State Lithium Metal Batteries,” Energy Storage Materials 51 (2022): 19–28, https://doi.org/10.1016/j.ensm.2022.06.025.

[7]

S. Zhou, S. Zhong, Y. Dong, et al., “Composition and Structure Design of Poly(Vinylidene Fluoride)-Based Solid Polymer Electrolytes for Lithium Batteries,” Advanced Functional Materials 33, no. 20 (2023): 2214432, https://doi.org/10.1002/adfm.202214432.

[8]

T. T. Vu, H. J. Cheon, S. Y. Shin, G. Jeong, E. Wi, and M. Chang, “Hybrid Electrolytes for Solid-State Lithium Batteries: Challenges, Progress, and Prospects,” Energy Storage Materials 61 (2023): 102876, https://doi.org/10.1016/j.ensm.2023.102876.

[9]

P. Shi, J. Ma, M. Liu, et al., “A Dielectric Electrolyte Composite With High Lithium-Ion Conductivity for High-Voltage Solid-State Lithium Metal Batteries,” Nature Nanotechnology 18, no. 6 (2023): 602–610, https://doi.org/10.1038/s41565-023-01341-2.

[10]

Y. Huang, T. Gu, G. Rui, et al., “A Relaxor Ferroelectric Polymer With an Ultrahigh Dielectric Constant Largely Promotes the Dissociation of Lithium Salts to Achieve High Ionic Conductivity,” Energy & Environmental Science 14, no. 11 (2021): 6021–6029, https://doi.org/10.1039/d1ee02663a.

[11]

C. Ma, Y. Feng, F. Xing, et al., “A Borate Decorated Anion-Immobilized Solid Polymer Electrolyte for Dendrite-Free, Long-Life Li Metal Batteries,” Journal of Materials Chemistry A 7, no. 34 (2019): 19970–19976, https://doi.org/10.1039/c9ta07551h.

[12]

R. Dong, J. Zheng, J. Yuan, et al., “A Polyethylene Oxide/Metal-Organic Framework Composite Solid Electrolyte With Uniform Li Deposition and Stability for Lithium Anode by Immobilizing Anions,” Journal of Colloid and Interface Science 620 (2022): 47–56, https://doi.org/10.1016/j.jcis.2022.03.148.

[13]

D. Han, Z. Wang, G. Pan, and X. Gao, “Metal–Organic-Framework-Based Gel Polymer Electrolyte With Immobilized Anions to Stabilize a Lithium Anode for a Quasi-Solid-State Lithium–Sulfur Battery,” ACS Applied Materials & Interfaces 11, no. 20 (2019): 18427–18435, https://doi.org/10.1021/acsami.9b03682.

[14]

H. Huo, B. Wu, T. Zhang, et al., “Anion-immobilized Polymer Electrolyte Achieved by Cationic Metal-Organic Framework Filler for Dendrite-Free Solid-State Batteries,” Energy Storage Materials 18 (2019): 59–67, https://doi.org/10.1016/j.ensm.2019.01.007.

[15]

X. Tian, S. Chen, P. Zhang, et al., “Covalent Organic Frameworks With Immobilized Anions to Liberate Lithium Ions: Quasi-Solid Electrolytes With Enhanced Rate Capabilities,” Electrochimica Acta 389 (2021): 138585, https://doi.org/10.1016/j.electacta.2021.138585.

[16]

Y. Nie, T. Yang, D. Luo, et al., “Tailoring Vertically Aligned Inorganic-Polymer Nanocomposites With Abundant Lewis Acid Sites for Ultra-Stable Solid-State Lithium Metal Batteries,” Advanced Energy Materials 13 (2023): 2204218, https://doi.org/10.1002/aenm.202204218.

[17]

Z. Li, Y. Dong, J. Feng, et al., “Controllably Enriched Oxygen Vacancies Through Polymer Assistance in Titanium Pyrophosphate as a Super Anode for Na/K-Ion Batteries,” ACS Nano 13, no. 8 (2019): 9227–9236, https://doi.org/10.1021/acsnano.9b03686.

[18]

J. Guo, H. Zhao, Z. Yang, et al., “Bimetallic Sulfides With Vacancy Modulation Exhibit Enhanced Electrochemical Performance,” Advanced Functional Materials 34, no. 28 (2024): 2315714, https://doi.org/10.1002/adfm.202315714.

[19]

Y. Geng, H. He, R. Liang, et al., “One-Step-Sintered GeTe-Bi2Te3 Segmented Thermoelectric Legs With Robust Interface-Connection Performance,” Advanced Energy Materials 14, no. 41 (2024): 2402479, https://doi.org/10.1002/aenm.202402479.

[20]

Y. Lu, Y. Zhou, W. Wang, et al., “Staggered-Layer-Boosted Flexible Bi2Te3 Films With High Thermoelectric Performance,” Nature Nanotechnology 18, no. 11 (2023): 1281–1288, https://doi.org/10.1038/s41565-023-01457-5.

[21]

Z. Zheng, X. Shi, D. Ao, et al., “Harvesting Waste Heat With Flexible Bi2Te3 Thermoelectric Thin Film,” Nature Sustainability 6, no. 2 (2023): 180–191, https://doi.org/10.1038/s41893-022-01003-6.

[22]

Y. Liu, M. Zhou, and J. He, “Towards Higher Thermoelectric Performance of Bi2Te3 via Defect Engineering,” Scripta Materialia 111 (2016): 39–43, https://doi.org/10.1016/j.scriptamat.2015.06.031.

[23]

M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, and W. Mai, “Anion-Trap Engineering Toward Remarkable Crystallographic Reorientation and Efficient Cation Migration of Zn Ion Batteries,” Angewandte Chemie International Edition 61, no. 44 (2022): e202210979, https://doi.org/10.1002/anie.202210979.

[24]

Y. Li, W. Arnold, A. Thapa, et al., “Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries,” ACS Applied Materials & Interfaces 12, no. 38 (2020): 42653–42659, https://doi.org/10.1021/acsami.0c08261.

[25]

J. Sun, X. Yao, Y. Li, et al., “Facilitating Interfacial Stability via Bilayer Heterostructure Solid Electrolyte Toward High-Energy, Safe and Adaptable Lithium Batteries,” Advanced Energy Materials 10, no. 31 (2020): 2000709, https://doi.org/10.1002/aenm.202000709.

[26]

S. Xia, B. Yang, H. Zhang, J. Yang, W. Liu, and S. Zheng, “Ultrathin Layered Double Hydroxide Nanosheets Enabling Composite Polymer Electrolyte for All-Solid-State Lithium Batteries at Room Temperature,” Advanced Functional Materials 31, no. 28 (2021): 2101168, https://doi.org/10.1002/adfm.202101168.

[27]

Y. Ye, X. Zhu, N. Meng, and F. Lian, “Largely Promoted Mechano-Electrochemical Coupling Properties of Solid Polymer Electrolytes by Introducing Hydrogen Bonds-Rich Network,” Advanced Functional Materials 33, no. 45 (2023): 2307045, https://doi.org/10.1002/adfm.202307045.

[28]

Y. Liang, L. Dong, S. Zhong, et al., “Asbestos-Functionalized Solid Polymer Electrolyte for Uniform Li Deposition in Lithium Metal Batteries,” Chemical Engineering Journal 451 (2023): 138599, https://doi.org/10.1016/j.cej.2022.138599.

[29]

M. Ghafari, Z. Sanaee, A. Babaei, and S. Mohajerzadeh, “Realization of High-Performance Room Temperature Solid State Li-Metal Batteries Using a LiF/PVDF-HFP Composite Membrane for Protecting an LATP Ceramic Electrolyte,” Journal of Materials Chemistry A 11, no. 14 (2023): 7605–7616, https://doi.org/10.1039/D3TA00331K.

[30]

P. Xu, H. Chen, X. Zhou, and H. Xiang, “Gel Polymer Electrolyte Based on PVDF-HFP Matrix Composited With rGO-PEG-NH2 for High-Performance Lithium Ion Battery,” Journal of Membrane Science 617 (2021): 118660, https://doi.org/10.1016/j.memsci.2020.118660.

[31]

Z. Zhang, R. G. Antonio, and K. L. Choy, “Boron Nitride Enhanced Polymer/Salt Hybrid Electrolytes for All-Solid-State Lithium Ion Batteries,” Journal of Power Sources 435 (2019): 226736, https://doi.org/10.1016/j.jpowsour.2019.226736.

[32]

W. Zhang, J. Nie, F. Li, Z. L. Wang, and C. Sun, “A Durable and Safe Solid-State Lithium Battery With a Hybrid Electrolyte Membrane,” Nano Energy 45 (2018): 413–419, https://doi.org/10.1016/j.nanoen.2018.01.028.

[33]

Y. Liao, X. Wang, H. Yuan, et al., “Ultrafast Li-Rich Transport in Composite Solid-State Electrolytes,” Advanced Materials 37, no. 10 (2025): 2419782, https://doi.org/10.1002/adma.202419782.

[34]

Y. Zhang, J. Zou, R. Chang, et al., “Quenching-Induced Amorphisation and Configuration Transformation for the Enhanced Electrochemical Performance of Poly(Vinylidene Fluoride-Hexafluoropropylene)-Based Solid Electrolytes,” Chemical Engineering Journal 499 (2024): 156564, https://doi.org/10.1016/j.cej.2024.156564.

[35]

D. Zhang, Y. Liu, S. Yang, et al., “Inhibiting Residual Solvent Induced Side Reactions in Vinylidene Fluoride-Based Polymer Electrolytes Enables Ultra-Stable Solid-State Lithium Metal Batteries,” Advanced Materials 36, no. 28 (2024): 2401549, https://doi.org/10.1002/adma.202401549.

[36]

Y. Du, B. Zhang, W. Zhou, et al., “Laser-Radiated Tellurium Vacancies Enable High-Performance Telluride Molybdenum Anode for Aqueous Zinc-Ion Batteries,” Energy Storage Materials 51 (2022): 29–37, https://doi.org/10.1016/j.ensm.2022.06.015.

[37]

W. Yao, C. Tian, C. Yang, et al., “P-Doped NiTe2 With Te-Vacancies in Lithium–Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion,” Advanced Materials 34, no. 11 (2022): e2106370, https://doi.org/10.1002/adma.202106370.

[38]

Q. An, Q. Liu, S. Wang, et al., “Oxygen Vacancies With Localized Electrons Direct a Functionalized Separator Toward Dendrite-Free and High Loading LiFePO4 for Lithium Metal Batteries,” Journal of Energy Chemistry 75 (2022): 38–45, https://doi.org/10.1016/j.jechem.2022.08.006.

[39]

R. Zhang, J. Zhao, Y. Yang, Z. Lu, and W. Shi, “Understanding Electronic and Optical Properties of La and Mn Co-Doped Anatase TiO2,” Computational Condensed Matter 6 (2016): 5–17, https://doi.org/10.1016/j.cocom.2016.03.001.

[40]

A. Bhattacharya, C. Carbogno, B. Böhme, M. Baitinger, Y. Grin, and M. Scheffler, “Formation of Vacancies in Si- and Ge-Based Clathrates: Role of Electron Localization and Symmetry Breaking,” Physical Review Letters 118 (2017): 236401, https://doi.org/10.1103/PhysRevLett.118.236401.

[41]

P. C. Rogge, P. Shafer, G. Fabbris, et al., “Depth-Resolved Modulation of Metal–Oxygen Hybridization and Orbital Polarization Across Correlated Oxide Interfaces,” Advanced Materials 31, no. 43 (2019): 1902364, https://doi.org/10.1002/adma.201902364.

[42]

J. Feng, H. Wang, L. Guo, et al., “Stacking Surface Derived Catalytic Capability and By-Product Prevention for High Efficient Two Dimensional Bi2Te3 Cathode Catalyst in Li-Oxygen Batteries,” Applied Catalysis B: Environmental 318 (2022): 121844, https://doi.org/10.1016/j.apcatb.2022.121844.

[43]

Z. Zhao, F. Li, J. Zhao, et al., “Ionic-Association-Assisted Viscoelastic Nylon Electrolytes Enable Synchronously Coupled Interface for Solid Batteries,” Advanced Functional Materials 30, no. 21 (2020): 2000347, https://doi.org/10.1002/adfm.202000347.

[44]

T. J. Seguin, N. T. Hahn, K. R. Zavadil, and K. A. Persson, “Elucidating Non-Aqueous Solvent Stability and Associated Decomposition Mechanisms for Mg Energy Storage Applications From First-Principles,” Frontiers in Chemistry 7 (2019): 175, https://doi.org/10.3389/fchem.2019.00175.

[45]

D. He, W. Cui, X. Liao, et al., “Electronic Localization Derived Excellent Stability of Li Metal Anode With Ultrathin Alloy,” Advanced Science 9, no. 10 (2022): 2105656, https://doi.org/10.1002/advs.202105656.

[46]

H. Chen, A. Pei, D. Lin, et al., “Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode,” Advanced Energy Materials 9, no. 22 (2019): 1900858, https://doi.org/10.1002/aenm.201900858.

[47]

K. Xu, “Electrolytes and Interphases in Li-Ion Batteries and beyond,” Chemical Reviews 114, no. 23 (2014): 11503–11618, https://doi.org/10.1021/cr500003w.

[48]

Y. Wang, F. Liu, G. Fan, et al., “Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes,” Journal of the American Chemical Society 143, no. 7 (2021): 2829–2837, https://doi.org/10.1021/jacs.0c12051.

[49]

B. Yuan, N. He, Y. Liang, et al., “A Surfactant-Modified Composite Separator for High Safe Lithium Ion Battery,” Journal of Energy Chemistry 76 (2023): 398–403, https://doi.org/10.1016/j.jechem.2022.10.013.

[50]

M. Waqas, S. Ali, D. Chen, et al., “A Robust Bi-Layer Separator With Lewis Acid-Base Interaction for High-Rate Capacity Lithium-Ion Batteries,” Composites Part B: Engineering 177 (2019): 107448, https://doi.org/10.1016/j.compositesb.2019.107448.

RIGHTS & PERMISSIONS

2025 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/