Flexible and Scalable VO2(M2) Nanorod Arrays Grafted Glass Fiber Cloth for Efficient Electromagnetic Regulation

Haoran Song , Ming Li , Liangfei Wu , Fei Du , Xinmiao Du , Zhaoming Qu , Dilong Liu , Tao Zhang , Chongwen Zou , Zhulin Huang

Electron ›› 2025, Vol. 3 ›› Issue (3) : e70007

PDF
Electron ›› 2025, Vol. 3 ›› Issue (3) : e70007 DOI: 10.1002/elt2.70007
RESEARCH ARTICLE

Flexible and Scalable VO2(M2) Nanorod Arrays Grafted Glass Fiber Cloth for Efficient Electromagnetic Regulation

Author information +
History +
PDF

Abstract

M2 phase vanadium dioxide (VO2(M2)) is an intermediate polymorph phase during the reversible phase transition from VO2(M1) to VO2(R), which can be stabilized at room temperature by doping or introducing strain in the film. In this study, we provide a simple and scalable preparation of VO2(M2) nanorods on TiO2 nanoparticles decorated flexible glass fiber cloth (GFC) by hydrothermal and subsequent annealing process. Because of the interfacial strain between TiO2 and VO2, M2 phase VO2 nanorods were successfully fabricated and verified. The resultant VO2(M2)/GFC composite demonstrates a remarkable resistance change (∼3.4 × 104) across the phase transition, which is superior to the films prepared by vacuum chamber-based techniques. Meanwhile, it also demonstrates 13.1 times enhanced electromagnetic shielding efficiency and favorable emissivity modulation capability. The flexible and scalable preparation of VO2(M2) will broaden the promising applications of the material in both optical and electronic devices.

Keywords

electromagnetic regulation / flexible and scalable preparation / glass fiber cloth / M2 phase VO2

Cite this article

Download citation ▾
Haoran Song, Ming Li, Liangfei Wu, Fei Du, Xinmiao Du, Zhaoming Qu, Dilong Liu, Tao Zhang, Chongwen Zou, Zhulin Huang. Flexible and Scalable VO2(M2) Nanorod Arrays Grafted Glass Fiber Cloth for Efficient Electromagnetic Regulation. Electron, 2025, 3(3): e70007 DOI:10.1002/elt2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature,” Physical Review Letters 3, no. 1 (1959): 34–36, https://doi.org/10.1103/physrevlett.3.34.

[2]

R. Powell, C. Berglund, and W. Spicer, “Photoemission From VO2,” Physical Review 178, no. 3 (1969): 1410–1415, https://doi.org/10.1103/physrev.178.1410.

[3]

W. Li, J. Huang, L. Cao, X. Li, S. Chen, and L. Feng, “Polycrystalline VO2(M) With Well-Dispersed Crystalline Zones for Enhanced Electroactivity of Lithium-Ion Batteries,” Journal of Alloys and Compounds 812 (2020): 152122, https://doi.org/10.1016/j.jallcom.2019.152122.

[4]

Q. Deng, P. Huang, W. X. Zhou, et al., “A High-Performance Composite Electrode for Vanadium Redox Flow Batteries,” Advanced Energy Materials 7, no. 18 (2017): 1700461, https://doi.org/10.1002/aenm.201700461.

[5]

H. Wei, J. X. Gu, T. Zhao, et al., “Tunable VO2 Cavity Enables Multispectral Manipulation From Visible to Microwave Frequencies,” Light: Science & Applications 13, no. 1 (2024): 54, https://doi.org/10.1038/s41377-024-01400-w.

[6]

S. L. Fang, C. Y. Han, W. Liu, et al., “A Bioinspired Flexible Artificial Mechanoreceptor Based on VO2 Insulator-Metal Transition Memristor,” Journal of Alloys and Compounds 911 (2022): 165096, https://doi.org/10.1016/j.jallcom.2022.165096.

[7]

Y. Bu, J. Zou, Y. Liu, et al., “Simple and Efficient Synthesis of High-Quality VO2 Thin Films and Their Application in Vacuum Sensor With Wide Pressure Range,” Thin Solid Films 638 (2017): 420–425, https://doi.org/10.1016/j.tsf.2017.08.013.

[8]

B. J. Kim, Y. W. Lee, B. G. Chae, et al., “Temperature Dependence of the First-Order Metal-Insulator Transition in VO2 and Programmable Critical Temperature Sensor,” Applied Physics Letters 90, no. 2 (2007): 023515, https://doi.org/10.1063/1.2431456.

[9]

H. Ji, Y. Zhao, M. Lu, et al., “Novel Warm/Cool-Tone Switchable VO2-Based Smart Window Composite Films With Excellent Optical Performance,” Ceramics International 49, no. 13 (2023): 22630–22635, https://doi.org/10.1016/j.ceramint.2023.04.073.

[10]

K. H. Jung, S. J. Yun, T. Slusar, H.-T. Kim, and T. M. Roh, “Highly Transparent Ultrathin Vanadium Dioxide Films With Temperature-Dependent Infrared Reflectance for Smart Windows,” Applied Surface Science 589 (2022): 152962, https://doi.org/10.1016/j.apsusc.2022.152962.

[11]

Y. Chen, X. Zeng, J. Zhu, et al., “High Performance and Enhanced Durability of Thermochromic Films Using VO2@ZnO Core–Shell Nanoparticles,” ACS Applied Materials & Interfaces 9, no. 33 (2017): 27784–27791, https://doi.org/10.1021/acsami.7b08889.

[12]

B. Xie, W. Zhang, J. Zhao, C. Zheng, and L. Liu, “Design of VO2-Based Spacecraft Smart Radiator With Low Solar Absorptance,” Applied Thermal Engineering 236 (2024): 121751, https://doi.org/10.1016/j.applthermaleng.2023.121751.

[13]

T. Cheng, N. Wang, H. Wang, R. Sun, and C.-P. Wong, “A Newly Designed Paraffin@VO2 Phase Change Material With the Combination of High Latent Heat and Large Thermal Conductivity,” Journal of Colloid and Interface Science 559 (2020): 226–235, https://doi.org/10.1016/j.jcis.2019.10.033.

[14]

C. C. Geng, Y. Y. Chen, H. Wei, et al., “Adaptive Variable Emissivity Reflector for Seasonal and Daily Thermal Regulation in Regions With Significant Temperature Variations,” Advanced Functional Materials 34, no. 52 (2024): 2410819, https://doi.org/10.1002/adfm.202410819.

[15]

S. H. Liang, H. Guan, H. N. Zhang, et al., “Intelligent Off/On Switchable Electromagnetic Wave Absorbing Material Based on VO2 Nanowires,” Chemical Engineering Journal 489 (2024): 151025, https://doi.org/10.1016/j.cej.2024.151025.

[16]

C. Y. Han, Z. R. Han, S. L. Fang, et al., “Characterization and Modelling of Flexible VO2 Mott Memristor for the Artificial Spiking Warm Receptor,” Advanced Materials Interfaces 9, no. 19 (2022): 2200394, https://doi.org/10.1002/admi.202200394.

[17]

K. Fang, Y. Wang, Y. Zhao, and F. Fang, “Infrared Stealth Nanofibrous Composites With Thermal Adaptability and Mechanical Flexibility,” Composites Science and Technology 201 (2021): 108483, https://doi.org/10.1016/j.compscitech.2020.108483.

[18]

X. Chen, S. Guo, S. Tan, et al., “An Environmentally Friendly Chitosan-Derived VO2/Carbon Aerogel for Radar Infrared Compatible Stealth,” Carbon 213 (2023): 118313, https://doi.org/10.1016/j.carbon.2023.118313.

[19]

M. Marezio, B. McWhan, P. D. Dernier, and J. P. Remeika, “Structural Aspects of the Metal-Insulator Transitions in Cr-Doped VO2,” Physical Review B-Solid State 5, no. 7 (1972): 2541–2551, https://doi.org/10.1103/physrevb.5.2541.

[20]

A. Tselev, I. A. Luk'yanchuk, I. N. Ivanov, et al., “Symmetry Relationship and Strain-Induced Transitions Between Insulating M1 and M2 and Metallic R Phases of Vanadium Dioxide,” Nano Letters 10, no. 11 (2010): 4409–4416, https://doi.org/10.1021/nl1020443.

[21]

A. Simo, K. Kaviyarasu, B. Mwakikunga, R. Madjoe, A. Gibaud, and M. Maaza, “Phase Transition Study in Strongly Correlated VO2 Based Sensing Systems,” Journal of Electron Spectroscopy and Related Phenomena 216 (2017): 23–32, https://doi.org/10.1016/j.elspec.2017.01.011.

[22]

R. Basu, M. Sardar, and S. Dhara, “Origin of Phase Transition in VO2,” AIP Conference Proceedings. AIP Publishing 1942 (2018): 030003, https://doi.org/10.1063/1.5028584.

[23]

K. Matsuoka, K. Okimura, N. H. Azhan, M. Zaghrioui, and J. Sakai, “Persistent M2 Phase in Strongly Strained (011)-Oriented Grains in VO2 Films Grown on Sapphire (001) in Reactive Sputtering,” Journal of Applied Physics 125, no. 16 (2019): 165304, https://doi.org/10.1063/1.5068700.

[24]

K. Okimura, J. Sakai, and S. Ramanathan, “In Situ X-Ray Diffraction Studies on Epitaxial VO2 Films Grown on C-Al2O3 During Thermally Induced Insulator-Metal Transition,” Journal of Applied Physics 107, no. 6 (2010): 063503, https://doi.org/10.1063/1.3327422.

[25]

T. Kong, M. W. Masters, S. L. Bud’ko, and P. C. Canfield, “Physical Properties of V1−xTixO2 (0 < X < 0.187) Single Crystals,” APL Materials 3, no. 4 (2015): 041502, https://doi.org/10.1063/1.4908245.

[26]

R. Basu, V. Srihari, T. R. Ravindran, S. Chandra, H. K. Poswal, and S. Dhara, “Triclinic Phase: The Link Behind the Structural Transition in V1−xMgxO2,” Physical Review B 109, no. 18 (2024): 184107, https://doi.org/10.1103/physrevb.109.184107.

[27]

E. Strelcov, A. Tselev, I. Ivanov, et al., “Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature,” Nano Letters 12, no. 12 (2012): 6198–6205, https://doi.org/10.1021/nl303065h.

[28]

A. Boontan, E. K. Barimah, P. Steenson, and G. Jose, “Stabilization of the VO2(M2) Phase and Change in Lattice Parameters at the Phase Transition Temperature of WXV1–XO2 Thin Films,” ACS Applied Materials & Interfaces 15, no. 44 (2023): 51606–51616, https://doi.org/10.1021/acsami.3c11484.

[29]

Y.-Q. Zhang, K. Chen, H. Shen, et al., “Achieving Room-Temperature M2-Phase VO2 Nanowires for Superior Thermal Actuation,” Nano Research 14, no. 11 (2021): 4146–4153, https://doi.org/10.1007/s12274-021-3355-6.

[30]

T. Khan and R. Umer, “Self-Sensing Piezoresistive Aerospace Composites Based on CNTs and 2D Material Coated Fabric Sensors,” Electron 2, no. 3 (2024): e61, https://doi.org/10.1002/elt2.61.

[31]

D. Y. Guo, C. Ling, C. Z. Wang, et al., “Hydrothermal One-Step Synthesis of Highly Dispersed M-Phase VO2 Nanocrystals and Application to Flexible Thermochromic Film,” ACS Applied Materials & Interfaces 10, no. 34 (2018): 28627–28634, https://doi.org/10.1021/acsami.8b08908.

[32]

Q. F. Chang, D. Wang, Z. J. Zhao, et al., “Size-Controllable M-Phase VO2 Nanocrystals for Flexible Thermochromic Energy-Saving Windows,” ACS Applied Nano Materials 4, no. 7 (2021): 6778–6785, https://doi.org/10.1021/acsanm.1c00835.

[33]

C. Cao, B. Hu, G. Tu, et al., “Sputtering Flexible VO2 Films for Effective Thermal Modulation,” ACS Applied Materials & Interfaces 14, no. 24 (2022): 28105–28113, https://doi.org/10.1021/acsami.2c05482.

[34]

Y.-X. Liu, Y. Cai, Y.-S. Zhang, et al., “Van der Waals Epitaxy for High-Quality Flexible VO2 Film on Mica Substrate,” Journal of Applied Physics 130, no. 2 (2021): 025301, https://doi.org/10.1063/5.0046827.

[35]

G. Y. Sun, X. Cao, X. Gao, S. Long, M. Liang, and P. Jin, “Structure and Enhanced Thermochromic Performance of Low-Temperature Fabricated VO2/V2O3 Thin Film,” Applied Physics Letters 109, no. 14 (2016): 143903, https://doi.org/10.1063/1.4964432.

[36]

H. Koo, L. Xu, K. E. Ko, S. Ahn, S. H. Chang, and C. Park, “Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films,” Journal of Materials Engineering and Performance 22, no. 12 (2013): 3967–3973, https://doi.org/10.1007/s11665-013-0696-7.

[37]

J. Y. Chae, D. Lee, D. W. Lee, H. Y. Woo, J. B. Kim, and T. Paik, “Direct Transfer of Thermochromic Tungsten-Doped Vanadium Dioxide Thin-Films onto Flexible Polymeric Substrates,” Applied Surface Science 545 (2021): 148937, https://doi.org/10.1016/j.apsusc.2021.148937.

[38]

H. Kim, Y. Kim, K. S. Kim, et al., “Flexible Thermochromic Window Based on Hybridized VO2/Graphene,” ACS Nano 7, no. 7 (2013): 5769–5776, https://doi.org/10.1021/nn400358x.

[39]

E. Park, W. Li, H. Jung, et al., “Highly Scalable, Flexible, and Frequency Reconfigurable Millimeter-Wave Absorber by Screen Printing VO2 Switch Array onto Large Area Metasurfaces,” Advanced Materials Technologies 8, no. 7 (2023): 2201451, https://doi.org/10.1002/admt.202201451.

[40]

R. Q. Zhu, Z. Y. Li, G. Deng, et al., “Anisotropic Magnetic Liquid Metal Film for Wearable Wireless Electromagnetic Sensing and Smart Electromagnetic Interference Shielding,” Nano Energy 92 (2022): 106700, https://doi.org/10.1016/j.nanoen.2021.106700.

[41]

C. Zhang, C. Kang, H. Zong, S. Liang, C. Geng, and M. Li, “Roles of TiO2 Buffer Layer for Preparation of High Performance VO2 Thin Films With Monoclinic Polymorph,” Results in Physics 10 (2018): 628–632, https://doi.org/10.1016/j.rinp.2018.07.003.

[42]

X. J. Wang, H. D. Li, Y. J. Fei, et al., “XRD and Raman Study of Vanadium Oxide Thin Films Deposited on Fused Silica Substrates by RF Magnetron Sputtering,” Applied Surface Science 177, no. 1–2 (2001): 8–14, https://doi.org/10.1016/s0169-4332(00)00918-1.

[43]

F. D. Hardcastle and I. E. Wachs, “Determination of Vandium Oxygen Bond Distances and Bond Orders by Raman-Spectroscopy,” Journal of Physical Chemistry 95, no. 13 (1991): 5031–5041, https://doi.org/10.1021/j100166a025.

[44]

J. Cao, Y. Gu, W. Fan, et al., “Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram,” Nano Letters 10, no. 7 (2010): 2667–2673, https://doi.org/10.1021/nl101457k.

[45]

K. Okimura, T. Watanabe, and J. Sakai, “Stress-Induced VO2 Films With M2 Monoclinic Phase Stable at Room Temperature Grown by Inductively Coupled Plasma-Assisted Reactive Sputtering,” Journal of Applied Physics 111, no. 7 (2012): 073514, https://doi.org/10.1063/1.3700210.

[46]

D. Lee, T. Min, G. Lee, et al., “Understanding the Phase Transition Evolution Mechanism of Partially M2 Phased VO2 Film by Hydrogen Incorporation,” Journal of Physical Chemistry Letters 11, no. 22 (2020): 9680–9688, https://doi.org/10.1021/acs.jpclett.0c02592.

[47]

L. L. Chen, Y. Y. Cui, S. Q. Shi, B. Liu, H. Luo, and Y. Gao, “First-Principles Study of the Effect of Oxygen Vacancy and Strain on the Phase Transition Temperature of VO2,” RSC Advances 6, no. 90 (2016): 86872–86879, https://doi.org/10.1039/c6ra19121e.

[48]

D. W. Liu, P. Yang, Y. Y. Zhang, et al., “Effects of Microdefects and Grain Size on the Phase Transition Properties of Nano-VO2(M),” Journal of Solid State Chemistry 288 (2020): 121450, https://doi.org/10.1016/j.jssc.2020.121450.

[49]

J. M. Booth and P. S. Casey, “Production of VO2 M1 and M2 Nanoparticles and Composites and the Influence of the Substrate on the Structural Phase Transition,” ACS Applied Materials & Interfaces 1, no. 9 (2009): 1899–1905, https://doi.org/10.1021/am900322b.

[50]

L. Dai, C. Cao, Y. Gao, and H. Luo, “Synthesis and Phase Transition Behavior of Undoped VO2 With a Strong Nano-Size Effect,” Solar Energy Materials and Solar Cells 95, no. 2 (2011): 712–715, https://doi.org/10.1016/j.solmat.2010.10.008.

[51]

J. Zhang, Z. Zhao, J. Li, et al., “Evolution of Structural and Electrical Properties of Oxygen-Deficient VO2 Under Low Temperature Heating Process,” ACS Applied Materials & Interfaces 9, no. 32 (2017): 27135–27141, https://doi.org/10.1021/acsami.7b05792.

[52]

S.-Y. Liao, X.-Y. Wang, H.-P. Huang, et al., “Intelligent Shielding Material Based on VO2 With Tunable Near-Field and Far-Field Electromagnetic Response,” Chemical Engineering Journal 464 (2023): 142596, https://doi.org/10.1016/j.cej.2023.142596.

[53]

S. Liang, H. Guan, H. Zhang, et al., “Tunable High-Performance Electromagnetic Interference Shielding of VO2 Nanowires-Based Composite,” ACS Applied Materials & Interfaces 16, no. 16 (2024): 21024–21033, https://doi.org/10.1021/acsami.3c19326.

[54]

J. Zhao, Z. Wang, H. Wang, Y. Li, and C. Fang, “Temperature Controlled Yolk-Shell-Like VO2(M)/Ti3C2Tx Composite Films for High-Performance Electromagnetic Interference Shielding,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 659 (2023): 130841, https://doi.org/10.1016/j.colsurfa.2022.130841.

[55]

S. Y. Liao, X. Y. Wang, Y. Y. Shi, et al., “Reversible Switching Between Microwave Absorption and EMI Shielding of VO2 Composite Foam,” Small (2024): 2402841, https://doi.org/10.1002/smll.202402841.

[56]

R. Haataja, S. Myllymäki, V. Balanov, et al., “Reconfigurable Intelligent Surface and Switchable Electromagnetic Interference Shield Based on Dynamically Adjustable Composite Film of Cellulose Nanofibers and VO2 Nanoparticles,” Materials & Design 242 (2024): 113005, https://doi.org/10.1016/j.matdes.2024.113005.

[57]

H. Qian, W. Jiang, X. Shi, Q. Cao, B. Jiang, and Y. Huang, “Pushing Electromagnetic Interference Shielding Self-Enhanced Based on Smart Ti3C2Tx-WVO2 Thermal Management Composite,” Carbon 210 (2023): 118081, https://doi.org/10.1016/j.carbon.2023.118081.

RIGHTS & PERMISSIONS

2025 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/