Exploring Quantum Capacitance and Adsorption Energy of Alkali Metal on NiO Using First-Principles DFT Calculations

Sandesh V. Gaikwad , Pushpinder G. Bhatia , Digambar M. Sapkal , Deepak P. Dubal , Gaurav M. Lohar

Electron ›› 2025, Vol. 3 ›› Issue (2) : e70006

PDF
Electron ›› 2025, Vol. 3 ›› Issue (2) : e70006 DOI: 10.1002/elt2.70006
RESEARCH ARTICLE

Exploring Quantum Capacitance and Adsorption Energy of Alkali Metal on NiO Using First-Principles DFT Calculations

Author information +
History +
PDF

Abstract

This study presents an analysis of the structural, electronic, and surface properties of NiO using first-principles density functional theory (DFT) calculations. The investigation focuses on three lattice parameters (a = 4.23 Å, 4.187 Å, and 4.183 Å) to explore how lattice strain influences the electronic band structure, density of states (DOS), quantum capacitance (QC), and adsorption energies of alkali metals (Li, Na, K) on the NiO [001] and [111] planes. The study reveals that a decrease in the lattice parameter leads to a reduction in the band gap (from 2.28 to 2.19 eV). The adsorption energies demonstrate a strong surface reactivity, with Li showing the highest affinity for the NiO [001] surface and Na exhibiting the highest adsorption energy on the more reactive NiO [111] surface. The QC analysis demonstrated notable enhancements following alkali metal adsorption, with Li on the NiO [001] surface exhibiting a QC of 38.9 μF/cm2 at a = 4.23 Å, whereas Na on the NiO [111] surface achieved a QC of 32.7 μF/cm2 at a = 4.187 Å. These findings underscore the critical role of lattice strain and surface orientation in modulating the electrochemical performance of NiO, with potential applications in catalysis, energy storage, and electronic devices.

Keywords

adsorption / density functional theory / NiO / quantum capacitance

Cite this article

Download citation ▾
Sandesh V. Gaikwad, Pushpinder G. Bhatia, Digambar M. Sapkal, Deepak P. Dubal, Gaurav M. Lohar. Exploring Quantum Capacitance and Adsorption Energy of Alkali Metal on NiO Using First-Principles DFT Calculations. Electron, 2025, 3(2): e70006 DOI:10.1002/elt2.70006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U. K. Chime, A. C. Nkele, S. Ezugwu, et al., “Recent Progress in Nickel Oxide-Based Electrodes for High-Performance Supercapacitors,” Current Opinion in Electrochemistry 21 (2020): 175–181, https://doi.org/10.1016/J.COELEC.2020.02.004.

[2]

O. C. Pore, A. Fulari, N. Velhal, et al., “Hydrothermally Synthesized Urchinlike NiO Nanostructures for Supercapacitor and Nonenzymatic Glucose Biosensing Application,” Materials Science in Semiconductor Processing 134 (2021): 105980, https://doi.org/10.1016/J.MSSP.2021.105980.

[3]

O. C. Pore, A. V. Fulari, V. G. Parale, et al., “Facile Hydrothermal Synthesis of NiO/rGO Nanocomposite Electrodes for Supercapacitor and Nonenzymatic Glucose Biosensing Application,” Journal of Porous Materials 29, no. 6 (2022): 1991–2001, https://doi.org/10.1007/s10934-022-01313-2.

[4]

R. S. Kate, S. A. Khalate, and R. J. Deokate, “Overview of Nanostructured Metal Oxides and Pure Nickel Oxide (NiO) Electrodes for Supercapacitors: A Review,” Journal of Alloys and Compounds 734 (2018): 89–111, https://doi.org/10.1016/J.JALLCOM.2017.10.262.

[5]

X. Liu and F. Liu, “Nanoflakes-Assembled 3D Flower-Like Nickel Oxide/Nickel Composites as Supercapacitor Electrode Materials,” European Journal of Inorganic Chemistry 2018, no. 8 (2018): 987–991, https://doi.org/10.1002/EJIC.201701306.

[6]

Y. Han, S. Zhang, N. Shen, D. Li, and X. Li, “MOF-Derived Porous NiO Nanoparticle Architecture for High Performance Supercapacitors,” Materials Letters 188 (2017): 1–4, https://doi.org/10.1016/J.MATLET.2016.09.051.

[7]

A. T. Oluwabi, N. Spalatu, N. Maticiuc, et al., “Combinative Solution Processing and Li Doping Approach to Develop p-type NiO Thin Films With Enchanced Electrical Properties,” Frontiers in Materials 10 (2023): 1060420, https://doi.org/10.3389/fmats.2023.1060420.

[8]

O. C. Pore, A. Fulari, C. Chavare, et al., “Synthesis of NiCo2O4 Microflowers by Facile Hydrothermal Method: Effect of Precursor Concentration,” Chemical Physics Letters 824 (2023): 140551, https://doi.org/10.1016/J.CPLETT.2023.140551.

[9]

I. J. Mbonu, E. E. Ekereke, T. E. Gber, et al., “Quantum Capacitances of Transition Metal-Oxides (CoO, CuO, NiO, and ZnO) Doped Graphene Oxide Nanosheet: Insight From DFT Computation,” Chemical Physics Impact 8 (2024): 100439, https://doi.org/10.1016/j.chphi.2023.100439.

[10]

H. Li, X. Wang, C. Li, et al., “First-Principles Study of Quantum Capacitance of Transition Metal Oxides and Nitrogen Functionalized Graphene as Electrode Materials for Supercapacitor,” Physica B: Condensed Matter 667 (2023): 415195, https://doi.org/10.1016/J.PHYSB.2023.415195.

[11]

N. Kosar, Shahnaz, S. Koudjina, et al., “Mechanistic Enhanced Cell Voltage Based on Halides Doped Metal Oxide Fullerenes for Use in Li-Ion Batteries: Insights From DFT Intuition,” Diamond and Related Materials 142 (2024): 110778, https://doi.org/10.1016/J.DIAMOND.2023.110778.

[12]

S. Ahmad, H. U. Din, C. Q. Nguyen, S. T. Nguyen, and C. Nguyen, “Alkali to Alkaline Earth Metals: A DFT Study of Monolayer TiSi2N4 for Metal Ion Batteries,” Dalton Transactions 53, no. 8 (2024): 3785–3796, https://doi.org/10.1039/D3DT03946C.

[13]

D. Prieur, W. Bonani, K. Popa, et al., “Size Dependence of Lattice Parameter and Electronic Structure in CeO2 Nanoparticles,” Inorganic Chemistry 59, no. 8 (2020): 5760–5767, https://doi.org/10.1021/acs.inorgchem.0c00506.

[14]

M. G. Moreno-Armenta, A. Martínez-Ruiz, and N. Takeuchi, “Ab Initio Total Energy Calculations of Copper Nitride: The Effect of Lattice Parameters and Cu Content in the Electronic Properties,” Solid State Sciences 6, no. 1 (2004): 9–14, https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2003.10.014.

[15]

C. Chen, J. Avila, H. Arezki, et al., “Large Local Lattice Expansion in Graphene Adlayers Grown on Copper,” Nature Materials 17, no. 5 (2018): 450–455, https://doi.org/10.1038/s41563-018-0053-1.

[16]

H. T. Chung, S. T. Myung, T. H. Cho, and J. T. Son, “Lattice Parameter as a Measure of Electrochemical Properties of LiMn2O4,” Journal of Power Sources 97–98(2001): 454–457, https://doi.org/10.1016/S0378-7753(01)00685-1.

[17]

Y. Shen, H. Zhao, J. Xu, X. Zhang, K. Zheng, and K. Świerczek, “Effect of Ionic Size of Dopants on the Lattice Structure, Electrical and Electrochemical Properties of La2−xMxNiO4+δ (M = Ba, Sr) Cathode Materials,” International Journal of Hydrogen Energy 39, no. 2 (2014): 1023–1029, https://doi.org/10.1016/J.IJHYDENE.2013.10.153.

[18]

I. Ardizzone, M. Zingl, J. Teyssier, et al., “Optical Properties of LaNiO3 Films Tuned From Compressive to Tensile Strain,” Physical Review B: Condensed Matter 102, no. 15 (2020): 155148, https://doi.org/10.1103/PhysRevB.102.155148.

[19]

R. S. Li, D. Q. Xin, S. Q. Huang, Z. J. Wang, L. Huang, and X. H. Zhou, “A Full Potential All-Electron Calculation on Electronic Structure of NiO,” Chinese Journal of Physics 56, no. 6 (2018): 2829–2836, https://doi.org/10.1016/J.CJPH.2018.08.022.

[20]

T. Bredow and A. R. Gerson, “Effect of Exchange and Correlation on Bulk Properties of MgO, NiO, and CoO,” Physical Review B: Condensed Matter 61, no. 8 (2000): 5194–5201, https://doi.org/10.1103/PhysRevB.61.5194.

[21]

T. V. Thi, A. K. Rai, J. Gim, and J. Kim, “High Performance of Co-Doped NiO Nanoparticle Anode Material for Rechargeable Lithium Ion Batteries,” Journal of Power Sources 292 (2015): 23–30, https://doi.org/10.1016/J.JPOWSOUR.2015.05.029.

[22]

H. Yang, G. Dai, Z. Chen, et al., “Pseudo-Periodically Coupling Ni—O Lattice With Ce—O Lattice in Ultrathin Heteronanowire Arrays for Efficient Water Oxidation,” Small 17, no. 32 (2021): 2101727, https://doi.org/10.1002/SMLL.202101727.

[23]

C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, “Quasiparticle Band Structures of the Antiferromagnetic Transition-Metal Oxides MnO, FeO, CoO, and NiO,” Physical Review B: Condensed Matter and Materials Physics 79, no. 23 (2009): 235114, https://doi.org/10.1103/PhysRevB.79.235114.

[24]

L. Zhang, P. Staar, A. Kozhevnikov, et al., “DFT+DMFT Calculations of the Complex Band and Tunneling behavior for the Transition Metal Monoxides MnO, FeO, CoO, and NiO,” Physical Review B: Condensed Matter 100, no. 3 (2019): 035104, http://dx.doi.org/10.1103/PhysRevB.100.035104.

[25]

B. P. Sahu, P. Sharma, S. K. Yadav, A. Shukla, and S. Dhar, “Influence of Strain and Point Defects on the Electronic Structure and Related Properties of (111)NiO Epitaxial Films,” Journal of Physics D: Applied Physics 58, no. 8 (2024): 085302: [Online], https://doi.org/10.1088/1361-6463/ad98a4. Accessed: Sep 04, 2024.

[26]

G. Trimarchi, Z. Wang, and A. Zunger, “Polymorphous Band Structure Model of Gapping in the Antiferromagnetic and Paramagnetic Phases of the Mott Insulators MnO, FeO, CoO, and NiO,” Physical Review B: Condensed Matter 97, no. 3 (2018): 035107, https://doi.org/10.1103/PhysRevB.97.035107.

[27]

C. D. Chavare, D. S. Sawant, H. R. Kulkarni, and G. M. Lohar, “ Graphene-Based Supercapacitors,” in NanoCarbon: A Wonder Material for Energy Applications, ed. R. K. Gupta (Springer, 2024), 237–259, https://doi.org/10.1007/978-981-99-9931-6_12.

[28]

C. J. Flynn, S. M. McCullough, E. Oh, et al., “Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition,” ACS Applied Materials and Interfaces 8, no. 7 (2016): 4754–4761, http://dx.doi.org/10.1021/acsami.6b01090.

[29]

T. Kou, M. Chen, F. Wu, et al., “Carbon Doping Switching on the Hydrogen Adsorption Activity of NiO for Hydrogen Evolution Reaction,” Nature Communications 11, no. 1 (2020): 590, https://doi.org/10.1038/s41467-020-14462-2.

[30]

Y. Huang, H. Yang, T. Xiong, et al., “Adsorption Energy Engineering of Nickel Oxide Hybrid Nanosheets for High Areal Capacity Flexible Lithium-Ion Batteries,” Energy Storage Materials 25 (2020): 41–51, https://doi.org/10.1016/J.ENSM.2019.11.001.

[31]

Y. F. Li, Y. Shi, S. Wang, et al., “Carbon/Binder-Free NiO@NiO/NF With In Situ Formed Interlayer for High-Areal-Capacity Lithium Storage,” Advanced Energy Materials 9, no. 14 (2019): 1803690, https://doi.org/10.1002/AENM.201803690.

[32]

M. Chu, Z. Huang, T. Zhang, et al., “Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping,” ACS Applied Materials and Interfaces 13, no. 17 (2021): 19950–19958, https://doi.org/10.1021/acsami.1c00755.

[33]

A. Joshi, P. Chand, and S. Saini, “Improved Electrochemical Performance for Alkali and Alkaline Metal Doped Nanostructures as Electrode Material for Energy Storage Applications,” Inorganic Chemistry Communications 147 (2023): 110285, https://doi.org/10.1016/J.INOCHE.2022.110285.

[34]

Z. Zhang, D. Chen, and C. Chang, “Improved Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials via Incorporation of Rubidium Cations into the Original Li Sites,” RSC Advances 7, no. 81 (2017): 51721–51728, https://doi.org/10.1039/C7RA10053A.

[35]

S. V. Gaikwad, D. S. Sawant, D. M. Sapkal, and G. M. Lohar, “ Electronic Properties of Semiconducting Fibers,” in Semiconducting Fibers: Preparation, Advances, and Applications (2024), 41–54.

[36]

P. Giannozzi, S. Baroni, N. Bonini, et al., “QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials,” Journal of Physics: Condensed Matter 21, no. 39 (2009): 395502, https://doi.org/10.1088/0953-8984/21/39/395502.

[37]

P. Phogat, S. Shreya, R. Jha, and S. Singh, “Phase Transition of Thermally Treated Polyhedral Nano Nickel Oxide With Reduced Band Gap,” MATEC Web of Conferences 393 (2024): 01001, https://doi.org/10.1051/MATECCONF/202439301001.

[38]

A. J. Cinthia, R. Rajeswarapalanichamy, and K. Iyakutti, “First Principles Study of Electronic Structure, Magnetic, and Mechanical Properties of Transition Metal Monoxides TMO (TM=Co and Ni),” Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 70, no. 10 (2015): 797–804, https://doi.org/10.1515/ZNA-2015-0216/MACHINEREADABLECITATION/RIS.

[39]

M. Shi, T. Qiu, B. Tang, et al., “Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and its Application in Electrochromism,” Micromachines 12, no. 1 (2021): 80, https://doi.org/10.3390/MI12010080.

[40]

I. Leonov and S. Biermann, “Electronic Correlations at Paramagnetic (001) and (110) NiO Surfaces: Charge-Transfer and Mott-Hubbard-Type Gaps at the Surface and Subsurface of (110) NiO,” Physical Review B: Condensed Matter 103, no. 16 (2021): 165108, https://doi.org/10.1103/PhysRevB.103.165108.

[41]

L. A. Cipriano, G. Di Liberto, S. Tosoni, and G. Pacchioni, “Band Gap in Magnetic Insulators From a Charge Transition Level Approach,” Journal of Chemical Theory and Computation 16, no. 6 (2020): 3786–3798, https://doi.org/10.1021/acs.jctc.0c00134.

[42]

I. de P. R. Moreira, F. Illas, and R. L. Martin, “Effect of Fock Exchange on the Electronic Structure and Magnetic Coupling in NiO,” Physical Review B: Condensed Matter 65, no. 15 (2002): 155102, https://doi.org/10.1103/PhysRevB.65.155102.

[43]

N. Kitchamsetti, M. S. Ramteke, S. R. Rondiya, et al., “DFT and Experimental Investigations on the Photocatalytic Activities of NiO Nanobelts for Removal of Organic Pollutants,” Journal of Alloys and Compounds 855 (2021): 157337, https://doi.org/10.1016/J.JALLCOM.2020.157337.

[44]

G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari, “Precision and Efficiency in Solid-State Pseudopotential Calculations,” Npj Computational Materials 4, no. 1 (2018): 72, https://doi.org/10.1038/s41524-018-0127-2.

[45]

K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for High-Throughput DFT Calculations,” Computational Materials Science 81 (2014): 446–452, https://doi.org/10.1016/J.COMMATSCI.2013.08.053.

[46]

O. A. Dicks, K. Foyevtsova, I. Elfimov, R. Prasankumar, and G. Sawatzky, “Computationally Efficient Method for Calculating Electron-Phonon Coupling for High-Throughput Superconductivity Search,” 2024: [Online], accessed September 4, 2024, https://arxiv.org/abs/2405.02519v1.

[47]

R. Tesch and P. M. Kowalski, “Hubbard U Parameters for Transition Metals From First Principles,” Physical Review B: Condensed Matter 105, no. 19 (2022): 195153, https://doi.org/10.1103/PhysRevB.105.195153.

[48]

J. Linnera and A. J. Karttunen, “Lattice Dynamical Properties of Antiferromagnetic MnO, CoO, and NiO, and the Lattice Thermal Conductivity of NiO,” Physical Review B: Condensed Matter 100, no. 14 (2019): 144307, https://doi.org/10.1103/PhysRevB.100.144307.

[49]

L. MacEnulty and D. D. O’Regan, “Optimization Strategies Developed on NiO for Heisenberg Exchange Coupling Calculations Using Projector Augmented Wave Based First-Principles DFT+U+J,” Physical Review B: Condensed Matter 108, no. 24 (2023): 245137, https://doi.org/10.1103/PhysRevB.108.245137.

[50]

J. Gebhardt and C. Elsässer, “DFT With Corrections for an Efficient and Accurate Description of Strong Electron Correlations in NiO,” Journal of Physics: Condensed Matter 35, no. 20 (2023): 205901, https://doi.org/10.1088/1361-648X/ACC0BE.

[51]

J. Hugel and C. Carabatos, “Band Structure and Optical Properties of NiO. I. Band Structure Calculations,” Journal of Physics C: Solid State Physics 16, no. 35 (1983): 6713–6721, https://doi.org/10.1088/0022-3719/16/35/005.

[52]

P. Alastuey, D. Pais Ospina, D. Comedi, M. Tirado, and O. Marin-Ramirez, “On the Properties of NiO Powders Obtained by Different Wet Chemical Methods and Calcination,” Journal of the American Ceramic Society 107, no. 1 (2024): 92–106, https://doi.org/10.1111/JACE.19433.

[53]

Q. Peng, J. Rehman, M. K. Butt, et al., “Adsorption and Diffusion of Potassium on Layered SnO: A DFT Analysis,” Journal of Materials Science 58, no. 7 (2023): 3208–3218, https://doi.org/10.1007/s10853-023-08224-w.

[54]

T. Tsatsoulis, F. Hummel, D. Usvyat, et al., “A Comparison Between Quantum Chemistry and Quantum Monte Carlo Techniques for the Adsorption of Water on the (001) LiH Surface,” Journal of Chemical Physics 146, no. 20 (2017), https://doi.org/10.1063/1.4984048.

[55]

S. Sahoo, P. Kumari, N. N. Som, S. Kar, R. Ahuja, and S. J. Ray, “Remarkable Enhancement of the Adsorption and Diffusion Performance of Alkali Ions in Two-Dimensional (2D) Transition Metal Oxide Monolayers via Ru-Doping,” Scientific Reports 14, no. 1 (2024): 1–10, https://doi.org/10.1038/s41598-024-53966-5.

[56]

S. Sahoo, P. Kumari, and S. J. Ray, “Exploring Pristine and Transition Metal Doped SiP2 Monolayer as a Promising Anode Material for Metal (Li, Na, Mg) Ion Battery,” Materials Advances 5, no. 7 (2024): 2797–2804, https://doi.org/10.1039/D3MA01079A.

[57]

S. Mukherjee, A. Banwait, S. Grixti, N. Koratkar, and C. V. Singh, “Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study,” ACS Applied Materials and Interfaces 10, no. 6 (2018): 5373–5384, https://doi.org/10.1021/acsami.7b13604.

[58]

H. Wei, J. Sun, Y. Hu, Z. Li, and M. Ai, “Density Functional Study of Li/Na Adsorption Properties of Single-Layer and Double-Layer Antimonenes,” RSC Advances 9, no. 56 (2019): 32608–32619, https://doi.org/10.1039/C9RA06059F.

[59]

K. Maenetja and P. Ngoepe, “Elucidating the Adsorption and Co-adsorption of Potassium and Oxygen on (110) MnO2, TiO2 and VO2 Surfaces,” MATEC Web of Conferences 370 (2022): 02001, https://doi.org/10.1051/MATECCONF/202237002001.

[60]

K. P. Maenetja and P. E. Ngoepe, “Unravelling the Catalytic Activity of MnO2, TiO2, and VO2 (110) Surfaces by Oxygen Coadsorption on Sodium-Adsorbed MO2 {M = Mn, Ti, V},” ACS Omega 7, no. 30 (2022): 25991–25998, https://doi.org/10.1021/acsomega.1c05990.

[61]

V. Shunaev and O. Glukhova, “Interaction of Co3O4 Nanocube With Graphene and Reduced Graphene Oxide: Adhesion and Quantum Capacitance,” Lubricants 10, no. 5 (2022): 79, https://doi.org/10.3390/LUBRICANTS10050079/S1.

[62]

C. Zhan, J. Neal, J. Wu, and D. E. Jiang, “Quantum Effects on the Capacitance of Graphene-Based Electrodes,” Journal of Physical Chemistry C 119, no. 39 (2015): 22297–22303, https://doi.org/10.1021/acs.jpcc.5b05930.

[63]

B. C. Wood, T. Ogitsu, M. Otani, and J. Biener, “First-principles-inspired Design Strategies for Graphene-Based Supercapacitor Electrodes,” Journal of Physical Chemistry C 118, no. 1 (2014): 4–15, https://doi.org/10.1021/jp4044013.

[64]

Y. Xin and Y. X. Yu, “Possibility of Bare and Functionalized Niobium Carbide MXenes for Electrode Materials of Supercapacitors and Field Emitters,” Materials and Design 130 (2017): 512–520, https://doi.org/10.1016/J.MATDES.2017.05.052.

[65]

Bharti, G. Ahmed, Y. Kumar, P. Bocchetta, and S. Sharma, “Determination of Quantum Capacitance of Niobium Nitrides Nb2N and Nb4N3 for Supercapacitor Applications,” Journal of Composites Science 5, no. 3 (2021): 85, https://doi.org/10.3390/JCS5030085.

RIGHTS & PERMISSIONS

2025 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/