Recent progress on heteroepitaxial growth of single crystal diamond films

Vedaste Uwihoreye , Yushuo Hu , Guangyu Cao , Xing Zhang , Freddy E. Oropeza , Kelvin H. L. Zhang

Electron ›› 2024, Vol. 2 ›› Issue (4) : e70

PDF
Electron ›› 2024, Vol. 2 ›› Issue (4) : e70 DOI: 10.1002/elt2.70
REVIEW

Recent progress on heteroepitaxial growth of single crystal diamond films

Author information +
History +
PDF

Abstract

Diamond is an ultimate semiconductor with exceptional physical and chemical properties, such as an ultra-wide bandgap, excellent carrier mobility, extreme thermal conductivity, and stability, making it highly desirable for various applications including power electronics, sensors, and optoelectronic devices. However, the challenge lies in growing the large-size and high-quality single-crystal diamond films, which are crucial for realizing the full potential of this wonder material. Heteroepitaxial growth has emerged as a promising approach to achieve single-crystal diamond wafers with large sizes of up to 3 inches and controlled electrical properties. This review provides an overview of the advancements in diamond heteroepitaxy using microwave plasma-assisted chemical vapor deposition, including the mechanism of heteroepitaxial growth, selection of substrates, film optimization, chemistry of defects, and doping. Moreover, recent progress on the device applications and perspectives is also discussed.

Keywords

diamond / heteroepitaxy / semiconductors / thin films / ultra-wide bandgap

Cite this article

Download citation ▾
Vedaste Uwihoreye, Yushuo Hu, Guangyu Cao, Xing Zhang, Freddy E. Oropeza, Kelvin H. L. Zhang. Recent progress on heteroepitaxial growth of single crystal diamond films. Electron, 2024, 2(4): e70 DOI:10.1002/elt2.70

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ŁukasiakL, Jakubowski A. History of semiconductors. J Telecom Info Technol. 2010;1:3-9.

[2]

JenkinsT. A brief history of… semiconductors. Phys Educ. 2005;40(5):430-439.

[3]

BacaAG, RenF, ZolperJC, Briggs RD, PeartonSJ. A survey of ohmic contacts to III-V compound semiconductors. Thin Solid Films. 1997;308/309:599-606.

[4]

SharmaRC, NandalR, TanwarN, Yadav R, JayantB, VermaA. Gallium arsenide and gallium nitride semiconductors for power and optoelectronics devices applications. J Phys Conf Ser. 2023;2426(1):012008.

[5]

SongJ. The history and trends of semiconductor materials’ development. J Phys Conf Ser. 2023;2608(1):012019.

[6]

CasadyJB, Johnson RW. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 1996;39(10):1409-1422.

[7]

SinghS, Chaudhary T, KhannaG. Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices. Silicon. 2022;14(11):5793-5800.

[8]

TsaoJY, Chowdhury S, HollisMA, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electron Mater. 2018;4(1):1600501.

[9]

HigashiwakiM, KaplarR, PernotJ, Zhao H. Ultrawide bandgap semiconductors. Appl Phys Lett. 2021;118(20):200401.

[10]

XuM, WangD, FuK, Mudiyanselage DH, FuH, ZhaoY. A review of ultrawide bandgap materials: properties, synthesis and devices. Oxf Open Mater Sci. 2022;2(1):itac004.

[11]

WortCJH, BalmerRS. Diamond as an electronic material. Mater Today. 2006;11(1/2):22-28.

[12]

AltukhovAA, Afanas’ev MS, KvaskovVB, et al. Application of diamond in high technology. Inorg Mater. 2004;40: S50-S70.

[13]

DonatoN, RougerN, PernotJ, Longobardi G, UdreaF. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2020;53(9):093001.

[14]

MisraDS. Nitrogen centers in single crystal diamond grown by chemical vapor deposition. J Vac Sci Technol, A. 2023;41(4):042703.

[15]

DohertyMW, Mansonb NB, DelaneyP, JelezkoF, Wrachtrup J, HollenbergLCL. The nitrogen-vacancy colour centre in diamond. Phys Rep. 2013;528(1):1-45.

[16]

ChildressL, HansonR. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 2013;38(2):134-138.

[17]

NeumannP, JakobiI, DoldeF, et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 2013;13(6):2738-2742.

[18]

EonD. Diamonds in the current: navigating challenges for the integration of diamond in power electronics. Phys Status Solidi A. 2024;221(8):2400085.

[19]

KasuM. Diamond epitaxy: basics and applications. Prog Cryst Growth Char Mater. 2016;62(2):317-328.

[20]

NemanichRJ, Carlisle JA, HirataA, HaenenK. CVD diamond—research, applications, and challenges. MRS Bull. 2014;39(6):490-494.

[21]

LiangQ, YanCS, LaiJ, et al. Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des. 2014;14(7):3234-3238.

[22]

SchreckM, Stritzk B. Nucleation and growth of heteroepitaxial diamond films on silicon. Phys Status Solidi A. 1996;154(1):197-217.

[23]

HuX, LiM, WangY, et al. Growth of 2-inch diamond films on 4H–SiC substrate by microwave plasma CVD for enhanced thermal performance. Vacuum. 2023;211:111895.

[24]

ChangL, YanJ, ChenF, Kai J. Deposition of heteroepitaxial diamond on 6H-SiC single crystal by bias-enhanced microwave plasma chemical vapor deposition. Diam Relat Mater. 2000;9(3/4/5/6):283-289.

[25]

BresciaR, Schreck M, GsellS, FischerM, Stritzker B. Transmission electron microscopy study of the very early stages of diamond growth on iridium. Diam Relat Mater. 2008;17(7/8/9/10):1045-1050.

[26]

GsellS, BauerT, GoldfußJ, SchreckM, Stritzker B. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl Phys Lett. 2004;84(22):4541-4543.

[27]

FischerM, GsellS, SchreckM, Brescia R, StritzkerB. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond. Diam Relat Mater. 2008;17(7/8/9/10):1035-1038.

[28]

WeippertJ, EngelsJ, QuellmalzP, et al. NV-doped microstructures with preferential orientation by growth on heteroepitaxial diamond. J Appl Phys. 2023;133(23):234401.

[29]

YamadaH, Chayahara A, MokunoY, KatoY, Shikata S. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.

[30]

MoridiA, RuanH, ZhangL, Liu M. Residual stresses in thin film systems: effects of lattice mismatch, thermal mismatch and interface dislocations. Int J Solid Struct. 2013;50(22/23):3562-3569.

[31]

LebedevV, EngelsJ, KustermannJ, et al. Growth defects in heteroepitaxial diamond. J Appl Phys. 2021;129(16):165301.

[32]

MayrM, Fischer M, KleinO, GsellS, Schreck M. Interaction between surface structures and threading dislocations during epitaxial diamond growth. Phys Status Solidi A. 2015;212(11):2480-2486.

[33]

KimuraY, IharaT, OjimaT, Oshima R, SawabeA, AidaH. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam Relat Mater. 2023;137:110055.

[34]

PopovIV, Görne AL, TchougréeffAL, DronskowskiR. Relative stability of diamond and graphite as seen through bonds and hybridizations. Phys Chem Chem Phys. 2019;21(21):10961-10969.

[35]

YueS, QinG, ZhangX, Sheng X, SuG, HuM. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: an ab initio study. Phys Rev B. 2017;95(8):085207.

[36]

SaslowW, Bergstresser TK, CohenML. Band structure and optical properties of diamond. Phys Rev Lett. 1968;21(10):715.

[37]

FieldJE. The mechanical and strength properties of diamond. Rep Prog Phys. 2012;75(12):126505.

[38]

JacobsonP, Stoupin S. Thermal expansion coefficient of diamond in a wide temperature range. Diam Relat Mater. 2019;97:107469.

[39]

ZukersteinM, Trojánek F, KoutenskýP, et al. Sub-picosecond electron dynamics in polycrystalline diamond films. Diam Relat Mater. 2020;108:107935.

[40]

HembramKPSS, LeeS, ImH, JuH, JeongS, Lee J. The surface hybridization of diamond with vertical graphene: a new route to diamond electronics. Mater Horiz. 2020;7(2):470-476.

[41]

MengY, YanC-S, KrasnickiS, et al. High optical quality multicarat single crystal diamond produced by chemical vapor deposition. Phys Status Solidi A. 2012;209(1):101-104.

[42]

KumarGA, Prabavathya N, BiswalaL. Raman photoluminescence -an efficient way to distinguish natural diamonds and lab grown diamonds. IOP Conf Ser: Mater Sci Eng. 2022;1225:012023.

[43]

LandstrassMI, PlanoMA, MorenoMA, et al. Device properties of homoepitaxially grown diamond. Diam Relat Mater. 1993;2(5/6/7):1033-1037.

[44]

BalmerRS, FrielI, WoollardSM, et al. Unlocking diamond’s potential as an electronic material. Phil Trans R Soc A. 2008;366(1863):251-265.

[45]

KasuM, UedaK, YamauchiY, Tallaire A, MakimotoT. Diamond-based RF power transistors: fundamentals and applications. Diam Relat Mater. 2007;16(4/5/6/7):1010-1015.

[46]

InyushkinAV, Taldenkov AN, RalchenkoVG, BolshakovAP, Koliadin AV, KatrushaAN. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. 2018;97(14):144305.

[47]

ChungDDL. Materials for thermal conduction. Appl Therm Eng. 2001;21(16):1593-1605.

[48]

SangL. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Funct Diamond. 2021;1(1):174-188.

[49]

IsbergJ, Hammersberg J, JohanssonE, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science. 2002;297(5587):1670-1672.

[50]

IsbergJ, Hammersberg J, TwitchenDJ, WhiteheadAJ. Single crystal diamond for electronic applications. Diam Relat Mater. 2004;13(2):320-324.

[51]

YanC, MaoH, LiW, QianJ, ZhaoY, Hemley RJ. Ultrahard diamond single crystals from chemical vapor deposition. Phys Status Solidi A. 2004;201(4): R25-R27.

[52]

CastellettoS, RosaL, BlackledgeJ, Abri MZA, BorettiA. Advances in diamond nanofabrication for ultrasensitive devices. Microsyst Nanoeng. 2017;3(1):17061.

[53]

SunH, ZhangZ, LiuY, ChenG, LiT, LiaoM. Diamond MEMS: from classical to quantum. Adv Quantum Technol. 2023;6(11):2300189.

[54]

MortetV, Williams OA, HaenenK. Diamond: a material for acoustic devices. Phys Status Solidi A. 2008;205(5):1009-1020.

[55]

ZalazarM, Guarnieri F. Diamond-based thin film bulk acoustic wave resonator for biomedical applications. J Phys: Conf Ser. 2013;477:012009.

[56]

XieY, RenS, GaoY, et al. Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy. Sci China Phys Mech Astron. 2021;64(8):287311.

[57]

ManHB, HoD. Front Cover: diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing (Phys. Status Solidi A 9/2012). Phys Status Solidi A. 2012;209(9).

[58]

PanizzaM, Cerisola G. Application of diamond electrodes to electrochemical processes. Electrochim Acta. 2005;51(2):191-199.

[59]

TallaireA, MilleV, BrinzaO, et al. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from New Diamond Technology. Diam Relat Mater. 2017;77:146-152.

[60]

PinaultMA, BarjonJ, KociniewskiT, JomardF, Chevallier J. The n-type doping of diamond: present status and pending questions. Physica B. 2007;401/402:51-56.

[61]

LuA, YangL, DangC, et al. Tuning diamond electronic properties for functional device applications. Funct Diamond. 2022;2(1):151-166.

[62]

ArnaultJ-C, SaadaS, RalchenkoV. Chemical vapor deposition single-crystal diamond: a review. Phys Status Solidi RRL. 2022;16(1):2100354.

[63]

YamadaH, Chayahara A, UmezawaH, TsubouchiN, MokunoY, ShikataS. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diam Relat Mater. 2012;24:29.

[64]

JanssenG, GilingLJ. “Mosaic” growth of diamond. Diam Relat Mater. 1995;4(7):1025-1031.

[65]

MokunoY, Chayahara A, YamadaH, TsubouchiN. Large single crystal diamond plates produced by microwave plasma CVD. Mater Sci Forum. 2009;615/616/617:991-994.

[66]

SchreckM, GsellS, BresciaR, Fischer M. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.

[67]

IchikawaK, Shimaoka T, KatoY, KoizumiS, TerajiT. Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging. J Appl Phys. 2020;128(15):155302.

[68]

BensalahH, Stenger I, SakrG, et al. Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diam Relat Mater. 2016;66:188-195.

[69]

KhokhryakovAF, Palyanov YN, BorzdovYM, KozhukhovAS, Sheglov DV. Dislocation etching of diamond crystals grown in Mg-C system with the addition of silicon. Diam Relat Mater. 2018;88:67-73.

[70]

KasuM, Murakami R, MasuyaS, HaradaK, SumiyaH. Synchrotron X-ray topography of dislocations in high-pressure high-temperature-grown single-crystal diamond with low dislocation density. Appl Phys Express. 2014;7(12):125501.

[71]

ShikataS. Diamond dislocations analysis by X-ray topography. Funct Diamond. 2022;2(1):175-191.

[72]

IchikawaK, KodamaH, SuzukiK, Sawabe A. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir. Diam Relat Mater. 2017;72:114-118.

[73]

SchreckM, MayrM, KleinO, et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: a brief review. Phys Status Solidi A. 2016;213(8):2028-2035.

[74]

StachelT, LuthRW. Diamond formation — where, when and how? Lithos. 2015;220/221/222/223:200-220.

[75]

SoninV, Tomilenko A, ZhimulevE, et al. The composition of the fluid phase in inclusions in synthetic HPHT diamonds grown in system Fe–Ni–Ti–C. Sci Rep. 2022;12(1):1246.

[76]

LinnikSA, ZenkinSP, GaydaychukAV. Heteroepitaxial diamond growth from the gas phase: problems and prospects. Instrum Exp Tech. 2021;64:177-189.

[77]

BundyFP, HallHT, StrongHM, Wentorf RH. Man-made diamonds. Nature. 1955;176:51-55.

[78]

BalmerRS, Brandon JR, ClewesSL, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys Condens Matter. 2009;21(36):364221.

[79]

GracioJJ, FanQH, MadalenoJC. Diamond growth by chemical vapour deposition. J Phys D: Appl Phys. 2010;43(37):374017.

[80]

SpearKE, Frenklach M. High temperature chemistry of CVD (chemical vapor deposition) diamond growth. Pure Appl Chem. 1994;66(9):1773-1782.

[81]

HarrisSJ, Goodwin DG. Growth on the reconstructed diamond (100) surface. J Phys Chem. 1993;97(1):23-28.

[82]

SkokovS, WeinerB, FrenklachM. Elementary reaction mechanism for growth of diamond (100) surfaces from methyl radicals. J Phys Chem. 1994;98(28):7073-7082.

[83]

LiangQ, ChinCY, LaiJ, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl Phys Lett. 2009;94(2):024103.

[84]

SchreckM, RolH, MichlerJ, Blank E, StritzkerB. Stress distribution in thin heteroepitaxial diamond films on studied by x-ray diffraction, Raman Ir/SrTiO3 spectroscopy, and finite element simulations. J Appl Phys. 2000;88(5):2456-2466.

[85]

NixWD. Mechanical properties of thin films. Metall Trans A. 1989;20:2217-2245.

[86]

StoneyGG. The tension of metallic films deposited by electrolysis. Proc R. Soc Lond Ser A. 1909;82(553):172-175.

[87]

KasuM, TakayaR, KimS. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater. 2022;126:109086.

[88]

AidaH, IharaT, OshimaR, Kimura Y, SawabeA. Analysis of external surface and internal lattice curvatures of freestanding heteroepitaxial diamond grown on an Ir (001)/MgO (001) substrate. Diam Relat Mater. 2023;136:110026.

[89]

BednarskiC, DaiZ, LiAP, Golding B. Studies of heteroepitaxial growth of diamond. Diam Relat Mater. 2003;12(3/4/5/6/7):241-245.

[90]

JiangX, KlagesCP, RöslerM, ZachaiR, Hartweg M, FüsserHJ. Deposition and characterization of diamond epitaxial thin films on silicon substrates. Appl Phys A. 1993;57:483-489.

[91]

OhtsukaK, SuzukiK, SawabeA, Inuzuka T. Epitaxial growth of diamond on iridium. Jpn J Appl Phys. 1996;35(8B):L1072.

[92]

DaiZ, Bednarski-Meinke C, GoldingB. Heteroepitaxial diamond film growth: the a-plane sapphire–iridium system. Diam Relat Mater. 2004;13(4/5/6/7/8):552-556.

[93]

KimS-W, Kawamata Y, TakayaR, KoyamaK, KasuM. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (1120) sapphire substrate. Appl Phys Lett. 2020;117(20):202102.

[94]

VargasR, GotoT, ZhangW, Hirai T. Epitaxial growth of iridium and platinum films on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett. 1994;65(9):1094-1096.

[95]

AaltonenT, RitalaM, SammelselgV, Leskelä M. Atomic layer deposition of iridium thin films. J Electrochem Soc. 2004;151(8):G489.

[96]

GaleazziM, ChenC, CohnJL, Gundersen JO. Iridium thin films deposited via pulsed laser deposition for future applications as transition-edge sensors. Nucl Instrum Methods Phys Res Section A: Accel, Spectr, Detec Associ Equip. 2004;520(1/2/3):293-295.

[97]

HörmannF, RollH, SchreckM, Stritzker B. Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation: deposition of the films and modification in the CVD environment. Diam Relat Mater. 2000;9(3/4/5/6):256-261.

[98]

LeeKH, SaadaS, ArnaultJC, et al. Epitaxy of iridium on SrTiO3/Si (001): a promising scalable substrate for diamond heteroepitaxy. Diam Relat Mater. 2016;66:67-76.

[99]

FujisakiT, Tachiki M, TaniyamaN, KudoM, Kawarada H. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diam Relat Mater. 2003;12(3/4/5/6/7):246-250.

[100]

SamotoA, ItoS, HottaA, et al. Investigation of heterostructure between diamond and iridium on sapphire. Diam Relat Mater. 2008;17(7/8/9/10):1039-1044.

[101]

FrankM, SabineO, AndreasG, et al. Effect of substrate bias on the growth behavior of iridium on A-plane sapphire using radio frequency sputtering at low temperatures. Thin Solid Films. 2018;650:65-70.

[102]

DaiZ, Bednarski-Meinke C, LoloeeR, GoldingB. Epitaxial (100) iridium on A-plane sapphire: a system for wafer-scale diamond heteroepitaxy. Appl Phys Lett. 2003;82(22):3847-3849.

[103]

WangQ, WuG, Newhourse-IlligeTA, et al. Heteroepitaxial diamond film deposition on KTaO3 substrates via single-crystal iridium buffer layers. Diam Relat Mater. 2020;110:108117.

[104]

WeiQ, NiuG, WangR, et al. Heteroepitaxy of single crystal diamond on Ir buffered KTaO3 (001) substrates. Appl Phys Lett. 2021;119(9):092104.

[105]

KimS, TakayaR, HiranoS, Kasu M. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (110) misoriented substrate by step-flow mode. Appl Phys Express. 2021;14(11):115501.

[106]

KasuM, TakayaR, MasakiR, Kim S. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate. Diam Relat Mater. 2022;128:109287.

[107]

DaiZ, LiAP, BednarskiC, McCann LI, GoldingB. Epitaxial iridium growth on strontium titanate. MRS Proc. 2001;648:11-35.

[108]

StehlC, Fischer M, GsellS, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett. 2013;103(15):151905.

[109]

ChoiU, ShinH, KwakT, Kim S, NamO. Growth and characterization of heteroepitaxial (001) and (111) diamond on Ir/sapphire structures. Diam Relat Mater. 2022;121:108770.

[110]

SchreckM, RollH, StritzkerB. Diamond/Ir/SrTiO3: A material combination for improved heteroepitaxial diamond films. Appl Phys Lett. 1999;74(5):650-652.

[111]

AidaH, KimS, IkejiriK, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles. Appl Phys Express. 2016;9(3):035504.

[112]

IchikawaK, KuroneK, KodamaH, Suzuki K, SawabeA. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater. 2019;94:92-100.

[113]

ArnaultJC, VonauF, FaerberJ, et al. Early stages of diamond BEN-HFCVD on iridium. Phys Status Solidi A. 2003;199(1):27-32.

[114]

ThürerKH, Schreck M, StritzkerB. Limiting processes for diamond epitaxial alignment on silicon. Phys Rev B. 1998;57(24):15454.

[115]

UmezawaH, IkedaK, KumaresanR, Tatsumi N, ShikataS. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode. IEEE Electron Device Lett. 2009;30(9):960-962.

[116]

IkedaK, Umezawa H, RamanujamK, ShikataS. Thermally stable Schottky barrier diode by Ru/diamond. Appl Phys Express. 2009;2(1):011202.

[117]

MuretP, VolpeP-N, Tran-ThiTN, et al. Schottky diode architectures on p-type diamond for fast switching, high forward current density and high breakdown field rectifiers. Diam Relat Mater. 2011;20(3):285-289.

[118]

KwakT, LeeJ, ChoiU, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater. 2021;114:108335.

[119]

WooK, Malakoutian M, SaraswatD, et al. Control of Schottky barrier height in diamond using UV-generated ozone and its effect on barrier inhomogeneity and temperature dependent properties. Diam Relat Mater. 2024;145:111059.

[120]

KwakT, HanS, ChoiU, Kim S, NamO. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate. Diam Relat Mater. 2023;133:109750.

[121]

UmezawaH, NagaseM, KatoY, Shikata S. High temperature application of diamond power device. Diam Relat Mater. 2012;24:201-205.

[122]

HanadaT, Ohmagari S, KanekoJH, UmezawaH. High yield uniformity in pseudo-vertical diamond Schottky barrier diodes fabricated on half-inch single-crystal wafers. Appl Phys Lett. 2020;117(26):262107.

[123]

HuangW, ChowTP, YangJ, Butler JE. High-voltage diamond Schottky rectifiers. Int J High Speed Electronics Syst. 2004;14(03):872-878.

[124]

WeippertJ, ReinkeP, BenkhelifaF, et al. Pseudovertical Schottky diodes on heteroepitaxially grown diamond. Crystals. 2022;12(11):1626.

[125]

KawashimaH, Noguchi H, MatsumotoT, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates. Appl Phys Express. 2015;8(10):104103.

[126]

TraoréA, MuretP, FioriA, Eon D, GheeraertE, PernotJ. Zr/oxidized diamond interface for high power Schottky diodes. Appl Phys Lett. 2014;104(5):052105.

[127]

SahaNC, IrieY, SekiY, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6 × 105 on/off ratio. IEEE Electron Device Lett. 2023;44(2):293-296.

[128]

HanZ, BayramC. Diamond p-type lateral Schottky barrier diodes with high breakdown voltage (4612 V at 0.01 mA/Mm). IEEE Electron Device Lett. 2023;44(10):1692-1695.

[129]

VolpePN, MuretP, PernotJ, et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl Phys Lett. 2010;97(22):223501.

[130]

NicleyS, ZajacS, RechenbergR, et al. Fabrication and characterization of a corner architecture Schottky barrier diode structure. Phys Status Solidi A. 2015;212(11):2410-2417.

[131]

UedaK, Kawamoto K, AsanoH. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes. Diam Relat Mater. 2015;57:28-31.

[132]

UmezawaH, KatoY, ShikataS. 1 Ω on-resistance diamond vertical-Schottky barrier diode operated at 250°C. Appl Phys Express. 2013;6(1):011302.

[133]

ZhuY, LinW, LiD, et al. High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure. Chin Phys B. 2023;32(8):088101.

[134]

MakinoT, KatoH, TokudaN, et al. Diamond Schottky-pn diode without trade-off relationship between on-resistance and blocking voltage. Phys Status Solidi A. 2010;207(9):2105-2109.

[135]

UmezawaH, Shikata S, FunakiT. Diamond Schottky barrier diode for high-temperature, high-power, and fast switching applications. Jpn J Appl Phys. 2014;53(5S1):05FP06.

[136]

TarelkinS, Bormashov V, BugaS, et al. Power diamond vertical Schottky barrier diode with 10 A forward current. Phys Status Solidi A. 2015;212(11):2621-2627.

[137]

ZhangS, LiJW, WangJ, et al. High breakdown electric field diamond Schottky barrier diode with SnO2 field plate. IEEE Trans Electron Dev. 2022;69(12):6917-6921.

[138]

ReinkeP, Benkhelifa F, KirsteL, et al. Influence of different surface morphologies on the performance of high-voltage, low-resistance diamond Schottky diodes. IEEE Trans Electron Dev. 2020;67(6):2471-2477.

[139]

NagaseM, Umezawa H, ShikataS. Vertical diamond Schottky barrier diode fabricated on insulating diamond substrate using deep etching technique. IEEE Trans Electron Dev. 2013;60(4):1416-1420.

[140]

KatoH, OyamaK, MakinoT, Ogura M, TakeuchiD, YamasakiS. Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diam Relat Mater. 2012;27/28:19-22.

[141]

KatoH, MakinoT, OguraM, Takeuchi D, YamasakiS. Fabrication of bipolar junction transistor on (001)-oriented diamond by utilizing phosphorus-doped n-type diamond base. Diam Relat Mater. 2013;34:41-44.

[142]

YuX, ZhouJ, QiC, CaoZ, KongY, Chen T. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018;39(9):1373-1376.

[143]

CuiP, Mercante A, LinG, et al. High-performance InAlN/GaN HEMTs on silicon substrate with high fT × Lg. Appl Phys Express. 2019;12(10):104001.

[144]

UedaK, KasuM, YamauchiY, et al. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett. 2006;27(7):570-572.

[145]

OiN, InabaM, OkuboS, et al. Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors. Sci Rep. 2018;8(1):10660.

[146]

SahaNC, KimS, KoyamaK, Oishi T, KasuM. 3659-V NO2 p-type doped diamond MOSFETs on misoriented heteroepitaxial diamond substrates. IEEE Electron Device Lett. 2023;44(1):112-115.

[147]

SahaNC, KimS, OishiT, Kasu M. 875-MW/cm2 low-resistance NO2 p-type doped chemical mechanical planarized diamond MOSFETs. IEEE Electron Device Lett. 2022;43(5):777-780.

[148]

SahaNC, KimS, OishiT, Kawamata Y, KoyamaK, KasuM. 345-MW/cm2 2608-V NO2 p-type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond. IEEE Electron Device Lett. 2021;42(6):903-906.

[149]

SahaNC, KimS, OishiT, Kasu M. 3326-V modulation-doped diamond MOSFETs. IEEE Electron Device Lett. 2022;43(8):1303-1306.

[150]

ChenG, WangW, LinF, ZhangM, WeiQ, WangH. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate. Materials. 2022;15(7):2557.

[151]

GeisMW, Varghese JO, HollisMA, et al. Stable, low-resistance, 1.5 to 3.5 kΩ sq−1, diamond surface conduction with a mixed metal-oxide protective film. Diam Relat Mater. 2020;106:107819.

[152]

KasuM, SahaNC, OishiT, Kim S. Fabrication of diamond modulation-doped FETs by NO2 delta doping in an Al2O3 gate layer. Appl Phy Express. 2021;14(5):051004.

[153]

ZhangX, Matsumoto T, NakanoY, et al. Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon. 2021;175:615-619.

[154]

ZhangX, Matsumoto T, YamasakiS, NebelC, Inokuma T, TokudaN. Inversion-type p-channel diamond MOSFET issues. J Mater Res. 2021;36(23):4688-4702.

[155]

MasanteC, RougerN, PernotJ. Recent progress in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. J Phys D Appl Phys. 2021;54(23):233002.

[156]

PhamT, PernotJ, PerezG, Eon D, GheeraertE, RougerN. Deep-depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor. IEEE Electron Device Lett. 2017;38(11):1571-1574.

[157]

IwasakiT, YaitaJ, KatoH, et al. 600 V diamond junction field-effect transistors operated at 200°C. IEEE Electron Device Lett. 2014;35(2):241-243.

[158]

HiraiwaA, Kawarada H. Figure of merit of diamond power devices based on accurately estimated impact ionization processes. J Appl Phys. 2013;114(3):034506.

[159]

ChoiU, KwakT, HanS, KimS, NamO. High breakdown voltage of boron-doped diamond metal semiconductor field effect transistor grown on freestanding heteroepitaxial diamond substrate. Diam Relat Mater. 2022;121:108782.

[160]

UmezawaH, Matsumoto T, ShikataS. Diamond metal–semiconductor field-effect transistor with breakdown voltage over 1.5 kV. IEEE Electron Device Lett. 2014;35(11):1112-1114.

[161]

LiuJ, TerajiT, DaB, OhsatoH, KoideY. Effect of annealing temperature on performances of boron-doped diamond metal–semiconductor field-effect transistors. IEEE Trans Electron Dev. 2020;67(4):1680-1685.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/