Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts

Zhen Zhang , Shaobo Han , Cheng Li , Chao Cai , Meng Danny Gu

Electron ›› 2024, Vol. 2 ›› Issue (4) : e65

PDF
Electron ›› 2024, Vol. 2 ›› Issue (4) : e65 DOI: 10.1002/elt2.65
REVIEW

Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts

Author information +
History +
PDF

Abstract

Oxygen evolution reactions (OER) are critical to electrochemical synthesis reactions, including hydrogen production and organic hydrogenation. However, the high cost of existing OER catalysts (primarily Ir/Ru and its derived oxides) limits their practical application for electrochemical synthesis. To develop a low-cost, high-efficiency alternative, we need a deeper understanding of both the mechanisms that drive OER and the relationship between the catalyst's electronic structure and active sites. Here, we summarized recent developments of catalysts, especially focusing on the electronic structure modulation strategies and their subsequent activity enhancement. Most importantly, we pointed out the study directions for further work.

Keywords

coordination state / intermediates / quantifying charge density / single-atom catalysts / surface defects

Cite this article

Download citation ▾
Zhen Zhang, Shaobo Han, Cheng Li, Chao Cai, Meng Danny Gu. Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts. Electron, 2024, 2(4): e65 DOI:10.1002/elt2.65

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65-81.

[2]

Cheng N, Zhang L, Doyle-Davis K, Sun X. Single-atom catalysts: from design to application. Electrochem Energy Rev. 2019;2(4):539-573.

[3]

Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem. 2011;660(2):254-260.

[4]

Mefford JT, Rong X, Abakumov AM, et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat Commun. 2016;7(1):11053.

[5]

Rong X, Parolin J, Kolpak AM. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016;6(2):1153-1158.

[6]

Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. 2017;9(5):457-465.

[7]

Lin Y, Liu K, Chen K, et al. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 2021;11(10):6304-6315.

[8]

Liu K, Fu J, Lin Y, et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat Commun. 2022;13(1):2075.

[9]

Sun Y, Xue Z, Liu Q, et al. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat Commun. 2021;12(1):1369.

[10]

Han S, Cai C, Yang F, et al. Interrogation of the reaction mechanism in a Na–O2 battery using in situ transmission electron microscopy. ACS Nano. 2020;14(3):3669-3677.

[11]

Wu Z, Zhang H, Chen C, Li G, Han Y. Applications of in situ electron microscopy in oxygen electrocatalysis. Microstructures. 2022;2:2022002.

[12]

Chen J, Liu G, Zhu Y, et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J Am Chem Soc. 2020;142(15):7161-7167.

[13]

Rao RR, Corby S, Bucci A, et al. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J Am Chem Soc. 2022;144(17):7622-7633.

[14]

Chen J, Dang L, Liang H, et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy. J Am Chem Soc. 2015;137(48):15090-15093.

[15]

Cai C, Wang M, Han S, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2021;11(1):123-130.

[16]

Wang H, Zhang K, Hofmann JP, de la Peña O’Shea VA, Oropeza FE. The electronic structure of transition metal oxides for oxygen evolution reaction. J Mater Chem A. 2021;9(35):19465-19488.

[17]

Grimaud A, May KJ, Carlton CE, et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun. 2013;4(1):2439.

[18]

Grimaud A, Hong WT, Shao-Horn Y, Tarascon JM. Anionic redox processes for electrochemical devices. Nat Mater. 2016;15(2):121-126.

[19]

Yoo JS, Rong X, Liu Y, Kolpak AM. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018;8(5):4628-4636.

[20]

Yoo JS, Liu Y, Rong X, Kolpak AM. Electronic origin and kinetic feasibility of the lattice oxygen participation during the oxygen evolution reaction on perovskites. J Phys Chem Lett. 2018;9(7):1473-1479.

[21]

Cai C, Liu K, Zhang L, et al. Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew Chem Int Ed. 2023;62(26):e202300873.

[22]

Zhang J, Cai D, Li Z. Enhanced electrocatalytic performances by spatially confined aqueous electrolytes. ChemistrySelect. 2024;9(10):e202303285.

[23]

Wang Y, Zheng S, Yang W, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021;600(7887):81-85.

[24]

Wen H, Zhao Z, Luo Z, Wang C. Unraveling the impact of curvature on electrocatalytic performance of carbon materials: a state-of-the-art review. ChemSusChem. 2024;17(10):e202301859.

[25]

Lewis LH, Stamenov PS. Accelerating nature: induced atomic order in equiatomic FeNi. Adv Sci. 2024;11(7):2302696.

[26]

Iqbal S, Safdar B, Hussain I, Zhang K, Chatzichristodoulou C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv Energy Mater. 2023;13(17):2203913.

[27]

Fan R, Zhao H, Zhao Z, et al. Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) is essential. Nano Res. 2023;16(10):12026-12034.

[28]

Kuai C, Xu Z, Xi C, et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat Catal. 2020;3(9):743-753.

[29]

Liao H, Ni G, Tan P, et al. Oxyanion engineering suppressed iron segregation in nickel-iron catalysts toward stable water oxidation. Adv Mater. 2023;35(21):2300347.

[30]

Liu Y, Cai C, Zhu S, et al. Enhanced hydrogen evolution catalysis of pentlandite due to the increases in coordination number and sulfur vacancy during cubic-hexagonal phase transition. Small. 2024;20(30):2311161.

[31]

Wang Z, Wei H, Huang Y, Wei Y, Chen J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem Soc Rev. 2023;52(9):2992-3034.

[32]

Wu H, Yang T, Du Y, Shen L, Ho GW. Identification of facet-governing reactivity in hematite for oxygen evolution. Adv Mater. 2018;30(52):1804341.

[33]

Papawassiliou W, Carvalho JP, Panopoulos N, et al. Crystal and electronic facet analysis of ultrafine Ni2P particles by solid-state NMR nanocrystallography. Nat Commun. 2021;12(1):4334.

[34]

Wang Q, Zhang Z, Cai C, et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J Am Chem Soc. 2021;143(34):13605-13615.

[35]

Martirez JMP, Carter EA. Unraveling oxygen evolution on iron-doped β-nickel oxyhydroxide: the key role of highly active molecular-like sites. J Am Chem Soc. 2019;141(1):693-705.

[36]

Shin H, Xiao H, Goddard WA, III. In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1-xFexOOH) catalysts for oxygen evolution reaction. J Am Chem Soc. 2018;140(22):6745-6748.

[37]

Xue F, Guo X, Min B, et al. Unconventional high-index facet of iridium boosts oxygen evolution reaction: how the facet matters. ACS Catal. 2021;11(13):8239-8246.

[38]

Sarabia FJ, Sebastián-Pascual P, Koper MTM, Climent V, Feliu JM. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl Mater Interfaces. 2019;11(1):613-623.

[39]

Wang D, Su D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci. 2014;7(2):576-591.

[40]

Zuo S, Wu Z, Zhang H, Lou X. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv Energy Mater. 2022;12(8):2103383.

[41]

Lole G, Ebrahimi F, Meyer T, et al. Contrasting Pr1-xCaxMnO3 OER catalysts with different valences and covalences. J Phys Chem C. 2023;127(1):177-186.

[42]

Du G, Yuan Z, Van Tendeloo G. Transmission electron microscopy and electron energy-loss spectroscopy analysis of manganese oxide nanowires. Appl Phys Lett. 2005;86(6):063113.

[43]

Kurata H, Colliex C. Electron-energy-loss core-edge structures in manganese oxides. Phys Rev B. 1993;48(4):2102-2108.

[44]

Varela M, Oxley MP, Luo W, et al. Atomic-resolution imaging of oxidation states in manganites. Phys Rev B. 2009;79(8):085117.

[45]

Yeo BC, Nam HJ, Nam HB, et al. High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts. npj Comput Mater. 2021;7(1):137.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/