Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts
Zhen Zhang , Shaobo Han , Cheng Li , Chao Cai , Meng Danny Gu
Electron ›› 2024, Vol. 2 ›› Issue (4) : e65
Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts
Oxygen evolution reactions (OER) are critical to electrochemical synthesis reactions, including hydrogen production and organic hydrogenation. However, the high cost of existing OER catalysts (primarily Ir/Ru and its derived oxides) limits their practical application for electrochemical synthesis. To develop a low-cost, high-efficiency alternative, we need a deeper understanding of both the mechanisms that drive OER and the relationship between the catalyst's electronic structure and active sites. Here, we summarized recent developments of catalysts, especially focusing on the electronic structure modulation strategies and their subsequent activity enhancement. Most importantly, we pointed out the study directions for further work.
coordination state / intermediates / quantifying charge density / single-atom catalysts / surface defects
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |