Electrocatalytic upcycling of plastic waste: Progress, challenges, and future

Jinzhou Li , Junliang Chen , Luyao Zhang , Juan Matos , Li Wang , Jianping Yang

Electron ›› 2024, Vol. 2 ›› Issue (3) : e63

PDF
Electron ›› 2024, Vol. 2 ›› Issue (3) : e63 DOI: 10.1002/elt2.63
REVIEW ARTICLE

Electrocatalytic upcycling of plastic waste: Progress, challenges, and future

Author information +
History +
PDF

Abstract

The escalating accumulation of plastic waste has been developed into a formidable global environmental challenge. Traditional disposal methods such as landfilling and incineration not only exacerbate environmental degradation by releasing harmful chemicals and greenhouse gases, but also squander finite resources that could otherwise be recycled or repurposed. Upcycling is a kind of plastic recycling technology that converts plastic waste into high-value chemicals and helps to avoid resource waste and environmental pollution. Electrocatalytic upcycling emerges as a novel technology distinguished by its mild operational conditions, high transformation efficiency and product selectivity. This review commences with an overview of the recycling and upcycling technology employed in plastic waste management and the respective advantages and inherent limitations are also delineated. The different types of plastic waste upcycled by electrocatalytic strategy are then discussed and the plastic waste transformation process is examined together with the mechanisms underlying the electrocatalytic upcycling. Furthermore, the structure-activity relationships between electrocatalysts and plastic waste upcycling performance are also elucidated. The review aims to furnish readers with a comprehensive understanding of the electrocatalytic techniques for plastic waste upcycling and to provide a guidance for the design of electrocatalysts towards efficient plastic waste transformation.

Keywords

electrocatalysis / high-value chemicals / plastic waste / upcycling

Cite this article

Download citation ▾
Jinzhou Li, Junliang Chen, Luyao Zhang, Juan Matos, Li Wang, Jianping Yang. Electrocatalytic upcycling of plastic waste: Progress, challenges, and future. Electron, 2024, 2(3): e63 DOI:10.1002/elt2.63

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao X, Boruah B, Chin K, Đokić M, Modak JM, Soo HS. Upcycling to sustainably reuse plastics. Adv Mater. 2021;34(25):2100843.

[2]

Jehanno C, Alty J, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers. Nature. 2022;603(7903):803-814.

[3]

Zhu Y, Romain C, Williams C. Sustainable polymers from renewable resources. Nature. 2016;540(7633):354-362.

[4]

Yue S, Wang P, Yu B, et al. From plastic waste to treasure: selective upcycling through catalytic technologies. Adv Energy Mater. 2023;13(41):2302008.

[5]

Chen J, Wu J, Sherrell P, et al. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv Sci. 2022;9(6):2103764.

[6]

MacLeod M, Arp H, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373(6550):61-65.

[7]

Stubbins A, Law K, Muñoz S, Bianchi T, Zhu L. Plastics in the earth system. Science. 2021;373(6550):51-55.

[8]

Lampitt R, Fletcher S, Cole M, et al. Stakeholder alliances are essential to reduce the scourge of plastic pollution. Nat Comm. 2023;14(1):2849.

[9]

Rahimi A, García J. Chemical recycling of waste plastics for new materials production. Nat Rev Chem. 2017;1(6):0046.

[10]

Liu S, Kots P, Vance B, Danielson A, Vlachos D. Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv. 2021;7(17):eabf8283.

[11]

Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S. Plastic rain in protected areas of the United States. Science. 2020;368(6496):1257-1260.

[12]

Ostle C, Thompson R, Broughton D, Gregory L, Wootton M, Johns DG. The rise in ocean plastics evidenced from a 60-year time series. Nat Comm. 2019;10(1):1622.

[13]

Yang Y, Xie E, Du Z, et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ Sci Technol. 2023;57(30):10911-10918.

[14]

Li X, Wang J, Zhang T, et al. Sustainable catalytic strategies for the transformation of plastic wastes into valued products. Chem Eng Sci. 2023;276:118729.

[15]

Baytekin B, Baytekin H, Grzybowski B. Retrieving and converting energy from polymers: deployable technologies and emerging concepts. Energy Environ Sci. 2013;6(12):3467-3482.

[16]

Zheng K, Wu Y, Hu Z, et al. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem Soc Rev. 2023;52(1):8-29.

[17]

Liu C, Li J, Zhang Y, et al. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ Int. 2019;128:116-124.

[18]

Tian W, Song P, Zhang H, et al. Microplastic materials in the environment: problem and strategical solutions. Prog Mater Sci. 2023;132:101035.

[19]

Takacs L. The historical development of mechanochemistry. Chem Soc Rev. 2013;42(18):7649-7659.

[20]

Choudhury N, Kim A, Kim M, Kim B. Mechanochemical degradation of poly(vinyl chloride) into nontoxic water-soluble products via sequential dechlorination, heterolytic oxirane ring-opening, and hydrolysis. Adv Mater. 2023;35(33):2304113.

[21]

Huang X, Zhou B, Sun G, Yang X, Wang Y, Zhang X. Upcycling of plastic wastes and biomass to mechanically robust yet recyclable energy-harvesting materials. Nano Energy. 2023;116:108843.

[22]

Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manage. 2017;69:24-58.

[23]

Gu F, Guo J, Zhang W, Summers P, Hall P. From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci Total Environ. 2017;601:1192-1207.

[24]

Vilaplana F, Karlsson S. Quality concepts for the improved use of recycled polymeric materials: a review. Macromol Mater Eng. 2008;293(4):274-297.

[25]

Bajracharya R, Manalo A, Karunasena W, Lau K. An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites. Mater Des. 2014;62:98-112.

[26]

Jaszkiewicz A, Bledzki A, Duda A, Galeski A, Franciszczak P. Investigation of processability of chain-extended polylactides during melt processing—compounding conditions and polymer molecular structure. Macromol Mater Eng. 2014;299(3):307-318.

[27]

Maris J, Bourdon S, Brossard J, Cauret L, Fontaine L, Montembault V. Mechanical recycling: compatibilization of mixed thermoplastic wastes. Polym Degrad Stab. 2018;147:245-266.

[28]

Vollmer I, Jenks M, Roelands M, et al. Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Ed. 2020;59(36):15402-15423.

[29]

Chen H, Wan K, Zhang Y, Wang Y. Waste to wealth: chemical recycling and chemical upcycling of waste plastics for a great future. ChemSusChem. 2021;14(19):4123-4136.

[30]

Davidson M, Furlong R, McManus M. Developments in the life cycle assessment of chemical recycling of plastic waste—a review. J Clean Prod. 2021;293:126163.

[31]

Coates GW, Getzler YDYL. Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater. 2020;5(7):501-516.

[32]

Darensbourg D, Wei S, Yeung A, Ellis W. An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules. 2013;46(15):5850-5855.

[33]

Zhou H, Wang Y, Ren Y, et al. Plastic waste valorization by leveraging multidisciplinary catalytic technologies. ACS Catal. 2022;12(15):9307-9324.

[34]

Feng B, Guo Y, Liu X, Wang Y. Transforming PVC plastic waste to benzene via hydrothermal treatment in a multi-phase system. Green Chem. 2023;25(21):8505-8509.

[35]

Chang J, Wang L, Wu D, et al. Concurrent electrocatalytic hydrogen evolution and polyethylene terephthalate plastics reforming by self-supported amorphous cobalt iron phosphide electrode. J Colloid Interface Sci. 2024;655:555-564.

[36]

Miao F, Liu Y, Gao M, et al. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J Hazard Mater. 2020;399:123023.

[37]

Wan Y, Wang H, Liu J, et al. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate. J Hazard Mater. 2023;452:131375.

[38]

Li R, Zhang Z, Liang X, et al. Polystyrene waste thermochemical hydrogenation to ethylbenzene by a N-bridged Co, Ni dual-atom catalyst. J Am Chem Soc. 2023;145(29):16218-16227.

[39]

Sewon O, Stache E. Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation. J Am Chem Soc. 2022;144(13):5745-5749.

[40]

Liu Q, Jiang D, Zhou H, et al. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proc Nat Acad Sci. 2023;120(39):e2305078120.

[41]

Abbas M, Ureel Y, Eschenbacher A, et al. Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: towards full recyclability. Prog Energy Combust Sci. 2023;96:101046.

[42]

Kang Q, Chu M, Xu P, et al. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angew Chem Int Ed. 2023;62(47):e202313174.

[43]

Kang J, Kim J, Sung S, et al. Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment. Environ Pollut. 2024;342:123074.

[44]

Cao R, Zhang M, Jiao Y, et al. Co-upcycling of polyvinyl chloride and polyesters. Nat Sustain. 2023;6(12):1685-1692.

[45]

Wang J, Li X, Zhang T, Qian X, Wang T, Zhao Y. Rational design of photo-/electro-catalytic systems for the transformation of plastic wastes. Appl Catal B Environ. 2023;332:122744.

[46]

Uekert T, Pichler C, Schubert T, Reisner E. Solar-driven reforming of solid waste for a sustainable future. Nat Sustain. 2020;4(5):383-391.

[47]

Wang L, Jiang S, Gui W, et al. Photocatalytic upcycling of plastic waste: mechanism, integrating modus, and selectivity. Small Struct. 2023;4(10):2300142.

[48]

Wu L, Su F, Liu T, et al. Phosphorus-doped single-crystalline quaternary sulfide nanobelts enable efficient visible-light photocatalytic hydrogen evolution. J Am Chem Soc. 2022;144(45):20620-20629.

[49]

Yan Y, Wang H, Bi X, Zhao Y, Wang W, Wu M. Tandem catalysts CuSe/AuX for increasing local *CO concentration to promote the photocatalytic CO2 reduction to C2H4. Electron. 2023;1(1): e3.

[50]

Li X, Li L, Chen G, et al. Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light. Nat Comm. 2023;14(1):4034.

[51]

Xu F, Cao W, Li J, et al. TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction. Int J Miner Metall. 2023;30(4):630-641.

[52]

Savateev A, Tarakina N, Strauss V, et al. Potassium poly(heptazine imide): transition metal-free solid-state triplet sensitizer in cascade energy transfer and [3+2]-cycloadditions. Angew Chem Int Ed. 2020;59(35):15061-15068.

[53]

Miao Y, Zhao Y, Gao J, Wang J, Zhang T. Direct photo-reforming of real-world polylactic acid plastics into highly selective value-added pyruvic acid under visible light. J Am Chem Soc. 2024;146(7):4842-4850.

[54]

Guo Y, Zhu B, Tang C, Zhou Q, Zhu Y. Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis. Nat Comm. 2024;15(1):428.

[55]

Bhattacharjee S, Linley S, Reisner E. Solar reforming as an emerging technology for circular chemical industries. Nat Rev Chem. 2024;8(2):87-105.

[56]

Zhou D, Luo H, Zhang F, Wu J, Yang J, Wang H. Efficient photocatalytic degradation of the persistent PET fiber-based microplastics over Pt nanoparticles decorated N-doped TiO2 nanoflowers. Adv Fiber Mater. 2022;4(5):1094-1107.

[57]

Jiao X, Zheng K, Chen Q, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew Chem Int Ed. 2020;59(36):15497-15501.

[58]

Han M, Zhu S, Xia C, Yang B. Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Appl Catal B Environ. 2022;316:121662.

[59]

Zhang S, Xia B, Qu Y, et al. Photocatalytic production of ethylene and propionic acid from plastic waste by titania-supported atomically dispersed Pd species. Sci Adv. 2023;9(49):eadk2407.

[60]

Jiao X, Zheng K, Hu Z, Zhu S, Sun Y, Xie Y. Conversion of waste plastics into value-added carbonaceous fuels under mild conditions. Adv Mater. 2021;33(50):2005192.

[61]

Chen J, Gao X, Li J, et al. Progress in MXene-based catalysts for oxygen evolution reaction. Electron. 2023;2(1): e17.

[62]

Cho J, Kim B, Kwon T, Lee K, Choi S-I. Electrocatalytic upcycling of plastic waste. Green Chem. 2023;25(21):8444-8458.

[63]

Li M, Wu Y, Zhao B-H, et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactors. Nat Catal. 2023;6(10):906-915.

[64]

Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020;12(8):717-724.

[65]

Long C, Liu X, Wan K, et al. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Sci Adv. 2023;9(43):eadi6119.

[66]

Luo H, Li S, Wu Z, et al. Modulating the active hydrogen adsorption on Fe-N interface for boosted electrocatalytic nitrate reduction with ultra-long stability. Adv Mater. 2023;35(46):2304695.

[67]

Wang J, Li X, Zhang T, Chen Y, Wang T, Zhao Y. Electro-reforming polyethylene terephthalate plastic to Co-produce valued chemicals and green hydrogen. J Phys Chem Lett. 2022;13(2):622-627.

[68]

Si D, Xiong B, Chen L, Shi J. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 2021;1(4):941-955.

[69]

Behera S, Dinda S, Saha R, Mondal B. Quantitative electrocatalytic upcycling of polyethylene terephthalate plastic and its oligomer with a cobalt-based one-dimensional coordination polymer having open metal sites along with coproduction of hydrogen. ACS Catal. 2022;13(1):469-474.

[70]

Chen D, Liu J, Shen J, et al. Electrocatalytic C–N couplings at cathode and anode. Adv Energy Mater. 2024;14(28):2303820.

[71]

Cui T, Ma L, Wang S, et al. Atomically dispersed Pt–N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J Am Chem Soc. 2021;143(25):9429-9439.

[72]

Chen J, Zhang L, Wang L, Kuang M, Wang S, Yang J. Toward carbon neutrality: selective conversion of waste plastics into value-added chemicals. Matter. 2023;6(10):3322-3347.

[73]

Lin C, Huang S, Lin Y, Hsu L, Yi C. Electrosynthesized Ni–P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Appl Catal B: Environ. 2021;296:120351.

[74]

Pichler C, Bhattacharjee S, Rahaman M, Uekert T, Reisner E. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical-photo/electrocatalytic processes. ACS Catal. 2021;11(15):9159-9167.

[75]

Li Y, Zhao Y, Zhao H, Wang Z, Li H, Gao P. A bifunctional catalyst of ultrathin cobalt selenide nanosheets for plastic-electroreforming-assisted green hydrogen generation. J Mater Chem A. 2022;10(38):20446-20452.

[76]

Ma Y, Guo X, Du M, et al. Beyond biodegradation: upcycling of polylactic acid plastic waste into amino acids via cascade catalysis under mild conditions. Green Chem. 2024;26(7):3995-4004.

[77]

Xiao C, Leow W, Chen L, Li Y, Li C. Electrocatalytic conversion of waste polyamide-66 hydrolysates into high-added-value adiponitrile and hydrogen fuel. Electron. 2023;1(2): e14.

[78]

Zhou Y, Rodríguez-López J, Moore J. Heterogenous electromediated depolymerization of highly crystalline polyoxymethylene. Nat Comm. 2023;14(1):4847.

[79]

Rani S, Aslam S, Lal K, et al. Electrochemical C–H/C–C bond oxygenation: a potential technology for plastic depolymerization. Chem Rec. 2023;24(3):e202300331.

[80]

Zhang S, Li M, Zuo Z, Niu Z. Recent advances in plastic recycling and upgrading under mild conditions. Green Chem. 2023;25(18):6949-6970.

[81]

Yan Y, Zhou H, Xu S, et al. Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J Am Chem Soc. 2023;145(11):6144-6155.

[82]

Liu X, He X, Xiong D, et al. Electro-reforming of PET plastic to C2 chemicals with concurrent generation of hydrogen and electric energy. ACS Catal. 2024;14(7):5366-5376.

[83]

Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196-1199.

[84]

Dhaka V, Singh S, Anil A, et al. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ Chem Lett. 2022;20(3):1777-1800.

[85]

Nanda S, Berruti F. Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett. 2021;19(2):1433-1456.

[86]

Tournier V, Topham C, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216-219.

[87]

Geyer R, Jambeck J, Law K. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782.

[88]

Zhou H, Ren Y, Li Z, et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat Comm. 2021;12(1):4679.

[89]

Wang N, Li X, Hu M, et al. Ordered macroporous super-structure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl Catal B Environ. 2022;316:121667.

[90]

Mao Y, Fan S, Li X, et al. Trash to treasure: electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by MN0.1Ni0.9CO2O4-δ RSFs spinel. J Hazard Mater. 2023;457:131743.

[91]

Wang J, Li X, Wang M, et al. Electrocatalytic valorization of poly(ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 2022;12(11):6722-6728.

[92]

Ma F, Wang S, Gong X, et al. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl Catal B Environ. 2022;307:121198.

[93]

Zhang T, Li X, Wang J, et al. Photovoltaic-driven electrocatalytic upcycling poly(ethylene terephthalate) plastic waste coupled with hydrogen generation. J Hazard Mater. 2023;450:131054.

[94]

Liu F, Gao X, Shi R, Tse E, Chen Y. A general electrochemical strategy for upcycling polyester plastics into added-value chemicals by a CuCO2O4 catalyst. Green Chem. 2022;24(17):6571-6577.

[95]

Shi R, Liu K, Liu F, Yang X, Hou CC, Chen Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem Commun. 2021;57(94):12595-12598.

[96]

Liu F, Gao X, Shi R, Guo Z, Tse ECM, Chen Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd–Ni(OH)2 catalyst. Angew Chem Int Ed. 2023;62(11):e202300094.

[97]

Chen J, Zhang F, Kuang M, et al. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling. Proc Nat Acad Sci. 2024;121(17):e2318853121.

[98]

Liu X, Wang J, Fang Z, et al. Ultrafast activation of Ni foam by electro-corrosion and its use for upcycling PBT plastic waste. Appl Catal B Environ. 2023;334:122870.

[99]

Pang W, Li B, Wu Y, et al. Upgraded recycling of biodegradable PBAT plastic: efficient hydrolysis and electrocatalytic conversion. Chem Eng J. 2024;486:150342.

[100]

Grigoras A. Natural and synthetic polymeric antimicrobials with quaternary ammonium moieties: a review. Environ Chem Lett. 2021;19(4):3009-3022.

[101]

Ali W, Ali H, Gillani S, Zinck P, Souissi S. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environ Chem Lett. 2023;21(3):1761-1786.

[102]

Tian S, Jiao Y, Gao Z, et al. Catalytic amination of polylactic acid to alanine. J Am Chem Soc. 2021;143(40):16358-16363.

[103]

Mi R, Zeng L, Wang M, et al. Solvent-free heterogeneous catalytic hydrogenation of polyesters to diols. Angew Chem Int Ed. 2023;62(28):e202304219.

[104]

Xu J, Zhou K, Qin L, et al. One-pot tandem alcoholysis-hydrogenation of polylactic acid to 1, 2-propanediol. Polymers. 2023;15(2):413.

[105]

Musioł M, Sikorska W, Adamus G, et al. Forensic engineering of advanced polymeric materials. Part III -biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manage. 2016;52:69-76.

[106]

Chen Y, Zhang X, Liu C, et al. Electrocatalytic reforming of polylactic acid plastic hydrolysate over dynamically formed γ-NiOOH. ACS Appl Mater Interfaces. 2024;16(16):20570-20576.

[107]

Gan L, Dong Z, Xu H, et al. Beyond conventional degradation: catalytic solutions for polyolefin upcycling. CCS Chem. 2024;6(2):313-333.

[108]

Pifer A, Sen A. Chemical recycling of plastics to useful organic compounds by oxidative degradation. Angew Chem Int Ed. 1998;37(23):3306-3308.

[109]

Bäcksträm E, Odelius K, Hakkarainen M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind Eng Chem Res. 2017;56(50):14814-14821.

[110]

Lauw S, Lee J, Tessensohn M, Leong W, Webster R. The electrochemical reduction of di-(2-ethylhexyl) phthalate (DEHP) in acetonitrile. J Electroanal Chem. 2017;794:103-111.

[111]

Siddiqi Z, Sarlah D. Electrochemical dearomatization of commodity polymers. J Am Chem Soc. 2021;143(50):21264-21269.

[112]

Zhang M, Wang M, Sun B, Hu C, Xiao D, Ma D. Catalytic strategies for upvaluing plastic wastes. Chem. 2022;8(11):2912-2923.

[113]

Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment. ACS Sustainable Chem Eng. 2020;8(9):3494-3511.

[114]

Nanda S, Berruti F. Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett. 2021;19(1):123-148.

[115]

Maafa I. Pyrolysis of polystyrene waste: a review. Polymers. 2021;13(2):225.

[116]

Kik K, Bukowska B, Sicińska P. Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020;262:114297.

[117]

Gonzalez-Aguilar A, Pérez-García V, Riesco-Ávila J. A thermo-catalytic pyrolysis of polystyrene waste review: a systematic, statistical, and bibliometric approach. Polymers. 2023;15(6):1582.

[118]

Yan B, Shi C, Beckham G, Chen E, Román-Leshkov Y. Electrochemical activation of C–C bonds through mediated hydrogen atom transfer reactions. ChemSusChem. 2022;15(6):e202102317.

[119]

Park K, Oh S, Begum G, Kim J. Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride. Energy. 2018;157:402-411.

[120]

Liu X, Tian K, Chen Z, Wei W, Xu B, Ni BJ. Online TG-FTIR-MS analysis of the catalytic pyrolysis of polyethylene and polyvinyl chloride microplastics. J Hazard Mater. 2023;441:129881.

[121]

Fagnani D, Kim D, Camarero S, Alfaro J, McNeil A. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat Chem. 2023;15(2):222-229.

[122]

Deng Y, Ma L, Mao Y. Biological production of adipic acid from renewable substrates: current and future methods. Biochem Eng J. 2016;105:16-26.

[123]

Pan G, Zhao Y, Xu H, Hou X, Yang Y. Compression molded composites from discarded nylon 6/nylon 6, 6 carpets for sustainable industries. J Clean Prod. 2016;117:212-220.

[124]

Pelckmans M, Renders T, Vyver S, Sels B. Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 2017;19(22):5303-5331.

[125]

Polen T, Spelberg M, Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. 2013;167(2):75-84.

[126]

Lee Y, Lin K-YA, Kwon EE, Lee J. Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. J Clean Prod. 2019;227:624-633.

[127]

Chen S, Bao X, Wang Z, et al. Comparative study on the effects of water pressure on water absorption of ultra-high molecular weight polyethylene and polyformaldehyde. J Appl Polym Sci. 2022;139(33):e52783.

[128]

Beydoun K, Klankermayer J. Efficient plastic waste recycling to value-added products by integrated biomass processing. ChemSusChem. 2020;13(3):488-492.

[129]

Chen G, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater. 2018;30(10):1706279.

[130]

Wang X, Jia Y, Mao X, et al. Edge-Rich Fe–N4 active sites in defective carbon for oxygen reduction catalysis. Adv Mater. 2020;32(16):2000966.

[131]

Xiao Z, Huang Y, Dong C, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich CO3O4 for oxygen evolution reaction. J Am Chem Soc. 2020;142(28):12087-12095.

[132]

Chen W, Wang Y, Wu B, et al. Activated Ni–OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv Mater. 2022;34(27):2105320.

[133]

Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater. 2020;32(34):2001848.

[134]

Yang G, Jiao Y, Yan H, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater. 2020;32(17):2000455.

[135]

Li J, Du L, Guo S, et al. Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone. J Colloid Interface Sci. 2024;673:616-627.

[136]

Shen S, Wang Z, Lin Z, et al. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv Mater. 2022;34(13):2110631.

[137]

Zhai P, Xia M, Wu Y, et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat Comm. 2021;12(1):4587.

[138]

Li J, Gu X, Chang J, et al. Molybdenum oxide-iron, cobalt, copper alloy hybrid as efficient bifunctional catalyst for alkali water electrolysis. J Colloid Interface Sci. 2022;606:1662-1672.

[139]

Wang G, Chen Z, Wei W, Ni B. Electrocatalysis-driven sustainable plastic waste upcycling. Electron. 2024;2(2):e34.

[140]

Gao Y, Liu B, Wang D. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv Mater. 2023;35(31):2209654.

[141]

Ling T, Jaroniec M, Qiao S. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv Mater. 2020;32(46):2001866.

[142]

Chen Z, Zheng R, Bao T, et al. Dual-doped nickel sulfide for electro-upgrading polyethylene terephthalate into valuable chemicals and hydrogen fuel. Nano-Micro Lett. 2023;15(1):210.

[143]

Zhang H, Liu Z, Li H, et al. PdFe alloy nanoparticles supported on nitrogen-doped carbon nanotubes for electrocatalytic upcycling of poly(ethylene terephthalate) plastics into formate coupled with hydrogen evolution. J Mater Chem A. 2024;12(26):15984-15995.

[144]

Zhang S, Wu J, Zheng M, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat Comm. 2023;14(1):3634.

[145]

Liao Y, He R, Pan W, et al. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem Eng J. 2023;464:142669.

[146]

Zhang A, Liang Y, Zhang H, Geng Z, Zeng J. Doping regulation in transition metal compounds for electrocatalysis. Chem Soc Rev. 2021;50(17):9817-9844.

[147]

Ma F, Li Z, Hu R, et al. Electrocatalytic waste-treating-waste strategy for concurrently upgrading of polyethylene terephthalate plastic and CO2 into value-added formic acid. ACS Catal. 2023;13(21):14163-14172.

[148]

Mu S, Zhu J. Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv Funct Mater. 2020;30(25):2001097.

[149]

Wang Q, Lei Y, Wang D, Li Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci. 2019;12(6):1730-1750.

[150]

Qin Y, Zhang W, Wang F, et al. Extraordinary p–d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed. 2022;61(16):e202200899.

[151]

Deng K, Lian Z, Wang W, et al. Lattice strain and charge redistribution of Pt cluster/Ir metallene heterostructure for ethylene glycol to glycolic acid conversion coupled with hydrogen production. Small. 2024;20(1):2305000.

[152]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.

[153]

Wang H, Zhang L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43(15):5234-5244.

[154]

Ni S, Qu H, Xu Z, et al. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl Catal B: Environ. 2021;299:120638.

[155]

Zhang H, Wang Y, Li X, et al. Electrocatalytic upcycling of polyethylene terephthalate plastic to formic acid coupled with energy-saving hydrogen production over hierarchical Pd-doped NiTe nanoarrays. Appl Catal B: Environ. 2024;340:123236.

[156]

Wu T, Han M, Xu Z. Size effects of electrocatalysts: more than a variation of surface area. ACS Nano. 2022;16(6):8531-8539.

[157]

Zhu Y, Bu L, Shao Q, Huang X. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020;10(5):3455-3461.

[158]

Voiry D, Shin H, Loh K, Chhowalla M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem. 2018;2(1):0105.

[159]

Mao Q, Deng K, Yu H, et al. In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting. Adv Funct Mater. 2022;32(31):2201081.

[160]

Lv H, Mao Y, Yao H, et al. Ir-doped CuPd single-crystalline mesoporous nanotetrahedrons for ethylene glycol oxidation electrocatalysis: enhanced selective cleavage of C-C bond. Angew Chem Int Ed. 2024;63(15):e202400281.

[161]

Darband G, Aliofkhazraei M, Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renewable Sustainable Energy Rev. 2019;114:109300.

[162]

Li J, Wang L, Wang T, et al. Self-supported molybdenum nickel oxide catalytic electrode designed via molecular cluster-mediated electroplating and electrochemical activation for an efficient and durable oxygen evolution reaction. J Colloid Interface Sci. 2022;628:607-618.

[163]

Darband G, Aliofkhazraei M, Hyun S, Shanmugam S. Pulse electrodeposition of a superhydrophilic and binder-free Ni-Fe-P nanostructure as highly active and durable electrocatalyst for both hydrogen and oxygen evolution reactions. ACS Appl Mater Interfaces. 2020;12(48):53719-53730.

[164]

Darband G, Aliofkhazraei M, Rouhaghdam A, Kiani M. Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Appl Surf Sci. 2019;465:846-862.

[165]

Zhao Z, Duan L, Zhao Y, et al. Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J Am Chem Soc. 2022;144(26):11767-11777.

[166]

Lu Z, Sun M, Xu T, et al. Superaerophobic electrodes for direct hydrazine fuel cells. Adv Mater. 2015;27(14):2361-2366.

[167]

Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv Mater. 2014;26(17):2683-2687.

[168]

Wu Y, Xie Y, Niu S, et al. Accelerating water dissociation kinetics of Ni3N by tuning interfacial orbital coupling. Nano Res. 2021;14(10):3458-3465.

[169]

Ren T, Yu Z, Yu H, et al. Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste. ACS Nano. 2023;17(13):12422-12432.

[170]

Zhuansun M, Wang T, Wang J, Han G, Wang X, Wang Y. Reactors for electro-upgrading carbon dioxide into value-added chemicals. Mater Today Sustain. 2022;19:100185.

[171]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy. 2022;7(2):130-143.

[172]

Chong B, Xia M, Lv Y, et al. Hierarchical phosphorus-oxygen incorporated cobalt sulfide hollow micro/nano-reactor for highly-efficient electrocatalytic overall water splitting. Chem Eng J. 2023;465:142853.

[173]

Weng G, Lei S, Wang R, et al. A high-efficiency electrochemical proton-conducting membrane reactor for ammonia production at intermediate temperatures. Joule. 2023;7(6):1333-1346.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/