Amyloid-based functional materials and their application in flexible sensors

Yage Wu , Jiqing Zhang , Ling Li , Jian Zhao , Peng Yang

Electron ›› 2025, Vol. 3 ›› Issue (1) : e59

PDF
Electron ›› 2025, Vol. 3 ›› Issue (1) : e59 DOI: 10.1002/elt2.59
REVIEW

Amyloid-based functional materials and their application in flexible sensors

Author information +
History +
PDF

Abstract

Flexible electronic devices have garnered increasing attention for their applications in wearable devices, biomedical systems, soft robots, and flexible displays. However, the current sensors face limitations regarding low sensitivity, poor stability, and inadequate adhesion bonding between stimuli‐responsive functional materials and flexible substrates. To overcome these challenges and enable the further development of sensor devices, surface modification of stimuli‐responsive materials with amyloid aggregates has emerged as a promising approach to enhance functionality and create superior multifunctional sensors. This review presents recent research advancements in the flexible sensors based on protein amyloid aggregation. The article begins by explaining the basic principles of protein amyloid aggregation, followed by outlining the process of preparing 1D to 3D amyloid‐based composite materials. Finally, it discusses the utilization of protein amyloid aggregation as a surface modification technique for developing flexible sensors. Based on this foundation, we identify the shortcomings associated with protein amyloid aggregate composites and propose possible solutions to address them. We believe that comprehensive investigations in this area will expedite the development of high-performance flexible sensors with high sensitivity, high structural stability, and strong interface adhesion, especially the implantable flexible sensors for health monitoring.

Keywords

amyloid / composite coating / flexible sensors / protein aggregation / surface modification

Cite this article

Download citation ▾
Yage Wu, Jiqing Zhang, Ling Li, Jian Zhao, Peng Yang. Amyloid-based functional materials and their application in flexible sensors. Electron, 2025, 3(1): e59 DOI:10.1002/elt2.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sanchez C, Belleville P, Popalld M, Nicole L. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40(2):696-753.

[2]

Shi C, Zou Z, Lei Z, Zhu P, Zhang W, Xiao J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci Adv. 2020;6(45):eabd0202.

[3]

Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev. 2022;122(3):3259-3291.

[4]

Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv. 2021;7(3):eabe3778.

[5]

Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv. 2017;3(5):e1700015.

[6]

Kim J, Kim M, Lee MS, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun. 2017;8(1):14997.

[7]

Luo Y, Abidian M, Ahn JH, et al. Technology roadmap for flexible sensors. ACS Nano. 2023;17(6):5211-5295.

[8]

Jin H, Jin Q, Jian J, Dyson JM, Cheng W. Soft wearable healthcare materials and devices. Adv Healthcare Mater. 2021;10(17):2100577.

[9]

Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, soft, wearable wensors. Adv Mater. 2020;32(18):1904664.

[10]

Jin H, Abu-Raya YS, Haick H. Advanced materials for health monitoring with skin-based wearable devices. Adv Healthcare Mater. 2017;6(11):1700024.

[11]

La T, Le L. Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv Mater Technol. 2022;7(3):2100798.

[12]

Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater. 2016;28(22):4373-4395.

[13]

Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small. 2017;13(25):1602790.

[14]

Wang C, Huang Z, Xu S. Materials and structures toward soft electronics. Adv Mater. 2018;30(50):1801368.

[15]

Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540(7633):379-385.

[16]

Amjadi M, Kyung K, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater. 2016;26(11):1678-1698.

[17]

Choi DY, Kim MH, Oh YS, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces. 2017;9(2):1770-1780.

[18]

Ishimaru S, Kunze K, Kise K, et al. In the blink of an eye: combining head motion and eye blink frequency for activity recognition with Google Glass. Proceedings of the 5th Augmented Human International Conference. 2014;15:1-4.

[19]

Tien NT, Jeon S, Kim D, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater. 2014;26(5):796-804.

[20]

Chen Y, Lu B, Chen Y, Feng X. Breathable and stretchable temperature sensors inspired by skin. Sci Rep. 2015;5(1):11505.

[21]

Han Z, Cheng Z, Chen Y, et al. Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. Nanoscale. 2019;11(13):5942-5950.

[22]

Chen G, Matsuhisa N, Liu Z, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater. 2018;30(21):1800129.

[23]

Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for digital healthcare. Adv Mater. 2019;32(15):1902062.

[24]

Chen Y, Lu S, Zhang S, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv. 2017;3(12):e1701629.

[25]

Pang C, Lee G, Kim T, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat Mater. 2012;11(9):795-801.

[26]

Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5(1):15-22.

[27]

Kim D, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9(6):511-517.

[28]

Hauser CAE, Maurer-Stroh S, Martins IC. Amyloid-based nanosensors and nanodevices. Chem Soc Rev. 2014;43(15):5326-5345.

[29]

Fu C, Wang Z, Zhou X, Hu B, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev. 2024;53(3):1514-1551.

[30]

Zhao J, Yang P. Amyloid-mediated fabrication of organic–inorganic hybrid materials and their biomedical applications. Adv Mater Interfac. 2020;7(19):2001060.

[31]

Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater. 2014;24(29):4666-4670.

[32]

Wang X, Zhang S, Zhang J, et al. Rational design of functional amyloid fibrillar assemblies. Chem Soc Rev. 2023;52(14):4603-4631.

[33]

Liu Y, Tao F, Miao S, Yang P. Controlling the structure and function of protein thin films through amyloid-like aggregation. Acc Chem Res. 2021;54(15):3016-3027.

[34]

Han Q, Tao F, Yang P. Amyloid-like assembly to form film at interfaces: structural transformation and application. Macromol Biosci. 2023;23(11):2300172.

[35]

Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature. 2016;539(7628):227-235.

[36]

Zhong C, Gurry T, Cheng AA, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotechnol. 2014;9(10):858-866.

[37]

Zhang L, Li N, Gao F, Hou L, Xu Z. Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc. 2012;134(28):11326-11329.

[38]

Ha Y, Yang J, Tao F, et al. Phase-transited lysozyme as a universal route to bioactive hydroxyapatite crystalline film. Adv Funct Mater. 2017;28(4):1704476.

[39]

Li C, Lu D, Deng J, Zhang X, Yang P. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv Mater. 2019;31(46):1903973.

[40]

Nyström G, Fernández-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R. Amyloid templated gold aerogels. Adv Mater. 2016;28(3):472-478.

[41]

Knowles TP, Mezzenga R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater. 2016;28(31):6546-6561.

[42]

Jsipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21(4):221-224.

[43]

Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884-890.

[44]

Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75(1):333-366.

[45]

Aguzzi A, Haass C. Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science. 2003;302(5646):814-818.

[46]

Adamcik J, Mezzenga R. Amyloid polymorphism in the protein folding and aggregation energy landscape. Angew Chem Int Ed Engl. 2018;57(28):8370-8382.

[47]

Fitzpatrick AW, Debelouchina GT, Bayro MJ, et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci USA. 2013;110(14):5468-5473.

[48]

Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science. 2008;319(5869):1523-1526.

[49]

Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447(7143):453-457.

[50]

Wang XY, Meng FG, Zhou HM. The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem Cell Biol. 2004;82(2):329-334.

[51]

Uversky VN. Proteins without unique 3D structures: biotechnological applications of ntrinsically unstable/disordered proteins. Biotechnol J. 2015;10(3):356-366.

[52]

Barlow DE, Dickinson GH, Orihuela B, Kulp JL, III, Rittschof D, Wahl KJ. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. Langmuir. 2010;26(9):6549-6556.

[53]

Nakano M, Kamino K. Amyloid-like conformation and interaction for the self-assembly in barnacle underwater cement. Biochemistry. 2015;54(3):826-835.

[54]

Cao Y, Mezzenga R. Food protein amyloid fibrils: origin, structure, formation, characterization, applications and health implications. Adv Colloid Interface Sci. 2019;269:334-356.

[55]

Bartolini M, Andrisano V. Strategies for the inhibition of protein aggregation in human diseases. Chembiochem. 2010;11(8):1018-1035.

[56]

McLean CA, Cherny RA, Fraser FW, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46(6):860-866.

[57]

Pepys MB, Hawkins PN, Booth DR, et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993;362(6420):553-557.

[58]

Holm NK, Jespersen SK, Thomassen LV, et al. Aggregation and fibrillation of bovine serum albumin. Biochim Biophys Acta. 2007;1774(9):1128-1138.

[59]

Manno M, Craparo EF, Podestà A, et al. Kinetics of different processes in human insulin amyloid formation. J Mol Biol. 2007;366(1):258-274.

[60]

Hamada D, Dobson CM. A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 2002;11(10):2417-2426.

[61]

Goda S, Takano K, Yamagata Y, et al. Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Sci. 2000;9(2):369-375.

[62]

Vernaglia BA, Huang J, Clark ED. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules. 2004;5(4):1362-1370.

[63]

Yang P. Direct biomolecule binding on nonfouling surfaces via newly discovered supramolecular self-assembly of lysozyme under physiological conditions. Macromol Biosci. 2012;12(8):1053-1059.

[64]

Li C, Xu L, Zuo YY, Yang P. Tuning protein assembly pathways through superfast amyloid-like aggregation. Biomater Sci. 2018;6(4):836-841.

[65]

Wang D, Ha Y, Gu J, Li Q, Zhang L, Yang P. 2D protein supramolecular nanofilm with exceptionally large area and emergent functions. Adv Mater. 2016;28(34):7414-7423.

[66]

Gu J, Miao S, Yan Z, Yang P. Multiplex binding of amyloid-like protein nanofilm to different material surfaces. Colloids Interface Sci Commun. 2018;22:42-48.

[67]

Petrone L. Molecular surface chemistry in marine bioadhesion. Adv Colloid Interface Sci. 2013;195-196:1-18.

[68]

Xu Y, Liu Y, Hu X, et al. The synthesis of a 2D ultra-large protein supramolecular nanofilm by chemoselective thiol-disulfide exchange and its emergent functions. Angew Chem Int Ed Engl. 2020;59(7):2850-2859.

[69]

Hu X, Tian J, Li C, et al. Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling. Adv Mater. 2020;32(23):2000128.

[70]

Chen M, Yang F, Chen X, et al. Crack suppression in conductive film by amyloid-like protein aggregation toward flexible device. Adv Mater. 2021;33(44):2104187.

[71]

Zhao J, Li Q, Miao B, Pi H, Yang P. Controlling long-distance photoactuation with protein additives. Small. 2020;16(18):2000043.

[72]

Ju L, Tian J, Gao Y, et al. All-natural superhydrophobic coating for packaging and blood-repelling materials. Chem Eng J. 2021;410:128347.

[73]

Zhu M, Gan M, Pan J, Tu J, Wang X, Gu C. Polydopamine/silane composite coating on electrolytic copper foil as epoxy adhesion promoter and corrosion inhibitor. J Electron. 2023;52(12):8160-8174.

[74]

Inoue A, Yuk H, Lu B, Zhao X. Strong adhesion of wet conducting polymers on diverse substrates. Sci Adv. 2020;6(12):eaay5394.

[75]

Zhang W, Yang F, Pan Z, Zhang J, Zhao B. Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity. Macromol Rapid Commun. 2014;35(3):350-354.

[76]

Milanesi L, Sheynis T, Xue W, et al. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc Natl Acad Sci USA. 2012;109(50):20455-20460.

[77]

Knowles T, Fitzpatrick A, Meehan S, et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science. 2007;318(5858):1900-1903.

[78]

Smith J, Knowles T, Dobson C, MacPhee CE, Welland ME. Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA. 2006;103(43):15806-15811.

[79]

Xu Z, Paparcone R, Buehler M. Alzheimer’s Aβ(1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J. 2010;98(10):2053-2062.

[80]

Keller AA, Wang H, Zhou D, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol. 2010;44(6):1962-1967.

[81]

Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci. 2013;38(8):1232-1261.

[82]

Miao P, Tang Y, Wang L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl Mater Interfaces. 2017;9(4):3940-3947.

[83]

Hou L, Niu Y, Wang Y, et al. Controlled synthesis of Pt–Pd nanoparticle chains with high electrocatalytic activity based on insulin amyloid fibrils. Nano. 2016;11(6):1650063.

[84]

Bolisetty S, Vallooran JJ, Adamcik J, Mezzenga R. Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters. ACS Nano. 2013;7(7):6146-6155.

[85]

Pazos E, Sleep E, Rubert Pérez CM, et al. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc. 2016;138(17):5507-5510.

[86]

Lee D, Choe YJ, Choi YS, et al. Photoconductivity of pea-pod-type chains of gold nanoparticles encapsulated within dielectric amyloid protein nanofibrils of α-synuclein. Angew Chem Int Ed Engl. 2011;50(6):1332-1337.

[87]

Lutz-Bueno V, Bolisetty S, Azzari P, Handschin S, Mezzenga R. Self-winding gelatin-amyloid wires for soft actuators and sensors. Adv Mater. 2020;32(48):2004941.

[88]

Zhang Q, Bolisetty S, Cao Y, et al. Selective and efficient removal of fluoride from water: in situ engineered amyloid fibril/ZrO2 hybrid membranes. Angew Chem Int Ed Engl. 2019;58(18):6012-6016.

[89]

Bolisetty S, Mezzenga R. Amyloid-carbon hybrid membranes for universal water purification. Nat Nanotechnol. 2016;11(4):365-371.

[90]

Bolisetty S, Arcari M, Adamcik J, Mezzenga R. Hybrid amyloid membranes for continuous flow catalysis. Langmuir. 2015;31(51):13867-13873.

[91]

Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M, Mezzenga R. Amyloid-hydroxyapatite bone biomimetic composites. Adv Mater. 2014;26(20):3207-3212.

[92]

Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Adv Mater. 2013;25(27):3694-3700.

[93]

Li C, Adamcik J, Mezzenga R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol. 2012;7:421-427.

[94]

Ling S, Li C, Adamcik J, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett. 2014;3(2):146-152.

[95]

Zhou J, Saha A, Adamcik J, et al. Macroscopic single-crystal gold microflakes and their devices. Adv Mater. 2015;27(11):1945-1950.

[96]

Wu X, Han X, Lv L, Li M, You J, Li C. Supramolecular proteinaceous biofilms as trapping sponges for biologic water treatment and durable catalysis. J Colloid Interface Sci. 2018;527:117-123.

[97]

Yan J, Pan Y, Cheetham AG, et al. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles. Langmuir. 2013;29(52):16051-16057.

[98]

Pan YX, Cong HP, Men YL, et al. Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano. 2015;9(11):11258-11265.

[99]

Gao A, Wu Q, Wang D, Ha Y, Chen Z, Yang P. A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization. Adv Mater. 2016;28(3):579-587.

[100]

Yang P, Sun W, Hu S, Chen Z. Self-assembly of nanoparticles at interfaces. Prog Chem. 2014;26(7):1107-1119.

[101]

Qin R, Liu Y, Tao F, Li C, Cao W, Yang P. Protein-bound freestanding 2D metal film for stealth information transmission. Adv Mater. 2019;31(5):1803377.

[102]

Miao B, Wang Y, Liu Y, et al. An interfacial-assembled self-supporting nanofilm induced by strong intermolecular interaction between silk fibroin and lysozyme. Adv Funct Mater. 2024;34(16):2312324.

[103]

Wang D, Zhou X, Song R, et al. Self-adhesive protein/polypyrrole hybrid film for flexible electronic sensors in physiological signal monitoring. Int J Biol Macromol. 2021;181:160-168.

[104]

Qin R, Guo Y, Ren H, et al. Instant adhesion of amyloid-like nanofilms with wet surfaces. ACS Cent Sci. 2022;8(6):705-717.

[105]

Yao X, Chen L, Ju J, et al. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv Mater. 2016;28(34):7383-7389.

[106]

Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev. 2021;8(2):nwaa254.

[107]

Nyström G, Fong WK, Mezzenga R. Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules. 2017;18(9):2858-2865.

[108]

Das S, Kumar R, Jha NN, Maji SK. Controlled exposure of bioactive growth factor in 3D amyloid hydrogel for stem cells differentiation. Adv Healthcare Mater. 2017;6(18).

[109]

Shen Y, Nyström G, Mezzenga R. Amyloid fibrils form hybrid colloidal gels and aerogels with dispersed CaCO3 nanoparticles. Adv Funct Mater. 2017;27(45):1700897.

[110]

Adhikari B, Banerjee A. Short peptide based hydrogels: incorporation of graphene into the hydrogel. Soft Matter. 2011;7(19):9259-9266.

[111]

Bian Q, Fu L, Li H. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat Commun. 2022;13:137.

[112]

Han Y, Cao Y, Bolisetty S, et al. Amyloid fibril-templated high-performance conductive aerogels with sensing properties. Small. 2020;16(45):2004932.

[113]

Kistler SS. Coherent expanded-aerogels. J Phys Chem. 1932;36(1):52-64.

[114]

Peydayesh M, Boschi E, Donat F, Mezzenga R. Gold recovery from e-waste by food-waste amyloid aerogels. Adv Mater. 2024;36(19):2310642.

[115]

Cao Y, Bolisetty S, Wolfisberg G, Adamcik J, Mezzenga R. Amyloid fibril-directed synthesis of silica core-shell nanofilaments, gels, and aerogels. Proc Natl Acad Sci USA. 2019;116(10):4012-4017.

[116]

Li K, Zhang Z, Li D, et al. Biomimetic ultralight, highly porous, shape-adjustable, and biocompatible 3D graphene minerals via incorporation of self-assembled peptide nanosheets. Adv Funct Mater. 2018;28(29):1801056.

[117]

Tang Z, He H, Zhu L, et al. A general protein unfolding-chemical coupling strategy for pure protein hydrogels with mechanically strong and multifunctional properties. Adv Sci. 2022;9(5):2102557.

[118]

Lee S, Lee D, Hong CS, et al. Alternative assembly of α-synuclein leading to protein film formation and its application for developing polydiacetylene-based sensing materials. Langmuir. 2019;35(36):11923-11931.

[119]

Han Y, Cao Y, Zhou J, et al. Interfacial electrostatic self-assembly of amyloid fibrils into multifunctional protein films. Adv Sci. 2023;10(9):2206867.

[120]

Alam I, Lertanantawong B, Prongmanee W, et al. Investigating lysozyme amyloid fibrillization by electrochemical impedance spectroscopy for application in lysozyme sensor. J Electroanal Chem. 2021;901:115799.

[121]

Lee SW, Lee W, Kim I, et al. Bio-inspired electronic textile yarn-based NO2 sensor using amyloid-graphene composite. ACS Sens. 2021;6(3):777-785.

[122]

Koh D, Wang A, Schneider P, Bosinski B. Introduction of a chemical-free metal PDMS thermal bonding for fabrication of flexible electrode by metal transfer onto PDMS. Micromachines. 2017;8(9):280.

[123]

Xia W, Wang L, Yu Y, Wu Z, Chen H. Transparent ionic conductive elastomers with high mechanical strength and strong tensile properties for strain sensors. Soft Matter. 2023;19(21):3925-3932.

[124]

Ke F, Zhang Q, Ji L, et al. Electrostatic adhesion of polyaniline on carboxylated polyacrylonitrile fabric for high-performance wearable ammonia sensor. Compos Commun. 2021;27:100817.

[125]

Zhang W, Piao S, Lin L, et al. Wearable and antibacterial HPMC-anchored conductive polymer composite strain sensor with high gauge factors under small strains. Chem Eng J. 2022;435(pt 2):135068.

[126]

Sankar V, Nambi A, Bhat V, et al. Waterproof flexible polymer-functionalized graphene-based piezoresistive strain sensor for structural health monitoring and wearable devices. ACS Omega. 2020;5(22):12682-12691.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/