Perspective on eutectic electrolytes for next-generation batteries

Jiajie Zhang , Yonghui Zhang , Jie Fu , Xianfeng Li , Changkun Zhang

Electron ›› 2024, Vol. 2 ›› Issue (3) : e57

PDF
Electron ›› 2024, Vol. 2 ›› Issue (3) : e57 DOI: 10.1002/elt2.57
REVIEW ARTICLE

Perspective on eutectic electrolytes for next-generation batteries

Author information +
History +
PDF

Abstract

The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.

Keywords

electrochemical energy storage / eutectic electrolytes / flow batteries / metal-based batteries

Cite this article

Download citation ▾
Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang. Perspective on eutectic electrolytes for next-generation batteries. Electron, 2024, 2(3): e57 DOI:10.1002/elt2.57

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meier PJ, Wilson PPH, Kulcinski GL, Denholm PL. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives. Energy Pol. 2005;33(9):1099-1108.

[2]

Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4(3):180-186.

[3]

Yang Z, Zhang J, Kintner-Meyer MCW, et al. Electrochemical energy storage for green grid. Chem Rev. 2011;111(5):3577-3613.

[4]

Zhang H, Lu W, Li X. Progress and perspectives of flow battery technologies. Electrochem Energy Rev. 2019;2(3):492-506.

[5]

Fan C, Yang H, Zhu Q. Preparation and electrochemical properties of high purity mixed-acid electrolytes for high energy density vanadium redox flow battery. Int J Electrochem Sci. 2017;12(8):7728-7738.

[6]

Makarov YV, Loutan C, Jian M, de Mello P. Operational impacts of wind generation on California power systems. IEEE Trans Power Syst. 2009;24(2):1039-1050.

[7]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009;22(3):587-603.

[8]

Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev. 2020;120(14):6783-6819.

[9]

Wang M, Li T, Yin Y, Yan J, Zhang H, Li X. A -60°C low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv Energy Mater. 2022;12(25):2200728.

[10]

Wagle DV, Zhao H, Baker GA. Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res. 2014;47(8):2299-2308.

[11]

Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350(6263):938-943.

[12]

Ko S, Yamada Y, Miyazaki K, et al. Lithium-salt monohydrate melt: a stable electrolyte for aqueous lithium-ion batteries. Electrochem Commun. 2019;104:106488.

[13]

Suo L, Borodin O, Sun W, et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew Chem Int Ed. 2016;55(25):7136-7141.

[14]

Shang Y, Chen N, Li Y, et al. An “ether-in-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv Mater. 2020;32(40):2004017.

[15]

Jaumaux P, Yang X, Zhang B, et al. Localized water-in-salt electrolyte for aqueous lithium-ion batteries. Angew Chem Int Ed. 2021;60(36):19965-19973.

[16]

Cao X, Jia H, Xu W, Zhang JG. Review—localized high-concentration electrolytes for lithium batteries. J Electrochem Soc. 2021;168(1):010522.

[17]

Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res. 2019;52(3):686-694.

[18]

Cabañero Martínez MA, Boaretto N, Naylor AJ, et al. Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv Energy Mater. 2022;12(32):2201264.

[19]

Qiu B, Xu F, Qiu J, et al. Electrode-electrolyte interface mediation via molecular anchoring for 4.7 V quasi-solid-state lithium metal batteries. Energy Storage Mater. 2023;60:102832.

[20]

Xu H, Sun C, Zhang S, et al. Rigid-tough coupling of the solid electrolyte interphase towards long-life lithium metal batteries. ChemSusChem. 2023;16(11):e202202334.

[21]

Xu H, Zhang J, Zhang H, Long J, Xu L, Mai L. In situ topological interphases boosting stable solid-state lithium metal batteries. Adv Energy Mater. 2023;13(21):2204411.

[22]

Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941-951.

[23]

Liang J, Li X, Kim JT, et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries. Angew Chem Int Ed. 2023;62(13):e202217081.

[24]

Matsumoto K, Hwang J, Kaushik S, Chen CY, Hagiwara R. Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ Sci. 2019;12(11):3247-3287.

[25]

Wang C, Meng C, Li S, Zhang G, Ning Y, Fu Q. In situ visualization of atmosphere-dependent relaxation and failure in energy storage electrodes. J Am Chem Soc. 2021;143(42):17843-17850.

[26]

Deetlefs M, Seddon KR. Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem. 2010;12(1):17-30.

[27]

Zhang C, Zhang L, Yu G. Eutectic electrolytes as a promising platform for next-generation electrochemical energy storage. Acc Chem Res. 2020;53(8):1648-1659.

[28]

Geng L, Meng J, Wang X, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew Chem Int Ed. 2022;61(31):e202206717.

[29]

Samanta P, Ghosh S, Kundu A, et al. Monitoring the cation coordination sphere using hydrated eutectic electrolyte for better cyclic stability and high energy density Zn-ion battery. ACS Sustain Chem Eng. 2023;11(14):5495-5505.

[30]

Yang W, Du X, Zhao J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule. 2020;4(7):1557-1574.

[31]

Zhou A, Liu Y, Zhu X, et al. TiO2 (B) anode for high-voltage aqueous Li-ion batteries. Energy Storage Mater. 2021;42:438-444.

[32]

Xie J, Liang Z, Lu YC. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater. 2020;19(9):1006-1011.

[33]

Lee W, Park G, Chang D, Kwon Y. The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple. Kor J Chem Eng. 2020;37(12):2326-2333.

[34]

Ponce de León C, Frías-Ferrer A, González-García J, Szánto D, Walsh F. Redox flow cells for energy conversion. J Power Sources. 2006;160(1):716-732.

[35]

Zhao Y, Ding Y, Li Y, et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem Soc Rev. 2015;44(22):7968-7996.

[36]

Zhao Y, Ding Y, Song J, et al. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. Angew Chem Int Ed. 2014;53(41):11036-11040.

[37]

Zhang C, Chen H, Qian Y, Dai G, Zhao Y, Yu G. General design methodology for organic eutectic electrolytes toward high-energy-density redox flow batteries. Adv Mater. 2021;33(15):2008560.

[38]

Zhang L, Ding Y, Zhang C, et al. Enabling graphene-oxide-based membranes for large-scale energy storage by controlling hydrophilic microstructures. Chem. 2018;4(5):1035-1046.

[39]

Meng P, Yang Z, Zhang J, et al. Electrolyte design for rechargeable aluminum-ion batteries: recent advances and challenges. Energy Storage Mater. 2023;63:102953.

[40]

Chu W, Zhang X, Zhao S, et al. High-voltage deep eutectic solvent electrolyte with fluorine-substituted acetamide additive for aluminum-ion battery. Adv Funct Mater. 2023;34(3):2305194.

[41]

Angell M, Pan C.-J, Rong Y, et al. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. P Nat Acad Sci. 2017;114(5):834-839.

[42]

Lin MC, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520(7547):324-328.

[43]

Hu E, Jia BE, Zhu Q, et al. Engineering high voltage aqueous aluminum-ion batteries. Small. 2024;2024:2309252.

[44]

Zhang C, Ding Y, Zhang L, et al. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angew Chem Int Ed. 2017;56(26):7454-7459.

[45]

Wang Y, Niu Z, Zheng Q, et al. Zn-based eutectic mixture as anolyte for hybrid redox flow batteries. Sci Rep. 2018;8(1):5740.

[46]

Takechi K, Kato Y, Hase Y. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries. Adv Mater. 2015;27(15):2501-2506.

[47]

Zhang C, Niu Z, Ding Y, et al. Highly concentrated phthalimide-based anolytes for organic redox flow batteries with enhanced reversibility. Chem. 2018;4(12):2814-2825.

[48]

Angell M, Zhu G, Lin MC, Rong Y, Dai H. Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries. Adv Funct Mater. 2020;30(4):1901928.

[49]

Zhang L, Zhang C, Ding Y, Ramirez-Meyers K, Yu G. A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents. Joule. 2017;1(3):623-633.

[50]

Wang Y, Zhou H. A green and cost-effective rechargeable battery with high energy density based on a deep eutectic catholyte. Energy Environ Sci. 2016;9(7):2267-2272.

[51]

Abbott AP, Barron JC, Ryder KS, Wilson D. Eutectic-based ionic liquids with metal-containing anions and cations. Chem Eur J. 2007;13(22):6495-6501.

[52]

Ding Y, Zhang C, Zhang L, Zhou Y, Yu G. Molecular engineering of organic electroactive materials for redox flow batteries. Chem Soc Rev. 2018;47(1):69-103.

[53]

Ding Y, Yu G. The promise of environmentally benign redox flow batteries by molecular engineering. Angew Chem Int Ed. 2017;56(30):8614-8616.

[54]

Pedraza E, de la Cruz C, Mavrandonakis A, et al. Unprecedented aqueous solubility of TEMPO and its application as high capacity catholyte for aqueous organic redox flow batteries. Adv Energy Mater. 2023;13(39):2301929.

[55]

Brouillette D, Irish DE, Taylor NJ, Perron G, Odziemkowski M, Desnoyers JE. Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: phase diagrams, crystallography and Raman spectroscopy. Phys Chem Chem Phys. 2002;4(24):6063-6071.

[56]

Zhang C, Qian Y, Ding Y, et al. Biredox eutectic electrolytes derived from organic redox-active molecules: high-energy storage systems. Angew Chem Int Ed. 2019;58(21):7045-7050.

[57]

Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513-537.

[58]

Zhu Z, Kushima A, Yin Z, et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat Energy. 2016;1(8):16111.

[59]

Hou Q, Li P, Qi Y, et al. Temperature-responsive solvation of deep eutectic electrolyte enabling mesocarbon microbead anode for high-temperature Li-ion batteries. ACS Energy Lett. 2023;8(9):3649-3657.

[60]

Jiang P, Chen L, Shao H, et al. Methylsulfonylmethane-based deep eutectic solvent as a new type of green electrolyte for a high-energy-density aqueous lithium-ion battery. ACS Energy Lett. 2019;4(6):1419-1426.

[61]

Zhou L, Tian S, Du X, et al. Suppressing hydrogen evolution in aqueous lithium-ion batteries with double-site hydrogen bonding. ACS Energy Lett. 2023;8(1):40-47.

[62]

Hu Y. Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochem Commun. 2004;6(1):28-32.

[63]

Boisset A, Jacquemin J, Anouti M. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochim Acta. 2013;102:120-126.

[64]

Fang M, Yue X, Dong Y, Chen Y, Liang Z. A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium metal batteries. Joule. 2024;8(1):91-103.

[65]

Phan AL, Jayawardana C, Le PML, et al. Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries. Adv Funct Mater. 2023;33(34):2301177.

[66]

Nian Q, Zhang X, Feng Y, et al. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 2021;6(6):2174-2180.

[67]

Lin R, Ke C, Chen J, Liu S, Wang J. Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule. 2022;6(2):399-417.

[68]

Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater. 2020;32(8):3405-3413.

[69]

Liang Y, Wu W, Li D, et al. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte. Adv Energy Mater. 2022;12(47):2202493.

[70]

Nishioka K, Saito M, Ono M, Matsuda S, Nakanishi S. N, N-dimethylethanesulfonamide as an electrolyte solvent stable for the positive electrode reaction of aprotic Li–O2 batteries. ACS Appl Energy Mater. 2022;5(4):4404-4412.

[71]

Li C.-L, Huang G, Yu Y, Xiong Q, Yan JM, Zhang XB. A low-volatile and durable deep eutectic electrolyte for high-performance lithium–oxygen battery. J Am Chem Soc. 2022;144(13):5827-5833.

[72]

Han D, Sun T, Zhang R, et al. Eutectic electrolytes with doubly-bound water for high-stability zinc anodes. Adv Funct Mater. 2022;32(52):2209065.

[73]

Deng W, Deng Z, Chen Y, Feng R, Wang X. Competitive coordination structure regulation in deep eutectic electrolyte for stable zinc batteries. Angew Chem Int Ed. 2024;63(8):e202316499.

[74]

Yang Y, Liang S, Lu B, Zhou J. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ Sci. 2022;15(3):1192-1200.

[75]

Zhao J, Zhang J, Yang W, et al. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy. 2019;57:625-634.

[76]

Li C, Kingsbury R, Thind AS, et al. Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat Commun. 2023;14(1):3067.

[77]

Li W, Kong W, Liu W, et al. Ternary eutectic electrolytes attune the electrode/electrolyte interphase layer toward long-life zinc ion batteries. Energy Storage Mater. 2024;65:103103.

[78]

Abood HMA, Abbott AP, Ballantyne AD, Ryder KS. Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+AlCl4- and comparison with imidazolium based systems. Chem Commun. 2011;47(12):3523-3525.

[79]

Fang Y, Yoshii K, Jiang X, et al. An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum. Electrochim Acta. 2015;160:82-88.

[80]

Zhu Y, Guo X, Lei Y, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries. Energy Environ Sci. 2022;15(3):1282-1292.

[81]

Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys. 2013;15(46):20054-20063.

[82]

Xu J, Ji X, Zhang J, et al. Aqueous electrolyte design for super-stable 2.5 V LiMN2O4 || Li4Ti5O12 pouch cells. Nat Energy. 2022;7(2):186-193.

[83]

Hou Z, Dong M, Xiong Y, Zhang X, Zhu Y, Qian Y. Formation of solid–electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv Energy Mater. 2020;10(15):1903665.

[84]

Chen J, Vatamanu J, Xing L, et al. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv Energy Mater. 2020;10(3):1902654.

[85]

Cao X, Ren X, Zou L, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy. 2019;4(9):796-805.

[86]

Cha J, Han J.-G, Hwang J, Cho J, Choi NS. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J Power Sources. 2017;357:97-106.

[87]

Huang S, Wang S, Hu G, Cheong LZ, Shen C. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives. Appl Surf Sci. 2018;441:265-271.

[88]

Dubouis N, Lemaire P, Mirvaux B, Salager E, Deschamps M, Grimaud A. The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes. Energy Environ Sci. 2018;11(12):3491-3499.

[89]

Nian Q, Wang J, Liu S, et al. Aqueous batteries operated at -50°C. Angew Chem Int Ed. 2019;58(47):16994-16999.

[90]

Zhang Q, Pan J, Lu P, et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 2016;16(3):2011-2016.

[91]

Liu C, Xie X, Lu B, Zhou J, Liang S. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021;6(3):1015-1033.

[92]

Yang C, Chen J, Qing T, et al. 4.0 V aqueous Li-ion batteries. Joule. 2017;1(1):122-132.

[93]

Jiao S, Ren X, Cao R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy. 2018;3(9):739-746.

[94]

Lukatskaya MR, Feldblyum JI, Mackanic DG, et al. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci. 2018;11(10):2876-2883.

[95]

Qu Q, Fu L, Zhan X, et al. Porous LiMN2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci. 2011;4(10):3985-3990.

[96]

Qu K, Lu X, Jiang N, et al. Eutectic electrolytes convoying low-temperature metal-ion batteries. ACS Energy Lett. 2024;9(3):1192-1209.

[97]

Hao J, Yuan L, Zhu Y, et al. Low-cost and non-flammable eutectic electrolytes for advanced Zn-I2 batteries. Angew Chem Int Ed. 2023;62(39):e202310284.

[98]

Zhou T, Gao G. Pre-intercalation strategy in vanadium oxides cathodes for aqueous zinc ion batteries: review and prospects. J Energy Storage. 2024;84:110808.

[99]

Mink J, Németh C, Hajba L, Sandström M, Goggin P. Infrared and Raman spectroscopic and theoretical studies of hexaaqua metal ions in aqueous solution. J Mol Struct. 2003;661-662:141-151.

[100]

Tian H, Zhang S, Meng Z, He W, Han WQ. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017;2(5):1170-1176.

[101]

Sun C, Shi X, Zhang Y, Liang J, Qu J, Lai C. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano. 2020;14(1):1176-1184.

[102]

Xu C, Diemant T, Liu X, Passerini S. Locally concentrated deep eutectic liquids electrolytes for low-polarization aluminum metal batteries. Adv Mater. 2024;36(24):2400263.

[103]

Hong H, Zhu J, Wang Y, et al. Metal-free eutectic electrolyte with weak hydrogen bonds for high-rate and ultra-stable ammonium-ion batteries. Adv Mater. 2024;36(6):2308210.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

1026

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/