Directing the photogenerated charge flow in a photocathodic metal protection system with single-domain ferroelectric PbTiO3 nanoplates

Hui Xie , Jianyou Yu , Yuchen Fang , Zhijun Wang , Shihe Yang , Zheng Xing

Electron ›› 2024, Vol. 2 ›› Issue (3) : e51

PDF
Electron ›› 2024, Vol. 2 ›› Issue (3) : e51 DOI: 10.1002/elt2.51
RESEARCH ARTICLE

Directing the photogenerated charge flow in a photocathodic metal protection system with single-domain ferroelectric PbTiO3 nanoplates

Author information +
History +
PDF

Abstract

Photocathodic protection (PCP) is arguably an ideal alternative technology to the conventional electrochemical cathodic protection methods for corrosion mitigation of metallic infrastructure due to its eco-friendliness and low-energy-consumption, but the construction of highlyefficient PCP systems still remains challenging, caused primarily by the lack of driving force to guide the charge flow through the whole PCP photoanodes. Here, we tackle this key issue by equipping the PCP photoanode with ferroelectric single-domain PbTiO3 nanoplates, which can form a directional “macroscopic electric field” throughout the entire photoanode controllable by external polarization. The properly poled PCP photoanode allows the photogenerated electrons and holes to migrate in opposite directions, that is, electrons to the protected metal and holes to the photoanode/electrolyte interface, leading to largely suppressed charge annihilation and consequently a considerable boost in the overall solar energy conversion efficiency of the PCP system. The as-fabricated photoanode can not only supply sufficient photocurrent to 304 stainless steel to initiate cathodic protection, but also shift the metal potential to the corrosion-free range. Our findings provide a viable design strategy for future high-performance PCP systems based on ferroelectric nanomaterials with enhanced charge flow manipulation.

Keywords

charge separation / energy conversion / ferroelectric materials / photocathodic metal protection / semiconductors

Cite this article

Download citation ▾
Hui Xie, Jianyou Yu, Yuchen Fang, Zhijun Wang, Shihe Yang, Zheng Xing. Directing the photogenerated charge flow in a photocathodic metal protection system with single-domain ferroelectric PbTiO3 nanoplates. Electron, 2024, 2(3): e51 DOI:10.1002/elt2.51

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang S, Feng H, Li H, et al. Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour. Nat Commun. 2023;14(1):7869.

[2]

Xu X, Lu Y, Shi J, et al. Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution. Nat Commun. 2023;14(1):7708.

[3]

Xing Z, Wang ZJ, Yang S. Capturing solar energy for cathodic protection of metals: the life of photoexcited charge carriers. Adv Energy Sustain Res. 2022;3(12):2200134.

[4]

Xie H, Amirav L, Xing Z. Modular design of solar-powered photocathodic metal protection device. Carbon Neutr. 2023;2(1):29.

[5]

Feng C, Chen Z, Jing J, et al. A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corros Sci. 2020;166:108441.

[6]

Feng M, Liu Y, Zhang S, Liu YP, Luo N, Wang D. Carbon quantum dots (CQDs) modified TiO2 nanorods photo-electrode for enhanced photocathodic protection of Q235 carbon steel. Corros Sci. 2020;176:108919.

[7]

Guan ZC, Wang HP, Wang X, Hu J, Du RG. Fabrication of heterostructured β-Bi2O3-TiO2 nanotube array composite film for photoelectrochemical cathodic protection applications. Corros Sci. 2018;136:60-69.

[8]

Jiang X, Sun M, Chen Z, Jing J, Feng C. High-efficiency photoelectrochemical cathodic protection performance of the TiO2/AgInSe2/IN2Se3 multijunction nanosheet array. Corros Sci. 2020;176:108901.

[9]

Wang C, Gao W, Liu N, et al. Covalent organic framework decorated TiO2 nanotube arrays for photoelectrochemical cathodic protection of steel. Corros Sci. 2020;176:108920.

[10]

Wang X, Guan ZC, Jin P, et al. Facile fabrication of BiVO4 modified TiO2 nanotube film photoanode and its photo-cathodic protection effect on stainless steel. Corros Sci. 2019;157:247-255.

[11]

Butler KT, Frost JM, Walsh A. Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ Sci. 2015;8(3):838-848.

[12]

Liu Y, Zhang M, Wang Z, et al. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts. Nat Commun. 2022;13(1):4245.

[13]

Liu Y, Ye S, Xie H, et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv Mater. 2020;32(7):1906513.

[14]

Assavachin S, Osterloh FE. Ferroelectric polarization in BaTiO3 nanocrystals controls photoelectrochemical water oxidation and photocatalytic hydrogen evolution. J Am Chem Soc. 2023;145(34):18825-18833.

[15]

Lu H, Lee D, Klyukin K, et al. Tunneling hot spots in ferroelectric SrTiO3. Nano Lett. 2018;18(1):491-497.

[16]

Li C, Xu Z, Xu S, et al. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Res. 2023;16:11846-11854.

[17]

Han X, Ji Y, Yang Y. Ferroelectric photovoltaic materials and devices. Adv Funct Mater. 2022;32(14):2109625.

[18]

Liu Y, Ji Y, Xia Y, Wu L, Bowen CR, Yang Y. Enhanced photocurrent in ferroelectric Bi0.5Na0.5TiO3 materials via ferro-pyro-phototronic effect. Nano Energy. 2022;98:107312.

[19]

Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater. 2016;2(2):1-14.

[20]

Chao C, Ren Z, Zhu Y, et al. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. Angew Chem Int Ed. 2012;51(37):9283-9287.

[21]

Chao C, Zhou Y, Li H, He W, Fa W. Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity. Appl Surf Sci. 2019;466:274-281.

[22]

Lu CJ, Kuang AX, Huang GY. X-ray photoelectron spectros-copy study on composition and structure of sol-gel derived PbTiO3 thin films. J Appl Phys. 1996;80(1):202-206.

[23]

Tang YL, Zhu YL, Ma XL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science. 2015;348(6234):547-551.

[24]

Dai YZ, Lu L, Zhang F, et al. Atomic-scale understanding of enhanced polarization of highly strained nanoscale columnar PbTiO3. Phys Rev B. 2021;104(18):184111.

[25]

Ren Z, Wu M, Chen X, et al. Electrostatic force–driven oxide heteroepitaxy for interface control. Adv Mater. 2018;30(38):1707017.

[26]

He J, Liu Y, Qu J, et al. Boosting photocatalytic water oxidation on photocatalysts with ferroelectric single domains. Adv Mater. 2023;35(14):2210374.

[27]

Wang Z, Qi Y, Ding C, et al. Insight into the charge transfer in particulate Ta3N5 photoanode with high photo-electrochemical performance. Chem Sci. 2016;7(7):4391-4399.

[28]

Feng Y, Xu M, Liu H, Li W, Li H, Bian Z. Charge separation and interfacial selectivity induced by synergistic effect of ferro-electricity and piezoelectricity on PbTiO3 monocrystalline nanoplates. Nano Energy. 2020;73:104768.

[29]

Wang Z, Xie H, Jun SC, et al. Heterostructured grafting of NiFe-layered double hydroxide@TiO2 for boosting photoelectrochemical cathodic protection. Mat Horiz. 2024;11(7):1808-1816.

[30]

Li W, Wei L, Shen T, et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance. Chem Eng J. 2022;429:132511.

[31]

Wei L, Li W, Wang ZJ, et al. Confinement assembly of a novel Nb2O5&ZnIN2S4 photoanode and its highly efficient and sensitive photoelectrochemical cathodic protection performance. Chem Eng J. 2023;463:142233.

[32]

Xie H, Wang ZJ, Nie GY, et al. Integration of functional modules in a unified photoelectrochemical device for highly efficient solar-driven cathodic metal protection. Appl Catal, B. 2024;355:124164.

[33]

Guerra JS, Eiras JA. High frequency dielectric relaxation in lanthanum modified PbTiO3 ferroelectric ceramics. Mat Res. 2004;7(2):325-328.

[34]

Brody PS, Rod BJ. Decay of remanent polarization in ferro-electric films using polarization-dependent photovoltages. Int Ferroelectr J. 1993;3(3):245-257.

[35]

Christodoulou C, Glass G, Webb J, Austin S, Goodier C. Assessing the long term benefits of impressed current cathodic protection. Corros Sci. 2010;52(8):2671-2679.

[36]

Peter LM, Walker AB, Bein T, Bein T, Hufnagel AG, Kondofersky I. Interpretation of photocurrent transients at semiconductor electrodes: effects of band-edge unpinning. J Electroanal Chem. 2020;872:114234.

[37]

Anwar MS, Sujitha B, Vedalakshmi R. Light-weight cementitious conductive anode for impressed current cathodic protection of steel reinforced concrete application. Constr Build Mater. 2014;71:167-180.

[38]

Bu Y, Ao JP. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy Environ. 2017;2(4):331-362.

[39]

Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci. 2011;4(3):958-964.

[40]

Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343(6174):990-994.

[41]

Hu J, Zhao X, Chen W, Chen Z. Enhanced charge transport and increased active sites on α-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance. ACS Omega. 2018;3(11):14973-14980.

[42]

Wan G, Yin L, Chen X, et al. Photocatalytic overall water splitting over PbTiO3 modulated by oxygen vacancy and ferroelectric polarization. J Am Chem Soc. 2022;144(44):20342-20350.

[43]

Gelderman K, Lee L, Donne S. Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ. 2007;84(4):685.

[44]

Qu B, Jiang B, Wang Y, Zhang P, Zhong W. Size and temperature dependence of dielectric constant of ultrafine PbTiO3 particles. Chin Phys Lett. 1994;11(8):514-517.

[45]

Kang Y, Qi H, Wan G, et al. Ferroelectric polarization enabled spatially selective adsorption of redox mediators to promote Z-scheme photocatalytic overall water splitting. Joule. 2022;6(8):1876-1886.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/