Sb-Se-based electrical switching device with fast transition speed and minimized performance degradation due to stable mid-gap states

Xianliang Mai , Qundao Xu , Zhe Yang , Huan Wang , Yongpeng Liu , Yinghua Shen , Hengyi Hu , Meng Xu , Zhongrui Wang , Hao Tong , Chengliang Wang , Xiangshui Miao , Ming Xu

Electron ›› 2025, Vol. 3 ›› Issue (1) : e46

PDF
Electron ›› 2025, Vol. 3 ›› Issue (1) : e46 DOI: 10.1002/elt2.46
RESEARCH ARTICLE

Sb-Se-based electrical switching device with fast transition speed and minimized performance degradation due to stable mid-gap states

Author information +
History +
PDF

Abstract

Chalcogenide glass has a unique volatile transition between high- and low-resistance states under an electric field, a phenomenon termed ovonic threshold switching (OTS). This characteristic is extensively utilized in various electronic memory and computational devices, particularly as selectors for cross-point memory architectures. Despite its advantages, the material is susceptible to glass relaxation, which can result in substantial drifts in threshold voltage and a decline in off-current performance over successive operational cycles or long storage time. In this study, we introduce an OTS device made from stoichiometric Sb2Se3 glass, which retains an octahedral local structure within its amorphous matrix. This innovative material exhibits outstanding OTS capabilities, maintaining minimal degradation despite undergoing over 107 operating cycles. Via comprehensive first-principles calculations, our findings indicate that the mid-gap states in amorphous Sb2Se3 predominantly stem from the atomic chains characterized by heteropolar Sb-Se bonds. These bonds exhibit remarkable stability, showing minimal alteration over time, thereby contributing to the overall durability and consistent performance of the material. Our findings not only shed light on the complex physical origins that govern the OTS behavior but also lay the groundwork for creating or optimizing innovative electrical switching materials.

Keywords

chalcogenide glass / first-principles calculation / ovonic threshold switching / phase change memory / Sb 2Se 3

Cite this article

Download citation ▾
Xianliang Mai, Qundao Xu, Zhe Yang, Huan Wang, Yongpeng Liu, Yinghua Shen, Hengyi Hu, Meng Xu, Zhongrui Wang, Hao Tong, Chengliang Wang, Xiangshui Miao, Ming Xu. Sb-Se-based electrical switching device with fast transition speed and minimized performance degradation due to stable mid-gap states. Electron, 2025, 3(1): e46 DOI:10.1002/elt2.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron. 2018;1(8):442-450.

[2]

Wang Z, Wu H, Burr GW, et al. Resistive switching materials for information processing. Nat Rev Mater. 2020;5(3):173-195.

[3]

Zuo W, Zhu Q, Fu Y, et al. Volatile threshold switching memristor: an emerging enabler in the AIoT era. J Semiconduct. 2023;44(5):053102.

[4]

Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354-359.

[5]

Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature. 2019;575(7784):607-617.

[6]

Yang Z, Yang Z, Liu L, et al. Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface. Mater Today Electron. 2023;5:100047.

[7]

Song W, Rao M, Li Y, et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science. 2024;383(6685):903-910.

[8]

Zhang W, Yao P, Gao B, et al. Edge learning using a fully integrated neuro-inspired memristor chip. Science. 2023;381(6663):1205-1211.

[9]

Tang J, Yuan F, Shen X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater. 2019;31(49):1902761.

[10]

Xu M, Mai X, Lin J, et al. Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv Funct Mater. 2020;30(50):2003419.

[11]

Kau DK, Tang S, Karpov IV, et al. A stackable cross point phase change memory. In:2009 IEEE International Electron Devices Meeting (IEDM). IEEE;2009;1-4.

[12]

Cheng H, Chien W, Kuo I, et al. Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. In:2018 IEEE International Electron Devices Meeting (IEDM). Vol 37. IEEE;2018:3.1-37.3.4.

[13]

Yoo J, Lee D, Park J, Song J, Hwang H. Steep slope field-effect transistors with B–Te-based ovonic threshold switch device. IEEE J Electron Devices Soc. 2018;6:821-824.

[14]

Wang L, Cai W, He D, et al. Performance improvement of GeTex-based ovonic threshold switching selector by C doping. IEEE Electron Device Lett. 2021;42(5):688-691.

[15]

Cheng HY, Kuo IT, Chien WC, et al. Si incorporation into AsSeGe chalcogenides for high thermal stability, high endurance and extremely low Vth drift 3D stackable cross-point memory. In:2020 IEEE Symposium on VLSI Technology. IEEE;2020:1-2.

[16]

Wang L, Liu Z, Zhang Z, et al. A refresh operation method for solving thermal stability issue and improving endurance of ovonic threshold switching selector. J Mater Chem C. 2023;11(16):5411-5421.

[17]

Wu R, Sun Y, Zhang S, Zhao Z, Song Z. Great potential of Si-Te ovonic threshold selector in electrical performance and scalability. Nanomaterials. 2023;13(6):1114.

[18]

Li X, Yuan Z, Lv S, Song S, Song Z. Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films. 2021;734:138837.

[19]

Zhang S, Song B, Jia S, et al. Multilayer doped-GeSe OTS selector for improved endurance and threshold voltage stability. J Semiconduct. 2022;43(10):104101.

[20]

Zhao Z, Clima S, Garbin D, et al. Chalcogenide ovonic threshold switching selector. Nano-Micro Lett. 2024;16:81.

[21]

Kroll DM. Theory of electrical instabilities of mixed electronic and thermal origin. Phys Rev B. 1974;9(4):1669-1706.

[22]

Karpov VG, Kryukov YA, Karpov IV, Mitra M. Field-induced nucleation in phase change memory. Phys Rev B. 2008;78(5):052201.

[23]

Ielmini D, Zhang Y. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J Appl Phys. 2007;102(5):054517.

[24]

Adler D, Shur MS, Silver M, Ovshinsky SR. Threshold switching in chalcogenide-glass thin films. J Appl Phys. 1980;51(6):3289-3309.

[25]

Wang L, Wen J, Zhu R, Chen J, Tong H, Miao X. Failure mechanism investigation and endurance improvement in Te-rich Ge–Te based ovonic threshold switching selectors. Appl Phys Lett. 2022;121(19):193501.

[26]

Anbarasu M, Wimmer M, Bruns G, Salinga M, Wuttig M. Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl Phys Lett. 2012;100(14):143505.

[27]

Govoreanu B, Donadio GL, Opsomer K, et al. Thermally stable integrated Se-based OTS selectors with >20 MA/cm2 current drive, >3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. In:2017 IEEE Symposium on VLSI Technology. IEEE;2017: T92-T93.

[28]

Jia S, Li H, Gotoh T, et al. Ultrahigh drive current and large selectivity in GeS selector. Nat Commun. 2020;11(1):1-9.

[29]

Zipoli F, Krebs D, Curioni A. Structural origin of resistance drift in amorphous GeTe. Phys Rev B. 2016;93(11):115201.

[30]

Zhao WS, Fu K, Wang DW, Li M, Wang GF, Yin WY. Mini-review: modeling and performance analysis of nanocarbon interconnects. Appl Sci. 2019;9(11):2174.

[31]

Chai Z, Zhang WD, Clima S, et al. Cycling induced metastable degradation in GeSe ovonic threshold switching selector. IEEE Electron Device Lett. 2021;42(10):1448-1451.

[32]

Hatem F, Chai Z, Zhang W, et al. Endurance improvement of more than five orders in GexSe1-x OTS selectors by using a novel refreshing program scheme. In:2019 IEEE International Electron Devices Meeting (IEDM). Vol 35. IEEE;2019:35.2.1-35.2.4.

[33]

Chai Z, Zhang W, Degraeve R, et al. Dependence of switching probability on operation conditions in GexSe1–x ovonic threshold switching selectors. IEEE Electron Device Lett. 2019;40(8):1269-1272.

[34]

Wu R, Gu R, Gotoh T, et al. The role of arsenic in the operation of sulfur-based electrical threshold switches. Nat Commun. 2023;14(1):6095.

[35]

Gu R, Xu M, Liu Y, et al. Unravelling the atomic mechanisms of tetrahedral doping in chalcogenide glass for electrical switching materials. J Mater Chem C. 2023;11(44):15473-15481.

[36]

Song Z, Wang R, Xue Y, Song S. The “gene” of reversible phase transformation of phase change materials: octahedral motif. Nano Res. 2022;15(2):765-772.

[37]

Zhang W, Ma E. Unveiling the structural origin to control resistance drift in phase-change memory materials. Mater Today. 2020;41:156-176.

[38]

Ghosh G. The Sb-Se (antimony-selenium) system. J Phase Equil. 1993;14(6):753-763.

[39]

Zhang K, Li Y, Huang Q, et al. Ultrastable amorphous Sb2Se3 film. J Phys Chem B. 2017;121(34):8188-8194.

[40]

Vadapoo R, Krishnan S, Yilmaz H, Marin C. Electronic structure of antimony selenide (Sb2Se3) from GW calculations. Phys Status Solidi. 2011;248(3):700-705.

[41]

Maghraoui-Meherzi H, Ben Nasr T, Dachraoui M. Synthesis, structure and optical properties of Sb2Se3. Mater Sci Semicond Process. 2013;16(1):179-184.

[42]

Lee D, Kwak M, Moon K, et al. Various threshold switching devices for integrate and fire neuron applications. Adv Electron Mater. 2019;5(9):1800866.

[43]

Chai Z, Freitas P, Marsland J, et al. GeSe-based ovonic threshold switching volatile true random number generator. IEEE Electron Device Lett. 2020;41(2):228-231.

[44]

Clima S, Garbin D, Opsomer K, et al. Ovonic threshold-switching GexSey chalcogenide materials: stoichiometry, trap nature, and material relaxation from first principles. Phys Status Solidi Rapid Res Lett. 2020;14(5):1900672.

[45]

Clima S, Garbin D, Devulder W, et al. Material relaxation in chalcogenide OTS SELECTOR materials. Microelectron Eng. 2019;215:110996.

[46]

Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem. 2008;29(13):2044-2078.

[47]

Errington JR, Debenedetti PG. Relationship between structural order and the anomalies of liquid water. Nature. 2001;409(6818):318-321.

[48]

Xu M, Gu R, Qiao C, et al. Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications. J Mater Chem C. 2021;9(25):8057-8065.

[49]

Chen Y, Sun L, Zhou Y, et al. Chemical understanding of resistance drift suppression in Ge-Sn-Te phase-change memory materials. J Mater Chem C. 2020;8(1):71-77.

[50]

Nelson R, Ertural C, George J, Deringer VL, Hautier G, Dronskowski R. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem. 2020;41(21):1931-1940.

[51]

Dronskowski R, Bloechl PE. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97(33):8617-8624.

[52]

Okazaki A. The crystal structure of germanium selenide GeSe. J Phys Soc Jpn. 1958;13(10):1151-1155.

[53]

Mott NF. Conduction in non-crystalline materials. Phil Mag. 1969;19(160):835-852.

[54]

Ronneberger I, Zanolli Z, Wuttig M, Mazzarello R. Changes of structure and bonding with thickness in chalcogenide thin films. Adv Mater. 2020;32(29):2001033.

[55]

Xu M, Xu M, Miao X. Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat. 2022;4(6):e12315.

[56]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169-11186.

[57]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.

[58]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953-17979.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/