Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review

Ziwei Zhao , Xiaowu Gao , Hansong Zhang , Keran Jiao , Pengfei Song , Yumin Zhang , Yongjie Wang , Jiaqi Zhu

Electron ›› 2024, Vol. 2 ›› Issue (3) : e45

PDF
Electron ›› 2024, Vol. 2 ›› Issue (3) : e45 DOI: 10.1002/elt2.45
REVIEW ARTICLE

Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review

Author information +
History +
PDF

Abstract

In order to properly utilize the abundant CO2 and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C1 or C2+ products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future break-through directions are proposed at the end.

Keywords

CO 2 catalytic reduction / diamond / extreme environment / functionality / renewable energy

Cite this article

Download citation ▾
Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu. Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review. Electron, 2024, 2(3): e45 DOI:10.1002/elt2.45

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berliner AJ, Hilzinger JM, Abel AJ, et al. Towards a biomanufactory on Mars. Front Astron Space Sci. 2021;8:711550.

[2]

Yao Y, Zhang C, Wu C, et al. Research progress of extrater-restrial artificial photosynthetic materials. Mater Sci Technol. 2020;28(3):14-23.

[3]

Hao J, Li D, Dang W, et al. Progress in in-situ resource utilization of atmospheric on Mars. Vac Cryogenics. 2018;24(5):289-296.

[4]

Fan JX, Du HX, Zhao Y, et al. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020;10(22):13560-13583.

[5]

Li CF, Guo RT, Zhang ZR, Wu T, Pan W. Converting CO2 into value-added products by Cu2O-based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis. Small. 2023;19(19):2207875.

[6]

Lim KRG, Handoko AD, Nemani SK, et al. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 2020;14(9):10834-10864.

[7]

Cheng L, Xiang Q, Liao Y, Zhang H. CdS-based photocatalysts. Energy Environ Sci. 2018;11(6):1362-1391.

[8]

Denisov N, Qin S, Will J, et al. Light-induced agglomeration of single-atom platinum in photocatalysis. Adv Mater. 2023;35(5):2206569.

[9]

Wang LX, Wang L, Meng X, Xiao F. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv Mater. 2019;31(50):1901905.

[10]

Yang N, Yu S, Macpherson JV, et al. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev. 2019;48(1):157-204.

[11]

Raymakers J, Haenen K, Maes W. Diamond surface functionalization: from gemstone to photoelectrochemical applications. J Mater Chem C. 2019;7(33):10134-10165.

[12]

Yu SY, Yang NJ, Liu ST, Jiang X. Electrochemical and photochemical CO2 reduction using diamond. Carbon. 2021;175:440-453.

[13]

Liu YM, Chen S, Quan X, Zhao H, Yu H, Zhang Y. Tuning the electrochemical properties of a boron and nitrogen codoped nanodiamond rod array to achieve high performance for both electro-oxidation and electro-reduction. J Mater Chem A. 2013;1(46):14706-14712.

[14]

Jiwanti PK, Einaga Y. Electrochemical reduction of CO2 using palladium modified boron-doped diamond electrodes: enhancing the production of CO. Phys Chem Chem Phys. 2019;21(28):15297-15301.

[15]

Luo D, Nakata K, Fujishima A, Liu S. Photochemistry and photo-electrochemistry on synthetic semiconducting diamond. J Photochem Photobiol C-Photochem Rev. 2017;31:139-152.

[16]

Souza FL, Lopes OF, Santos EV, Ribeiro C. Promoting CO2 electroreduction on boron-doped diamond electrodes: challenges and trends. Curr Opin Electrochem. 2022;32:100890.

[17]

Moses RW. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars. Berlin: Springer; 2016.

[18]

Rapp D. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Berlin: Springer; 2013.

[19]

Clark D. In-situ propellant production on Mars: a Sabatier/electrolysis demonstration plant. 33rd Joint Propulsion Conference and Exhibit;July 06-09, 1997;Seattle, WA.

[20]

Sridhar KR, Iacomini CS, Finn JE. Combined H2O/CO2 solid oxide electrolysis for mars in situ resource utilization. J Propul Power. 2004;20(5):892-901.

[21]

Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl Catal B Environ 2023;328:122430.

[22]

Wang KW, Hu ZF, Yu PF, et al. Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 2024;16(1):5.

[23]

Domingo-Tafalla B, Martinez-Ferrero E, Franco F, Palomares-Gil E. Applications of carbon dots for the photocatalytic and electrocatalytic reduction of CO2. Molecules. 2022;27(3):1081.

[24]

Li G, Wang P, He M, Yuan X, Tang L, Li Z. Cerium-based nanomaterials for photo/electrocatalysis. Sci China Chem. 2023;66(8):2204-2220.

[25]

Navarro-Jaén S, Virginie M, Bonin J, Robert M, Wojcieszak R, Khodakov AY. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem. 2021;5(8):564-579.

[26]

Fu JW, Liu K, Li HM, Hu J, Liu M. Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environ Chem Lett. 2022;20(1):243-262.

[27]

Zoubir O, Atourki L, Ahsaine HA, BaQais A. Current state of copper-based bimetallic materials for electrochemical CO2 reduction: a review. RSC Adv. 2022;12(46):30056-30075.

[28]

Baran T, Visibile A, Busch M, et al. Copper oxide-based photocatalysts and photocathodes: fundamentals and recent advances. Molecules. 2021;26(23):7271.

[29]

Barrocas BT, Ambrozova N, Koci K. Photocatalytic reduction of carbon dioxide on TiO2 heterojunction photocatalysts—a review. Materials. 2022;15(3):967.

[30]

Inglis JL, MacLean BJ, Pryce MT, Vos JG. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord Chem Rev. 2012;256(21-22):2571-2600.

[31]

Liang F, Zhang KW, Zhang L, Zhang Y, Lei Y, Sun X. Recent development of electrocatalytic CO2 reduction application to energy conversion. Small. 2021;17(44):e2100323.

[32]

Liu Y, Zhang Y, Chen K, et al. Selective electrochemical reduction of CO2 to ethanol on boron-and nitrogen-Co-doped nanodiamond. Angew Chem. 2017;129(49):15813-15817.

[33]

Yue Y, Sun Y, Tang C, et al. Ranking the relative CO2 electrochemical reduction activity in carbon materials. Carbon. 2019;154:108-114.

[34]

Pan YS, Xu K, Wu CL. Recent progress in supercapacitors based on the advanced carbon electrodes. Nanotechnol Rev. 2019;8(1):299-314.

[35]

Yao SA, Ruther RE, Zhang LH, Franking RA, Hamers RJ, Berry JF. Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J Am Chem Soc. 2012;134(38):15632-15635.

[36]

Wu SJ, Li HJ, Futaba DN, et al. Structural design and fabrication of multifunctional nanocarbon materials for extreme environmental applications. Adv Mater. 2022;34(52):2201046.

[37]

Liu K. Study on the Characteristics and Photoelectric Properties of Gold-Oxygen Terminated Type IIa Diamond Interface. Dissertation. Harbin Institute of Technology; 2019.

[38]

Palyanov YN, Borzdov YM, Sokol AG, et al. Diamond formation in an electric field under deep Earth conditions. Sci Adv. 2021;7(4):eabb4644.

[39]

Lu FX. Past, present, and the future of the research and commercialization of CVD diamond in China. Funct Diam. 2022;2(1):119-141.

[40]

Nebel CE. CVD diamond: a review on options and reality. Funct Diam. 2023;3(1):2201592.

[41]

Sonin V, Tomilenko A, Zhimulev E, et al. The composition of the fluid phase in inclusions in synthetic HPHT diamonds grown in system Fe-Ni-Ti-C. Sci Rep. 2022;12(1):1246.

[42]

Sun KY, Lu TJ, He MY, Song Z, Zhang J, Ke J. Morphological and surface microtopographic features of HPHT-grown diamond crystals with contact twinning. Crystals. 2022;12(9):1264.

[43]

Guignard J, Prakasam M, Largeteau A. A review of binderless polycrystalline diamonds: focus on the high-pressure-high-temperature sintering process. Materials. 2022;15(6):2198.

[44]

Chaudhuri S, Logsdail AJ, Maurer RJ. Stability of single gold atoms on defective and doped diamond surfaces. J Phys Chem C. 2023;127(32):16187-16203.

[45]

Kashiwada T, Watanabe T, Ootani Y, Tateyama Y, Einaga Y. A study on electrolytic corrosion of boron-doped diamond electrodes when decomposing organic compounds. ACS Appl Mater Interfac. 2016;8(42):28299-28305.

[46]

Du JL, Fiorani A, Einaga Y. Electrochemical CO2 reduction to CO facilitated by reduced boron-doped diamond. Diam Relat Mater. 2023;135:109902.

[47]

Yang NJ, Jiang X. Rational design of diamond electrodes. Acc Chem Res. 2023;56(2):117-127.

[48]

Sarakhman O, Svorc L. A review on recent advances in the applications of boron-doped diamond electrochemical sensors in food analysis. Crit Rev Anal Chem. 2022;52(4):791-813.

[49]

Mayerhoefer E, Krueger A. Surface control of nanodiamond: from homogeneous termination to complex functional architectures for biomedical applications. Acc Chem Res. 2022;55(24):3594-3604.

[50]

Lai H, Stenzel MH, Xiao P. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. Int Mater Rev. 2020;65(4):189-225.

[51]

Day AH, Adams SJ, Gines L, et al. Synthetic routes, characterization and photophysical properties of luminescent, surface functionalized nanodiamonds. Carbon. 2019;152:335-343.

[52]

Bechter J, Pietzka C, Petkov C, et al. Investigation of diamond electrodes for photo-electrochemistry. Phys Status Solidi A. 2014;211(10):2333-2338.

[53]

Foord JS, Hao W, Hurst S. Studies of the chemical functionalisation of diamond electrodes. Diam Relat Mater. 2007;16(4/5/6/7):877-880.

[54]

Xu J, Natsui K, Naoi S, Nakata K, Einaga Y. Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. Diam Relat Mater. 2018;86(1):167-172.

[55]

Xu J, Einaga Y. Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. Electrochem Commun. 2020;115:106731.

[56]

Peng Z, Xu J, Kurihara K, Tomisaki M, Einaga Y. Electrochemical CO2 reduction on sub-microcrystalline boron-doped diamond electrodes. Diam Relat Mater. 2021;120:108608.

[57]

Wanninayake N, Ai QX, Zhou RX, et al. Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction. Carbon. 2020;157:408-419.

[58]

Xu J, Yokota Y, Wong RA, Kim Y, Einaga Y. Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon. J Am Chem Soc. 2020;142(5):2310-2316.

[59]

Luo DB, Ma DC, Liu SH, Nakata K, Fujishima A, Wu L. Electrochemical reduction of CO2 on fluorine-modified boron-doped diamond electrode. Diam Relat Mater. 2022;121:108753.

[60]

Ikemiya N, Natsui K, Nakata K, Einaga Y. Long-term continuous conversion of CO2 to formic acid using boron-doped diamond electrodes. ACS Sustain Chem Eng. 2018;6(7):8108-8112.

[61]

Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed. 2014;53(3):871-874.

[62]

Roy N, Shibano Y, Terashima C, et al. Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode. Chemelectrochem. 2016;3(7):1044-1047.

[63]

Wang HX, Tzeng YK, Ji YF, et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat Nanotechnol. 2020;15(2):131-137.

[64]

Futera Z, Watanabe T, Einaga Y, Tateyama Y. First principles calculation study on surfaces and water interfaces of boron-doped diamond. J Phys Chem C. 2014;118(38):22040-22052.

[65]

Spataru N, Tokuhiro K, Terashima C, Rao TN, Fujishima A. Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. J Appl Electrochem. 2003;33(12):1205-1210.

[66]

Verlato E, Barison S, Einaga Y, et al. CO2 reduction to formic acid at low overpotential on BDD electrodes modified with nanostructured CeO2. J Mater Chem A. 2019;7(30):17896-17905.

[67]

Jiwanti PK, Ichzan AM, Dewandaru RKP, Atriardi SR, Einaga Y, Ivandini TA. Improving the CO2 electrochemical reduction to formic acid using iridium-oxide-modified boron-doped diamond electrodes. Diam Relat Mater. 2020;106:107874.

[68]

Kumik A, Ivandini TA, Wibowo R. Modification of boron-doped diamond with gold-palladium nanoparticles for CO2 electroreduction. IOP Conf Ser Mater Sci Eng. 2020;763:012001.

[69]

Jin J, Wicks J, Min Q, et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature. 2023;617(7962):724-729.

[70]

Romerocuellar NS, Wiesner-Fleischer K, Hinrichsen O, Fleischer M. Electrochemical reduction of CO2 in water-based electrolytes KHCO3 and K2SO4 using boron doped diamond electrodes. ChemistrySelect. 2018;3(13):3591-3595.

[71]

Roy N, Suzuki N, Nakabayashi Y, et al. Facile deposition of Cu-SnOx hybrid nanostructures on lightly boron-doped diamond electrodes for CO2 reduction. Chemelectrochem. 2018;5(18):2542-2550.

[72]

Guo ZY, Yang FB, Li XT, et al. Electrocatalytic CO2 reduction to C2H4: from lab to fab. J Energy Chem. 2024;90:540-564.

[73]

Xu LL, Trogadas P, Coppens MO. Nature-inspired electrocatalysts for CO2 reduction to C2+ products. Adv Energy Mater. 2023;13(48):2302974.

[74]

Ma JM, Liu CM, Bai M, et al. Recent advances in application of tandem catalyst for electrocatalytic CO2 reduction. Mol Catal. 2023;551:113632.

[75]

Liu YM, Chen S, Quan X, Yu H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015;137(36):11631-11636.

[76]

Panglipur HS, Ivandini TA, Wibowo R, et al. Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf Proc. 2016;1729(1):020047.

[77]

Jiwanti PK, Natsui K, Nakata K, Einaga Y. The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim Acta. 2018;266:414-419.

[78]

Ikemiya N, Natsui K, Nakata K, Einaga Y. Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 2017;7(36):22510-22514.

[79]

Irkham S, Nagashima M, Tomisaki M, Einaga Y. Enhancing the electrochemical reduction of CO2 by controlling the flow conditions: an intermittent flow reduction system with a boron-doped diamond electrode. ACS Sustain Chem Eng. 2021;9(15):5298-5303.

[80]

Natsui K, Iwakawa H, Ikemiya N, Nakata K, Einaga Y. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew Chem, Int Ed.. 2018;57(10):2639-2643.

[81]

Luo DB, Liu SH, Nakata K, Fujishima A. Electrochemical reduction of CO2 and degradation of KHP on boron-doped diamond electrodes in a simultaneous and enhanced process. Chin Chem Lett. 2019;30(2):509-512.

[82]

Tomisaki M, Natsui K, Fujioka S, Terasaka K, Einaga Y. Unique properties of fine bubbles in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. Electrochim Acta. 2021;389:138769.

[83]

Tomisaki M, Natsui K, Ikemiya N, Nakata K, Einaga Y. Influence of electrolyte on the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. ChemistrySelect. 2018;3(36):10209-10213.

[84]

Jiwanti PK, Natsui K, Nakata K, Einaga Y. Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv. 2016;6(104):102214-102217.

[85]

Tomisaki M, Kasahara S, Natsui K, Ikemiya N, Einaga Y. Switchableproduct selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J Am Chem Soc. 2019;141(18):7414-7420.

[86]

Jia SH, Ma XD, Sun XF, Han B. Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chem. 2022;4(10):3213-3229.

[87]

Yang PP, Gao MR. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem Soc Rev. 2023;52(13):4343-4380.

[88]

Schäppi R, Rutz D, Dähler F, et al. Drop-in fuels from sunlight and air. Nature. 2022;601(7891):63-68.

[89]

Han GH, Bang J, Park G, et al. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products. Small. 2023;19(16):e2205765.

[90]

Yaashikaa PR, Kumar PS, Varjani SJ, Saravanan A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Util. 2019;33:131-147.

[91]

Che L, Pan JL, Cai KX, Cong Y, Lv SW. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: a review. Separ Purif Technol. 2023;315:123708.

[92]

Yao S, He JQ, Gao F, et al. Highly selective semiconductor photocatalysis for CO2 reduction. J Mater Chem A. 2023;11(24):12539-12558.

[93]

Sun K, Qian YY, Jiang HL. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew Chem, Int Ed. 2023;62(15):e202217565.

[94]

Arora I, Chawla H, Chandra A, Sagadevan S, Garg S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: conversion from UV-light active to visible-light active photocatalyst. Inorg Chem Commun. 2022;143:109700.

[95]

Peng C, Reid G, Wang H, Hu P. Perspective: photocatalytic reduction of CO2 to solar fuels over semiconductors. J Chem Phys. 2017;147(3):030901.

[96]

Zhou GH, Zhang LY, Xia Y, et al. Highly selective photocatalytic CO2 reduction by metal-N4 dynamically generated from atomically dispersed copper. Chem Eng J. 2023;477:147040.

[97]

Pan WY, Wei ZH, Su YH, et al. Hydroxylated metal-organic-layer nanocages anchoring single atomic cobalt sites for robust photocatalytic CO2 reduction. Nano Res. 2024;17(4):2410-2419.

[98]

You JK, Xiao M, Wang ZL, et al. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. J CO2 Util. 2022;55:101817.

[99]

Zhang JY, Jiang JY, Lei YR, et al. Photocatalytic CO2 reduction reaction: influencing factors, reaction pathways and dominant catalysts. Separ Purif Technol. 2024;328:125056.

[100]

Zhu D, Zhang LH, Ruther RE, Hamers RJ. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat Mater. 2013;12(9):836-841.

[101]

Zhang L, Zhu D, Nathanson GM, Hamers RJ. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew Chem. 2014;126(37):9904-9908.

[102]

Lin ZY, Xiao J, Li LH, Liu P, Wang C, Yang G. Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution. Adv Energy Mater. 2016;6(4):1501865.

[103]

Jang DM, Myung Y, Im HS, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide. Chem Commun. 2012;48(5):696-698.

[104]

Khan M, Hayat A, Mane SKB, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int J Hydrogen Energy. 2020;45(53):29070-29081.

[105]

Du H, Liu Y-N, Shen C-C, Xu AW. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chin J Catal. 2017;38(8):1295-1306.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/