MXenes for the zinc anode protection of aqueous zinc-ion batteries

Xiaoyu Dong , Ao Liu , Cong Peng , Yan Huang

Electron ›› 2025, Vol. 3 ›› Issue (1) : e44

PDF
Electron ›› 2025, Vol. 3 ›› Issue (1) : e44 DOI: 10.1002/elt2.44
REVIEW

MXenes for the zinc anode protection of aqueous zinc-ion batteries

Author information +
History +
PDF

Abstract

The progress of aqueous zinc-ion batteries faces several challenges in zinc electrode technologies. Nevertheless, MXenes exhibit versatile functionalities, such as tunable terminal groups, excellent conductivity, and diverse chemical composition, making them highly suitable for integration into aqueous zinc-ion batteries. This review highlights recent breakthroughs in employing MXenes to enhance the stability of zinc anodes, encompassing strategies such as protective coatings, incorporation of MXenes into zinc frameworks, and electrolyte enhancements. By employing these novel methods, researchers seek to tackle crucial issues concerning the stability and efficiency of zinc electrodes, thus promoting the commercial viability of aqueous zinc-ion batteries.

Keywords

aqueous zinc-ion batteries / MXenes / MXenes composites / surface modification

Cite this article

Download citation ▾
Xiaoyu Dong, Ao Liu, Cong Peng, Yan Huang. MXenes for the zinc anode protection of aqueous zinc-ion batteries. Electron, 2025, 3(1): e44 DOI:10.1002/elt2.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng S, Shi X, Das P, Wu Z-S, Bao X. The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv Mater. 2019;31(50):1900583.

[2]

Mauger A, Julien C M, Armand M, Zaghib K. Tribute to John B. Goodenough: from magnetism to rechargeable batteries. Adv Energy Mater. 2021;11(2):2000773.

[3]

Chen Q, Jin J, Kou Z, et al. ZN2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small. 2020;16(14):2000091.

[4]

Liu S, Zhang R, Mao J, et al. Design of electrolyte for boosted aqueous battery performance: a critical review and perspective. Appl Phys Rev. 2023;10(2):021304.

[5]

Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(11):3288-3304.

[6]

Jung S, Zafar U, Achary LSK, Koo CM. Ligand Chemistry for surface functionalization in MXenes: a review. EcoMat. 2023;5(10):e12395.

[7]

Zhu G, Zhang H, Lu J, et al. 3D printing of MXene-enhanced ferroelectric polymer for ultrastable zinc anodes. Adv Funct Mater. 2024;34(1):2305550.

[8]

Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322-1331.

[9]

Ruan J, Ma D, Ouyang K, et al. 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 2023;15(1):37.

[10]

Bi W, Gao G, Li C, Wu G, Cao G. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage. Prog Mater Sci. 2024;142:101227.

[11]

Vahidmohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021;372(6547):eabf1581.

[12]

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491-8494.

[13]

Anasori B, Naguib M. Two-dimensional MXenes. MRS Bull. 2023;48(3):238-244.

[14]

Zhou J, Tao Q, Ahmed B, et al. High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem Mater. 2022;34(5):2098-2106.

[15]

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33(39):2103148.

[16]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992-1005.

[17]

Zhang B, Zhou J, Sun Z. Mbenes: progress, challenges and future. J Mater Chem A. 2022;10(30):15865-15880.

[18]

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248-4253.

[19]

Huang PF, Han WQ. Recent advances and perspectives of Lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett. 2023;15(1):68.

[20]

Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed. 2018;57(21):6115-6119.

[21]

Wang D, Zhou C, Filatov AS, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science. 2023;379(6638):1242-1247.

[22]

Zhou J, Palisaitis J, Halim J, et al. Boridene: two-dimensional MO4/3B2-X with ordered metal vacancies obtained by chemical exfoliation. Science. 2021;373(6556):801-805.

[23]

Liu F, Zhou A, Chen J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci. 2017;416:781-789.

[24]

Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale. 2014;6(19):11035-11040.

[25]

Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019;141(11):4730-4737.

[26]

Li YB, Shao H, Lin ZF, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894-899.

[27]

Bai Y, Liu C, Chen T, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew Chem Int Ed. 2021;60(48):25318-25322.

[28]

Shi H, Zhang P, Liu Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed. 2021;60(16):8689-8693.

[29]

Kotasthane V, Tan Z, Yun J, et al. Selective etching of Ti3AlC2 MAX phases using quaternary ammonium fluorides directly yields Ti3C2Tz MXene nanosheets: implications for energy storage. ACS Appl Nano Mater. 2023;6(2):1093-1105.

[30]

Zheng JX, Archer LA. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci Adv. 2021;7(2).

[31]

Zheng JX, Archer LA. Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem Rev. 2022;122(18):14440-14470.

[32]

Zhang C, Shin W, Zhu LD, et al. The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy. 2021;3(2):339-348.

[33]

Zhu YH, Liang GJ, Cui X, et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ Sci. 2024;17(2):369-385.

[34]

Ma L, Schroeder MA, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat Energy. 2020;5(10):743-749.

[35]

Parker JF, Ko JS, Rolison DR, Long JW. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule. 2018;2(12):2519-2527.

[36]

Luo H, Jiang J, Arramel LM, Sun K, Zheng Y. Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries. J Colloid Interface Sci. 2024;654:289-299.

[37]

Yang Y, Liu CY, Lv ZH, et al. Synergistic manipulation of ZN2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv Mater. 2021;33(11):2007388.

[38]

Wang T, Yao K, Li K, Yu JS. Influence of Mxene-assisted multifunctional interface on zinc deposition toward highly reversible dendrite-free zinc anodes. Energy Storage Mater. 2023;62:102921.

[39]

Li Y, Zhu Q, Xu M, Zang B, Wang Y, Xu B. Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv Funct Mater. 2023;33(18):2213416.

[40]

Zhang N, Huang S, Yuan Z, Zhu J, Zhao Z, Niu Z. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed. 2021;60(6):2861-2865.

[41]

Zhu X, Li X, Essandoh MLK, et al. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 2022;50:243-251.

[42]

An Y, Tian Y, Liu C, Xiong S, Feng J, Qian Y. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano. 2021;15(9):15259-15273.

[43]

Li Y, Pang Z, Ghani A, et al. Gradient structural and compositional design of conductive MXene aerogels for stable Zn metal anodes. Adv Energy Mater. 2023;13(48):2301557.

[44]

Li X, Li M, Luo K, et al. Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano. 2022;16(1):813-822.

[45]

Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015;6:8058.

[46]

Xiao R, Cai Z, Zhan RM, et al. Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem Eng J. 2021;420:129642.

[47]

Tian Y, An YL, Wei CL, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano. 2019;13(10):11676-11685.

[48]

Xue P, Guo C, Tan LC. Hydrogen-bonding crosslinking MXene to highly mechanically stable and super-zincophilic host for stable Zn metal anode. Chem Eng J. 2023;472:145056.

[49]

Zhang Q, Zhi P, Zhang J, et al. Engineering covalent organic frameworks toward advanced zinc-based batteries. Adv Mater. 2024;36(24):2313152.

[50]

Guo N, Huo W, Dong X, et al. A review on 3D zinc anodes for zinc ion batteries. Small Methods. 2022;6(9):2200597.

[51]

Yang S, Du H, Li Y, et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 2023;8(6):1531-1552.

[52]

Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022;51:733-755.

[53]

Sun C, Wu C, Gu X, Wang C, Wang Q. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 2021;13:89.

RIGHTS & PERMISSIONS

2024 The Author(s). Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

482

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/