Low-temperature chemical vapor deposition growth of 2D materials

Minting Lei , Peijian Wang , Xiaofeng Ke , Jun Xie , Min Yue , Mei Zhao , Kenan Zhang , Youqing Dong , Quanlong Xu , Chao Zou , Shun Wang , Lijie Zhang

Electron ›› 2025, Vol. 3 ›› Issue (1) : e43

PDF
Electron ›› 2025, Vol. 3 ›› Issue (1) : e43 DOI: 10.1002/elt2.43
REVIEW

Low-temperature chemical vapor deposition growth of 2D materials

Author information +
History +
PDF

Abstract

Two-dimensional (2D) materials have atomic thickness, and thickness-dependent electronic transport, optical and thermal properties, high-lighting great promise applications in future semiconductor devices. Chemical vapor deposition (CVD) is considered as an industry-oriented method for macro-synthesis of 2D materials. In conventional CVD, high temperatures are required for the synthesis of high-quality large-size 2D materials, which is incompatible with of back-end-of-line of the complementary metal oxide semiconductor (CMOS) techniques. Therefore, low-temperature synthesis of 2D materials is of critical importance for the advancement toward practical applications of 2D materials with the CMOS technologies. In this review, we focus on strategies for the low-temperature growth of 2D materials, including the use of low-melting-point precursors, metal-organic CVD, plasma-enhanced CVD, van der Waals-substrate vapor phase epitaxy, tellurium-assisted CVD, salt-assisted CVD, etc., with discussions of their reaction mechanisms, applications, associated advantages, and limitations. We also provide an outlook and perspectives of future low-temperature chemical vapor deposition growth of 2D materials.

Keywords

2D materials / CMOS techniques / CVD / low-temperature growth

Cite this article

Download citation ▾
Minting Lei, Peijian Wang, Xiaofeng Ke, Jun Xie, Min Yue, Mei Zhao, Kenan Zhang, Youqing Dong, Quanlong Xu, Chao Zou, Shun Wang, Lijie Zhang. Low-temperature chemical vapor deposition growth of 2D materials. Electron, 2025, 3(1): e43 DOI:10.1002/elt2.43

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akkanen S, Fernandez H, Sun Z. Optical modification of 2D materials: methods and applications. Adv Mater. 2022;34(19):2110152.

[2]

Wan J, Lacey S, Dai J, Bao W, Fuhrer MS, Hu L. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev. 2016;45(24):6742-6765.

[3]

Feng C, Wu Z, Huang K, Ye J, Zhang H. Surface modification of 2D photocatalysts for solar energy conversion. Adv Mater. 2022;34(23):2200180.

[4]

Zhou K, Shang G, Hsu H, Han S, Roy VAL, Zhou Y. Emerging 2D metal oxides: from synthesis to device integration. Adv Mater. 2023;35(21):2207774.

[5]

Jiang J, Li N, Zou J, et al. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem Soc Rev. 2019;48(17):4639-4654.

[6]

Wang Y, Kim J, Li Y, et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature. 2022;610(7930):61-66.

[7]

Li J, Chen M, Samad A, et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat Mater. 2022;21(7):740-747.

[8]

He L, Nong H, Tan J, et al. Growth of two-dimensional Cr2O3-CrN mosaic heterostructures with tunable room-temperature ferromagnetism. Adv Mater. 2024;36(7):2304946.

[9]

Man P, Huang L, Zhao J, Ly TH. Ferroic phases in two-dimensional materials. Chem Rev. 2023;123(18):10990-11046.

[10]

Zhou Z, Hou F, Huang X, et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature. 2023;621(7979):499-505.

[11]

Singh S, Gong W, Stevens C, et al. Valley-polarized interlayer excitons in 2D chalcogenide-halide perovskite-van der Waals heterostructures. ACS Nano. 2023;17(8):7487-7497.

[12]

Zhou Z, Shen T, Wang P, et al. Low symmetric sub-wavelength array enhanced lensless polarization-sensitivity photodetector of germanium selenium. Sci Bull. 2023;68(2):173-179.

[13]

Schaibley J, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater. 2016;1(11):16055.

[14]

Hemmat M, Ayari S, Micica M, et al. Layer-controlled nonlinear terahertz valleytronics in two-dimensional semimetal and semiconductor PtSe2. InfoMat. 2023;5(11):e12468.

[15]

Wang P, Luo S, Boyle L, Zeng H, Huang S. Controlled fractal growth of transition metal dichalcogenides. Nanoscale. 2019;11(36):17065-17072.

[16]

Huo Z, Wei Y, Wang Y, Wang ZL, Sun Q. Integrated self-powered sensors based on 2D material devices. Adv Funct Mater. 2022;32(41):2206900.

[17]

Giri A, Park G, Jeong U. Layer-structured anisotropic metal chalcogenides: recent advances in synthesis, modulation, and applications. Chem Rev. 2023;123(7):3329-3442.

[18]

Zhu K, Wen C, Aljarb A, et al. The development of integrated circuits based on two-dimensional materials. Nat Electron. 2021;4(11):775-785.

[19]

Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. Nat Mater. 2022;21(11):1225-1239.

[20]

Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat Commun. 2021;12(1):809.

[21]

Daus A, Vaziri S, Chen V, et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat Electron. 2021;4(7):495-501.

[22]

Chiu M, Ji X, Zhang T, et al. Growth of large-sized 2D ultrathin SnSe crystals with in-plane ferroelectricity. Adv Electron Mater. 2023;9(4):2201031.

[23]

Sun Z, Han X, Cai Z, et al. Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering. Sci Bull. 2022;67(13):1345-1351.

[24]

Kim T, Dhakal K, Park E, et al. Gas-phase alkali metal-assisted MOCVD growth of 2D transition metal dichalcogenides for large-scale precise nucleation control. Small. 2022;18(20):2106368.

[25]

Yi K, Liu D, Chen X, et al. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Acc Chem Res. 2021;54(4):1011-1022.

[26]

Cai J, Han X, Wang X, Meng X. Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics. Matter. 2020;2(3):587-630.

[27]

Poh S, Tan S, Zhao X, et al. Large area synthesis of 1D-MoSe2 using molecular beam epitaxy. Adv Mater. 2017;29(12).

[28]

Lan S, Zhang Z, Hong Y, et al. Judicious selection of precursors with suitable chemical valence state for controlled growth of transition metal chalcogenides. Adv Mater Interfac. 2023;10(36):2300713.

[29]

Okada M, Sawazaki T, Watanabe K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano. 2014;8(8):8273-8277.

[30]

McCreary K, Hanbicki A, Robinson J, et al. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv Funct Mater. 2014;24(41):6449-6454.

[31]

Zhang M, Zhu Y, Wang X, et al. Controlled synthesis of ZrS2 mono layer and few layers on hexagonal boron nitride. J Am Chem Soc. 2015;137(22):7051-7054.

[32]

Huang W, Gan L, Yang H, et al. Controlled synthesis of ultrathin 2D β-IN2S3 with broadband photoresponse by chemical vapor deposition. Adv Funct Mater. 2017;27(36):1702448.

[33]

Fu L, Wang F, Wu B, et al. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv Mater. 2017;29(32):1700439.

[34]

Wang Y, Wang P, Wang H, et al. Room-temperature magnetoelectric coupling in atomically thin epsilon-Fe2O3. Adv Mater. 2023;35(7):2209465.

[35]

Wang H, Wen Y, Zhao X, et al. Heteroepitaxy of 2D CuCr2Te4 with robust room-temperature ferromagnetism. Adv Mater. 2023;35(18):2211388.

[36]

Pan B, Zhang L, Wang P. Progress in the preparation and opto-electro-magneto application of two-dimensional layered metal iodides. J Synth Cryst. 2022;51(3):538-550.

[37]

Zhang Z, Gong Y, Zou X, et al. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano. 2019;13(1):885-893.

[38]

Wang Z, Li Q, Besenbacher F, Dong M. Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv Mater. 2016;28(46):10224-10229.

[39]

Yu X, Yu P, Wu D, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun. 2018;9(1):1545.

[40]

Fu L, Hu D, Mendes R, et al. Highly organized epitaxy of Dirac semimetallic PtTe2 crystals with extrahigh conductivity and visible surface plasmons at edges. ACS Nano. 2018;12(9):9405-9411.

[41]

Dai C, Li B, Li J, et al. Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Res. 2020;13(9):2506-2511.

[42]

Ge J, Luo T, Lin Z, et al. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv Mater. 2021;33(4):2005465.

[43]

Zhang Z, Niu J, Yang P, et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv Mater. 2017;29(37):1702359.

[44]

Shi J, Chen X, Zhao L, et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv Mater. 2018;30(44):1804616.

[45]

Ma H, Huang K, Wu R, et al. In-plane epitaxial growth of 2D CoSe-WSe2 metal-semiconductor lateral heterostructures with improved WSe2 transistors performance. InfoMat. 2021;3(2):222-228.

[46]

Shi J, Huan Y, Xiao M, et al. Two-dimensional metallic NiTe2 with ultrahigh environmental stability, conductivity, and electrocatalytic activity. ACS Nano. 2020;14(7):9011-9020.

[47]

Kang L, Ye C, Zhao X, et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat Commun. 2020;11(1):3729.

[48]

Zhang H, Li Q, Hossain M, et al. Phase-selective synthesis of ultrathin FeTe nanoplates by controllable Fe/Te atom ratio in the growth atmosphere. Small. 2021;17(33):2101616.

[49]

Wen Y, Liu Z, Zhang Y, et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020;20(5):3130-3139.

[50]

Tang B, Wang X, Han M, et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat Electron. 2022;5(4):224-232.

[51]

Shi J, Huan Y, Zhao X, et al. Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano. 2021;15(1):1858-1868.

[52]

Wang P, Ge J, Luo J, et al. Interisland-distance-mediated growth of centimeter-scale two-dimensional magnetic Fe3O4 arrays with unidirectional domain orientations. Nano Lett. 2023;23(5):1758-1766.

[53]

Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater. 2015;27(48):8035-8041.

[54]

Jiang S, Wang G, Deng H, et al. General synthesis of 2D magnetic transition metal dihalides via trihalide reduction. ACS Nano. 2023;17(1):363-371.

[55]

Zhao M, Yang S, Zhang K, et al. A universal atomic substitution conversion strategy towards synthesis of large-size ultrathin nonlayered two-dimensional materials. Nano-Micro Lett. 2021;13(1):165.

[56]

George A, Mutlu Z, Ionescu R, et al. Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Adv Funct Mater. 2014;24(47):7461-7466.

[57]

Cheng R, Wen Y, Yin L, et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv Mater. 2017;29(35):1703122.

[58]

Zhou N, Gan L, Yang R, et al. Nonlayered two-dimensional defective semiconductor gamma-Ga2S3 toward broadband photodetection. ACS Nano. 2019;13(6):6297-6307.

[59]

Chen C, Chen X, Wu C, et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv Mater. 2022;34(2):2107512.

[60]

Zhou N, Zhang Z, Wang F, et al. Spin ordering induced broadband photodetection based on two-dimensional magnetic semiconductor α-MnSe. Adv Sci. 2022;9(22):2202177.

[61]

Pei K, Ji S, Zhao M, et al. 2D metal-organic complex luminescent crystals. Adv Funct Mater. 2021;31(45):2106160.

[62]

Ji Q, Li C, Wang J, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017;17(8):4908-4916.

[63]

Ye G, Gong Y, Lei S, et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 2017;10(7):2386-2394.

[64]

Wu K, Chen B, Yang S, et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett. 2016;16(9):5888-5894.

[65]

Rosli N, Lau K, Winie T, et al. Rapid microwave synthesis of molybdenum disulfide-decorated reduced-graphene oxide nanosheets for use in high electrochemical performance supercapacitors. J Energy Storage. 2022;52:104991.

[66]

Lee Y, Lee J, Chung H, et al. In situ scanning transmission electron microscopy study of MoS2 formation on graphene with a deep-learning framework. ACS Omega. 2021;6(33):21623-21630.

[67]

Kwon K, Choi S, Lee J, et al. Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J Mater Chem A. 2017;5(30):15534-15542.

[68]

Liu K, Zhang W, Lee Y, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012;12(3):1538-1544.

[69]

Shi Y, Zhou W, Lu A, et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012;12(6):2784-2791.

[70]

Gong Y, Li B, Ye G, et al. Direct growth of MoS2 single crystals on polyimide substrates. 2D Mater. 2017;4(2):021028.

[71]

Zhang X, Zhang F, Wang Y, et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano. 2019;13(3):3341-3352.

[72]

Zhu H, Nayir N, Choudhury T, et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat Nanotechnol. 2023;18:1295-1302.

[73]

Ji R, Liao J, Li L, et al. Step-edge controlled fast growth of wafer-scale MoSe2 films by MOCVD. Nano Res. 2023;16(7):9577-9583.

[74]

Shi Y, Groven B, Serron J, et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano. 2021;15(6):9482-9494.

[75]

Liu Y, Gu F. A wafer-scale synthesis of monolayer MoS2 and their field-effect transistors toward practical applications. Nanoscale Adv. 2021;3(8):2117-2138.

[76]

Simonson N, Nasr J, Subramanian S, et al. Low-temperature metalorganic chemical vapor deposition of molybdenum disulfide on multicomponent glass substrates. Flatchem. 2018;11:32-37.

[77]

Mawlong L, Hoang A, Chintalapalli J, et al. Reduced defect density in MOCVD-grown MoS2 by manipulating the precursor phase. ACS Appl Mater Interfaces. 2023;15(40):47359-47367.

[78]

Eichfeld S, Hossain L, Lin Y, et al. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano. 2015;9(2):2080-2087.

[79]

Lee E, Dhakal K, Song H, et al. Anomalous temperature and polarization dependences of photoluminescence of metal-organic chemical vapor deposition-grown GeSe2. Adv Opt Mater. 2024;12(2):2301355.

[80]

Kang M, Jeong H, Shim Y, et al. Layer-controlled growth of single-crystalline 2D Bi2O2Se film driven by interfacial reconstruction. ACS Nano. 2024;18(1):819-828.

[81]

Pecz B, Nicotra G, Giannazzo F, et al. Indium nitride at the 2D limit. Adv Mater. 2021;33(1):2006660.

[82]

Wang W, Zheng Y, Li X, et al. 2D AlN layers sandwiched between graphene and Si substrates. Adv Mater. 2019;31(2):1803448.

[83]

Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015;520(7549):656-660.

[84]

Song S, Jeon S, Rahaman M, et al. Wafer-scale growth of two-dimensional, phase-pure InSe. Matter. 2023;6(10):3483-3498.

[85]

Zhu J, Park J, Vitale S, et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat Nanotechnol. 2023;18(5):456-463.

[86]

Hoang A, Hu L, Kim B, et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat Nanotechnol. 2023;18:1439-1447.

[87]

Zhang X, Choudhury T, Chubarov M, et al. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018;18(2):1049-1056.

[88]

Mun J, Park H, Park J, et al. High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal-organic chemical vapor deposition. ACS Appl Electron Mater. 2019;1(4):608-616.

[89]

Cohen A, Patsha A, Mohapatra P, et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers. ACS Nano. 2021;15(1):526-538.

[90]

Zhang K, Bersch B, Zhang F, et al. Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS Appl Mater Interfaces. 2018;10(47):40831-40837.

[91]

Bui Q, Ardila G, Sarigiannidou E, et al. Morphology transition of ZnO from thin film to nanowires on silicon and its correlated enhanced zinc polarity uniformity and piezoelectric responses. ACS Appl Mater Interfaces. 2020;12(26):29583-29593.

[92]

Kalanyan B, Kimes W, Beams R, et al. Rapid wafer-scale growth of polycrystalline 2H-MoS2 by pulsed metal-organic chemical vapor deposition. Chem Mater. 2017;29(15):6279-6288.

[93]

Choi J, Ha M, Park J, et al. A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature. Adv Mater Interfac. 2022;9(4):2101785.

[94]

Li M, Liu D, Wei D, et al. Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Adv Sci. 2016;3(11):1600003.

[95]

Wu Z, Zhang Y, Li L, et al. Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn-air batteries. J Mater Chem A. 2020;8(44):23248-23256.

[96]

Liu D, Chen X, Yan Y, et al. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nat Commun. 2019;10:1188.

[97]

Kim Y, Kwon S, Seo E, et al. Facile fabrication of a two-dimensional TMD/Si heterojunction photodiode by atmospheric-pressure plasma-enhanced chemical vapor deposition. ACS Appl Mater Interfaces. 2018;10(42):36136-36143.

[98]

Jugdersuren B, Liu X, Culbertson J, et al. Hydrogenated silicene grown by plasma enhanced chemical-vapor deposition. J Appl Phys. 2023;134(21):214303.

[99]

Seok H, Lee I, Cho J, et al. Synthesis of vertically aligned wafer-scale tantalum disulfide using high-Ar/H2S ratio plasma. Nanotechnology. 2022;33(2):025603.

[100]

Kim U, Lee I, Bae J, et al. Graphene/carbon nanotube hybrid-based transparent 2D optical array. Adv Mater. 2011;23(33):3809-3814.

[101]

Kim J, Sakakita H, Itagaki H. Low-temperature graphene growth by forced convection of plasma-excited radicals. Nano Lett. 2019;19(2):739-746.

[102]

Su T, Medina H, Chen Y, et al. Phase-engineered PtSe2-layered films by a plasma-assisted selenization process toward all PtSe2-based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small. 2018;14(19):1800032.

[103]

Zhang J, Ou Y, Yang J, et al. Fabrication of Sb2S3 thin films by low-temperature plasma-sulfurizing metallic Sb layers. ACS Appl Energy Mater. 2021;4(12):13860-13867.

[104]

Kim H, Kanade V, Kim M, et al. Wafer-scale and low-temperature growth of 1T-WS2 film for efficient and stable hydrogen evolution reaction. Small. 2020;16(6):1905000.

[105]

Seok H, Megra Y, Kanade C, et al. Low-temperature synthesis of wafer-scale MoS2-WS2 vertical heterostructures by single-step penetrative plasma sulfurization. ACS Nano. 2021;15(1):707-718.

[106]

Ahn C, Lee J, Kim H, et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv Mater. 2015;27(35):5223-5229.

[107]

Bala A, Liu N, Sen A, et al. Low-temperature plasma-assisted growth of large-area MoS2 for transparent phototransistors. Adv Funct Mater. 2022;32(44):2205106.

[108]

Kim H, Kim M, Seok H, et al. Realization of wafer-scale 1T-MoS2 film for efficient hydrogen evolution reaction. ChemSusChem. 2021;14(5):1344-1350.

[109]

Medina H, Li J, Su T, et al. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem Mater. 2017;29(4):1587-1598.

[110]

Zhang G, Chen L, Wang L, et al. Subnanometer-thick 2D GaN film with a large bandgap synthesized by plasma enhanced chemical vapor deposition. J Mater Chem A. 2022;10(8):4053-4059.

[111]

Kanade C, Seok H, Kanade V, et al. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Appl Mater Interfaces. 2021;13(7):8710-8717.

[112]

Kim K, Lee D, Chang C, et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature. 2023;614:88-94.

[113]

Seo J, Kim J, Lee J, et al. Intergranular diffusion-assisted liquid-phase chemical vapor deposition for wafer-scale synthesis of patternable 2D semiconductors. Adv Funct Mater. 2022;32(44):2205695.

[114]

Jung Y, Ryu H, Kim H, et al. Nucleation and growth of monolayer MoS2 at multisteps of MoO2 crystals by sulfurization. ACS Nano. 2023;17(8):7865-7871.

[115]

Jin Y, Sun J, Zhang L, et al. Controllable oxidation of ZrS2 to prepare high-kappa, single-crystal m-ZrO2 for 2D electronics. Adv Mater. 2023;35(18):2212079.

[116]

Wang F, Wu J, Zhang Y, et al. High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci China Mater. 2021;65(2):451-459.

[117]

Li H, Yang J, Li X, et al. Bridging synthesis and controllable doping of monolayer 4 in. length transition-metal dichalcogenides single crystals with high electron mobility. Adv Mater. 2023;35(23):2211536.

[118]

Zheng Z, Hai L, Zhang H, et al. Epitaxy of wafer-scale bilayer MoS2 thin film for P-N diodes. Matter. 2022;5(11):3580-3582.

[119]

Wang P, Selhorst R, Emrick T, et al. Bidirectional electronic tuning of single-layer MoS2 with conjugated organochalcogens. J Phys Chem C. 2019;123(2):1506-1511.

[120]

Mortelmans W, De Gendt S, Heyns M, et al. Epitaxy of 2D chalcogenides: aspects and consequences of weak van der Waals coupling. Appl Mater Today. 2021;22:100975.

[121]

Koma A, Sunouchi K, Miyajima T. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron Eng. 1984;2(1/2/3):129-136.

[122]

Shim J, Jo S, Kim M, et al. Light-triggered ternary device and inverter based on heterojunction of van der Waals materials. ACS Nano. 2017;11(6):6319-6327.

[123]

Chang Y, Yang W, Lo W, et al. Direct growth of flexible GaN film via van der Waals epitaxy on mica. Mater Today Chem. 2022;26:101243.

[124]

Walsh L, Hinkle C. Van der Waals epitaxy:2D materials and topological insulators. Appl Mater Today. 2017;9:504-515.

[125]

Li H, Li Y, Aljarb A, et al. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem Rev. 2018;118(13):6134-6150.

[126]

Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial mono layer MoS2. ACS Nano. 2015;9(4):4611-4620.

[127]

Gong C, Hu K, Wang X, et al. 2D nanomaterial arrays for electronics and optoelectronics. Adv Funct Mater. 2018;28(16):1706559.

[128]

Wan Y, Xiao J, Li J, et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv Mater. 2018;30(5):1703888.

[129]

Zhang J, Huang Y, Tan Z, et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv Mater. 2018;30(36):1803194.

[130]

Niu L, Li Y, Zhao M, et al. Van der Waals template-assisted low-temperature epitaxial growth of 2D atomic crystals. Adv Funct Mater. 2022;32(35):2202580.

[131]

Zhang K, She Y, Cai X, et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat Nanotechnol. 2023;18:448-455.

[132]

Zhao B, Dang W, Yang X, et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019;12(7):1683-1689.

[133]

Wang P, Yang D, Pi X. Toward wafer-scale production of 2D transition metal chalcogenides. Adv Electron Mater. 2021;7(8):2100278.

[134]

Wang Q, Safdar M, Xu K, et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano. 2014;8(7):7497-7505.

[135]

Zhou J, Liu F, Lin J, et al. Large-area and high-quality 2D transition metal telluride. Adv Mater. 2017;29(3):1603471.

[136]

Yun S, Han G, Kim H, et al. Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nat Commun. 2017;8:2163.

[137]

Hao S, Zeng J, Xu T, et al. Low-temperature eutectic synthesis of PtTe2 with weak antilocalization and controlled layer thinning. Adv Funct Mater. 2018;28(36):1803746.

[138]

Gong Y, Lin Z, Ye G, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano. 2015;9(12):11658-11666.

[139]

Cui F, Wang C, Li X, et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv Mater. 2016;28(25):5019-5024.

[140]

Liu H, Wu R, Hossain M, et al. Tellurium-assisted and space-confined growth of graphene single crystals. Carbon. 2021;173:54-60.

[141]

Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater. 2014;13(12):1135-1142.

[142]

Zavabeti A, Aukarasereenont P, Tuohey H, et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat Electron. 2021;4:447.

[143]

Qin J, Shao W, Xu C, et al. Chemical vapor deposition growth of degenerate p-Type Mo-doped ReS2 films and their homojunction. ACS Appl Mater Interfaces. 2017;9(18):15583-15591.

[144]

Lu W, Yamamoto Y, Petrykin V, et al. Flux-assisted reactive solid phase epitaxy of highly c-axis oriented Ru(Eu1.5Ce0.5)Sr2Cu2O10−δ thin films. Physica C. 2005;422(1/2):46-50.

[145]

Wang Z, Pang F. In-plane growth of large ultra-thin SnS2 nanosheets by tellurium-assisted chemical vapor deposition. RSC Adv. 2017;7(46):29080-29087.

[146]

Valente I, Rodrigues J. Recent advances in salt-assisted LLE for analyzing biological samples. Bioanalysis. 2015;7(17):2187-2193.

[147]

Jiang S, Yang J, Shi Y, et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. 2020;13(3):667-675.

[148]

Xu X, Zhong T, Zuo N, et al. High-TC two-dimensional ferroelectric CuCrS2 grown via chemical vapor deposition. ACS Nano. 2022;16(5):8141-8149.

[149]

Yang S, Liu K, Han W. Salt-assisted growth of p-type Cu9S5 nanoflakes for p-n heterojunction photodetectors with high responsivity. Adv Funct Mater. 2020;30(7):1908382.

[150]

Wang H, Sandoz-Rosado E, Tsang S, et al. Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition. Adv Funct Mater. 2019;29(31):1902663.

[151]

Dong Y, Lu D, Xu Z, et al. 2-thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv Energy Mater. 2020;10(28):2000694.

[152]

Zhao K, Ye F, Cheng L, et al. Formation of ultra-high temperature ceramic hollow microspheres as promising lightweight thermal insulation materials via a molten salt-assisted template method. ACS Appl Mater Interfaces. 2021;13(31):37388-37397.

[153]

Zhang W, Fan K, Chuang C, et al. Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. J Energy Chem. 2021;61:612-621.

[154]

Gu J, Zhang C, Du Z, et al. Rapid and low-temperature salt-templated production of 2D metal oxide/oxychloride/hydroxide. Small. 2019;15(45):1904587.

[155]

Han W, Liu K, Yang S, et al. Salt-assisted chemical vapor deposition of two-dimensional materials. Sci China Chem. 2019;62(10):1300-1311.

[156]

Zhao Y, Zhang Z, Huang J, et al. Salt-promoted growth of monolayer tungsten disulfide on hexagonal boron nitride using all chemical vapor deposition approach. Appl Surf Sci. 2022;605:154812.

[157]

You J, Pan J, Shang S, et al. Salt-assisted selective growth of H-phase monolayer VSe2 with apparent hole transport behavior. Nano Lett. 2022;22(24):10167-10175.

[158]

Shu Z, Peng Q, Huang P, et al. Growth of ultrathin ternary teallite (PbSnS2) flakes for highly anisotropic optoelectronics. Matter. 2020;2(4):977-987.

[159]

Kim M, Son M, Seo D, et al. Dual catalytic and self-assembled growth of two-dimensional transition metal dichalcogenides through simultaneous predeposition process. Small. 2023;19(22):2206350.

[160]

Li S, Wang S, Tang D, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl Mater Today. 2015;1(1):60-66.

[161]

Safeer S, Moutinho M, Barreto A, et al. Sodium-mediated low-temperature synthesis of monolayers of molybdenum disulfide for nanoscale optoelectronic devices. ACS Appl Nano Mater. 2021;4(4):4172-4180.

[162]

Liu K, Jin B, Han W, et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat Electron. 2021;4(12):906-913.

[163]

Yang H, Zhao Y, Wen Q, et al. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021;14(12):4814-4821.

[164]

Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355-359.

[165]

Liu X, He D, He J, et al. Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant. Chin Phys B. 2019;28(11):118101.

[166]

Xu L, Zhang P, Jiang H, et al. Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small. 2019;15(46):1904116.

[167]

Singh A, Moun M, Sharma M, et al. NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Appl Surf Sci. 2021;538:148201.

[168]

Reale F, Palczynski P, Amit I, et al. High-mobility and high-optical quality atomically thin WS2. Sci Rep. 2017;7:14911.

[169]

Su J, Wang M, Li Y, et al. Sub-millimeter-scale monolayer p-Type H-Phase VS2. Adv Funct Mater. 2020;30(17):2000240.

[170]

Cui F, Zhao X, Xu J, et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv Mater. 2020;32(4):1905896.

[171]

Cui F, Zhao X, Tang B, et al. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small. 2022;18(4):2105744.

[172]

Liu C, Tseng Y, Huang C, et al. Atomic imaging and thermally induced dynamic structural evolution of two-dimensional Cr2S3. Nano Lett. 2022;22(19):7944-7951.

[173]

Gao Z, Ji Q, Shen P, et al. In situ-generated volatile precursor for CVD growth of a semimetallic 2D dichalcogenide. ACS Appl Mater Interfaces. 2018;10(40):34401-34408.

[174]

Chen P, Li D, Li Z, et al. Electric-tunable photoluminescence of 2D ErOCl for high-security encryption of programmable information. Adv Opt Mater. 2022;10(16):2102562.

[175]

Zhang B, Yun C, Wu H, et al. Two-dimensional wedge-shaped magnetic EuS: insight into the substrate step-guided epitaxial synthesis on sapphire. J Am Chem Soc. 2022;144(43):19758-19769.

[176]

Wang H, Huang X, Lin J, et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat Commun. 2017;8:394.

[177]

Wang X, Li Y, Zhuo L, et al. Controllable growth of two-dimensional WSe2 using salt as co-solvent. CrystEngComm. 2018;20(40):6267-6272.

[178]

Liu H, Bao L, Zhou Z, et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019;19(7):4551-4559.

[179]

Hu X, Huang P, Liu K, et al. Salt-assisted growth of ultrathin GeSe rectangular flakes for phototransistors with ultrahigh responsivity. ACS Appl Mater Interfaces. 2019;11(26):23353-23360.

[180]

Kang P, Nan H, Zhang X, et al. Controllable synthesis of crystalline ReS2(1-x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv Opt Mater. 2020;8(4):1901415.

[181]

Zhang Z, Zhao B, Shen D, et al. Synthesis of ultrathin 2D nonlayered α-MnSe nanosheets, MnSe/WS2 heterojunction for high-performance photodetectors. Small Struct. 2021;2(8):2100028.

[182]

Khan U, Nairan A, Khan K, et al. Salt-assisted low-temperature growth of 2D Bi2O2Se with controlled thickness for electronics. Small. 2023;19(10):2206648.

[183]

Hu X, Huang P, Jin B, et al. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. J Am Chem Soc. 2018;140(40):12909-12914.

[184]

Wang Z, Xie Y, Wang H, et al. NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures. Nanotechnology. 2017;28(32):325602.

[185]

Zhang B, Zhu Y, Zeng Y, et al. General approach for two-dimensional rare-earth oxyhalides with high gate dielectric performance. J Am Chem Soc. 2023;145(20):11074-11084.

[186]

Qin B, Saeed M, Li Q, et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat Commun. 2023;14(1):304.

[187]

Manukyan K, Kirakosyan K, Grigoryan Y, et al. Mechanism of molten-salt-controlled thermite reactions. Ind Eng Chem Res. 2011;50(19):10982-10988.

[188]

Jin B, Huang P, Zhang Q, et al. Self-limited epitaxial growth of ultrathin nonlayered CdS flakes for high-performance photodetectors. Adv Funct Mater. 2018;28(20):1800181.

[189]

Yang P, Zou X, Zhang Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun. 2018;9:979.

[190]

Liu Q, Hu X, Liu Y, et al. One-step low-temperature molten salt synthesis of two-dimensional Si@SiOx@C hybrids for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(50):55844-55855.

[191]

Purwiandono G, Manseki K, Sugiura T, et al. Photo-electrochemical property of 2D hexagonal-shape GaN nanoplates synthesized using solid nitrogen source in molten salt. J Photochem Photobiol, A. 2020;394:112499.

[192]

Li T, Xu Y, Qian X, Yue Q, Kang Y. Low-temperature molten salt synthesis for ligand-free transition metal oxide nanoparticles. ACS Appl Energy Mater. 2020;3(4):3984-3990.

[193]

Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun. 2012;3:699.

[194]

Marchena M, Janner D, Chen T, et al. Low temperature direct growth of graphene patterns on flexible glass substrates catalysed by a sacrificial ultrathin Ni film. Opt Mater Express. 2016;6(8):2487-2507.

[195]

Chen Y, Medina H, Tsai H, et al. Low temperature growth of graphene on glass by carbon-enclosed chemical vapor deposition process and its application as transparent electrode. Chem Mater. 2015;27(5):1646-1655.

[196]

Park B, Choi J, Eom J, et al. Defect-free graphene synthesized directly at 150 °C via chemical vapor deposition with no transfer. ACS Nano. 2018;12(2):2008-2016.

[197]

Ruemmeli M, Bachmatiuk A, Scott A, et al. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano. 2010;4(7):4206-4210.

[198]

Bi H, Sun S, Huang F, et al. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J Mater Chem. 2012;22(2):411-416.

[199]

Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009;9(12):4268-4272.

[200]

Zhang X, Wu T, Jiang Q, et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small. 2019;15(22):1805395.

[201]

Zhou Y, Deng B, Zhou Y, et al. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Lett. 2016;16(3):2103-2107.

[202]

Yoo C, Adepu V, Han S, et al. Low-temperature centimeter-scale growth of layered 2D SnS for piezoelectric kirigami devices. ACS Nano. 2023;17(20):20680-20688.

[203]

Zeng L, Wu D, Lin S, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater. 2019;29(1):1806878.

[204]

Mayyas M, Li H, Kumar P, et al. Liquid-metal-templated synthesis of 2D graphitic materials at room temperature. Adv Mater. 2020;32(29):2001997.

[205]

Geng D, Yu G. Liquid catalysts: an innovative solution to 2D materials in CVD processes. Mater Horiz. 2018;5(6):1021-1034.

[206]

Chen Y, Liu K, Liu J, et al. Growth of 2D GaN single crystals on liquid metals. J Am Chem Soc. 2018;140(48):16392-16395.

[207]

Sun X, Zhao S, Bachmatiuk A, et al. 2D intrinsic ferromagnetic MnP single crystals. Small. 2020;16(29):2001484.

[208]

Hiyama T, Murakami K, Kuwajima T, et al. Low-temperature growth of graphene using interfacial catalysis of molten gallium and diluted methane chemical vapor deposition. Appl Phys Express. 2015;8(9):095102.

[209]

Wang J, Chen L, Wu N, et al. Uniform graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon. 2016;96:799-804.

[210]

Zou Z, Liang J, Zhang X, et al. Liquid-metal-assisted growth of vertical GaSe/MoS2 p-n heterojunctions for sensitive self-driven photodetectors. ACS Nano. 2021;15(6):10039-10047.

[211]

Wang F, Gao T, Zhang Q, et al. Liquid-alloy-assisted growth of 2D ternary Ga2IN4S9 toward high-performance UV photodetection. Adv Mater. 2019;31(2):1806306.

[212]

Chaitoglou S, Giannakopoulou T, Speliotis T, et al. MO2C/graphene heterostructures: low temperature chemical vapor deposition on liquid bimetallic Sn-Cu and hydrogen evolution reaction electrocatalytic properties. Nanotechnology. 2019;30(12):125401.

[213]

Ko T, Han S, Okogbue E, et al. Wafer-scale 2D PtTe2 layers-enabled kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Appl Mater Today. 2020;20:100718.

[214]

Yim C, Lee K, McEvoy N, et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano. 2016;10(10):9550-9558.

[215]

Liu Y, Fang Y, Yang D, et al. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J Phys Condens Matter. 2022;34(18):183001.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

316

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/