Developments of photo-/electro-catalysis based on covalent organic frameworks: A review

Guiping Yang , Qing Xu , Gaofeng Zeng

Electron ›› 2024, Vol. 2 ›› Issue (4) : e39

PDF
Electron ›› 2024, Vol. 2 ›› Issue (4) : e39 DOI: 10.1002/elt2.39
REVIEW

Developments of photo-/electro-catalysis based on covalent organic frameworks: A review

Author information +
History +
PDF

Abstract

Photo-/electro-catalysis has the characteristics of low cost, high performance, and zero pollution, which meet the policies on environment and energy. Covalent organic frameworks (COFs), a type of crystalline organic skeleton polymers, have been widely applied and investigated in the area of photo-/electro-catalysis owing to their advantages of large specific surface area, regular pore size, excellent stability, flexible structural design, and massive active sites. This article reviews the structural characteristics of COFs and the strategies for strengthening the photo-/electro-catalytic activity of COF materials. Subsequently, deep insights were put into the photo-/electro-catalysis application of COF materials. In the end, the development prospects and challenges faced by COF materials in photo-/electro-catalysis are discussed.

Keywords

covalent organic frameworks / electrocatalysis / photocatalysis

Cite this article

Download citation ▾
Guiping Yang, Qing Xu, Gaofeng Zeng. Developments of photo-/electro-catalysis based on covalent organic frameworks: A review. Electron, 2024, 2(4): e39 DOI:10.1002/elt2.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu N, Liu Y, Yang W, et al. 2D–2D heterojunctions of a covalent triazine framework with a triphenylphosphine-based covalent organic framework for efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater. 2020;3(12):11939-11946.

[2]

Li N, Liu J, Dong B-X, Lan Y-Q. Polyoxometalate-based compounds for photo-and electrocatalytic applications. Angew Chem Int Ed. 2020;59(47):20779-20793.

[3]

Jiang Y, Fan Y, Li S, Tang Z. Photocatalytic methane conversion: insight into the mechanism of C(sp3)–H bond activation. CCS Chem. 2022;5(1):30-54.

[4]

Jiang Y, Li S, Fan X, Tang Z. Recent advances on aerobic photocatalytic methane conversion under mild conditions. Nano Res. 2023;16(11):12558-12571.

[5]

Jiang Y, Li S, Wang S, et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J Am Chem Soc. 2023;145(4):2698-2707.

[6]

Li X-T, Zou J, Wang T-H, Ma H-C, Chen G-J, Dong Y-B. Construction of covalent organic frameworks via three-component one-pot strecker and povarov reactions. J Am Chem Soc. 2020;142(14):6521-6526.

[7]

Yang X, Li X, Liu M, Yang S, Xu Q, Zeng G. Confined synthesis of dual-atoms within pores of covalent organic frameworks for oxygen reduction reaction. Small. 2023;2023:2306295.

[8]

Liu M, Jiang D, Fu Y, et al. Modulating skeletons of covalent organic framework for high-efficiency gold recovery. Angew Chem Int Ed. 2024;63(1):e202317015.

[9]

Gong D, Wen B, Wang L, et al. Alkadiyne–pyrene conjugated frameworks with surface exclusion effect for ultrafast seawater desalination. J Am Chem Soc. 2024;146(5):3075-3085.

[10]

Chen H, Liu X, Gong D, et al. Ultrahigh-water-flux desalination on graphdiyne membranes. Nature Water. 2023;1(9):800-807.

[11]

Ding S-Y, Dong M, Wang Y-W, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc. 2016;138(9):3031-3037.

[12]

Zheng S, Bi S, Fu Y, et al. 3D crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries. Adv Mater. 2024:e2313076.

[13]

Liu S, Liu M, Li X, Xu Q, Sun Y, Zeng G. Construction of dense H-bond acceptors in the channels of covalent organic frameworks for proton conduction. J Mater Chem A. 2023;11(26):13965-13970.

[14]

Liu S, Liu M, Xu Q, Zeng G. Lithium ion conduction in covalent organic frameworks. Chin J Struct Chem. 2022;41:2211003-2211017.

[15]

Yin M, Wang L, Tang S. Stable dicationic covalent organic frameworks manifesting notable structure-enhanced CO2 capture and conversion. ACS Catal. 2023;13(19):13021-13033.

[16]

Liu M, Kong HY, Bi S, et al. Non-interpenetrated 3D covalent organic framework with dia topology for Au ions capture. Adv Funct Mater. 2023;33:2302637.

[17]

Yin YC, Yang Y, Liu GJ, et al. Ultrafast solid-phase synthesis of 2D pyrene-alkadiyne frameworks toward efficient capture of radioactive iodine. Chem Eng J. 2022;441:135996.

[18]

Wu X, Hong Y-l, Xu B, et al. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J Am Chem Soc. 2020;142(33):14357-14364.

[19]

Guo X, Li Y, Zhang M, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid i2 adsorption. Angew Chem Int Ed. 2020;59(50):22697-22705.

[20]

Liu G, Li X, Liu M, et al. Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction. SusMat. 2023;3(6):834-842.

[21]

Liang Z, Shen R, Ng YH, et al. Covalent organic frameworks: fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catal. 2022;2(9):2157-2228.

[22]

Zhang L, Yang G-P, Xiao S-J, et al. Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium. Small. 2021;17(44):2102944.

[23]

Liu M, Liu S, Xu Q, et al. Dual atomic catalysts from COF-derived carbon for CO2RR by suppressing HER through synergistic effects. Carbon Energy. 2023;5(6):e300.

[24]

Gong Y-N, Guan X, Jiang H-L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance. Coord Chem Rev. 2023;475:214889.

[25]

Cui X, Lei S, Wang AC, et al. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy. 2020;70:104525.

[26]

Huang S, Chen K, Li T-T. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord Chem Rev. 2022;464:214563.

[27]

Han W-K, Liu Y, Yan X, Jiang Y, Zhang J, Gu Z-G. Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution. Angew Chem Int Ed. 2022;61(40):e202208791.

[28]

Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. 3D porphyrin-based covalent organic frameworks. J Am Chem Soc. 2017;139(25):8705-8709.

[29]

Ding J, Guan X, Lv J, et al. Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J Am Chem Soc. 2023;145(5):3248-3254.

[30]

Liu M, Liu S, Cui C-X, et al. Construction of catalytic covalent organic frameworks with redox-active sites for the oxygen reduction and the oxygen evolution reaction. Angew Chem Int Ed. 2022;61(49):e202213522.

[31]

Chen R, Shi J-L, Ma Y, Lin G, Lang X, Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed. 2019;58(19):6430-6434.

[32]

Wu Q, Mao M-J, Wu Q-J, Liang J, Huang Y-B, Cao R. Construction of donor–acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small. 2021;17(22):2004933.

[33]

Haase F, Lotsch BV. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem Soc Rev. 2020;49(23):8469-8500.

[34]

Wang J, Zhuang S. Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev. 2019;400:213046.

[35]

Sun L, Lu M, Yang Z, et al. Nickel glyoximate based metal–covalent organic frameworks for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed. 2022;61(30):e202204326.

[36]

Guo Y, Xu Q, Yang S, Jiang Z, Yu C, Zeng G. Precise design of covalent organic frameworks for electrocatalytic hydrogen peroxide production. Chem Asian J. 2021;16(5):498-502.

[37]

Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42(2):548-568.

[38]

Huang N, Krishna R, Jiang D. Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening. J Am Chem Soc. 2015;137(22):7079-7082.

[39]

Yang S, Hu W, Zhang X, et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J Am Chem Soc. 2018;140(44):14614-14618.

[40]

Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem Mater. 2016;28(12):4375-4379.

[41]

Li H, Liu H, Li C, Liu J, Liu J, Yang Q. Micro-scale spatial location engineering of COF–TiO2 heterojunctions for visible light driven photocatalytic alcohol oxidation. J Mater Chem A. 2020;8(36):18745-18754.

[42]

Miao Q, Yang S, Xu Q, et al. Constructing synergistic Zn-N4 and Fe-N4O dual-sites from the COF@MOF derived hollow carbon for oxygen reduction reaction. Small Struct. 2022;3(4):2100225.

[43]

Mi Z, Zhou T, Weng W, et al. Covalent organic frameworks enabling site isolation of viologen-derived electron-transfer mediators for stable photocatalytic hydrogen evolution. Angew Chem Int Ed. 2021;60(17):9642-9649.

[44]

Guo Y, Yang S, Xu Q, Wu P, Jiang Z, Zeng G. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon toward efficient oxygen reduction reaction. J Mater Chem A. 2021;9(23):13625-13630.

[45]

Qi S, Guo R, Bi Z, Zhang Z, Li C, Pan W. Recent progress of covalent organic frameworks-based materials in photocatalytic applications: a review. Small. 2023;19(48):2303632.

[46]

Weng W, Guo J. The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution. Nat Commun. 2022;13(1):5768.

[47]

Yang Q, Luo M, Liu K, Cao H, Yan H. Covalent organic frameworks for photocatalytic applications. Appl Catal, B. 2020;276:119174.

[48]

Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-based covalent organic frameworks with Kagome lattice for boosting photocatalytic hydrogen evolution. Adv Mater. 2023;36(1):2308251.

[49]

Stegbauer L, Schwinghammer K, Lotsch BV. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci. 2014;5(7):2789-2793.

[50]

Yang S, Lv H, Zhong H, Yuan D, Wang X, Wang R. Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis. Angew Chem Int Ed. 2022;61(10):e202115655.

[51]

Hao L, Shen R, Huang C, et al. Fluorenone-based covalent organic frameworks with efficient exciton dissociation and well-defined active center for remarkable photocatalytic hydrogen evolution. Appl Catal, B. 2023;330:122581.

[52]

You J, Zhao Y, Wang L, Bao W. Recent developments in the photocatalytic applications of covalent organic frameworks: a review. J Clean Prod. 2021;291:125822.

[53]

Ran J, Jaroniec M, Qiao S-Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. 2018;30(7):1704649.

[54]

Zhou M, Wang Z, Mei A, et al. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nat Commun. 2023;14(1):2473.

[55]

Zou L, Sa R, Zhong H, Lv H, Wang X, Wang R. Photoelectron transfer mediated by the interfacial electron effects for boosting visible-light-driven CO2 reduction. ACS Catal. 2022;12(6):3550-3557.

[56]

Gong L-J, Liu L-Y, Zhao S-S, et al. Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction. Chem Eng J. 2023;458:141360.

[57]

Wang J, Dai Z, Wang L, et al. A Z-scheme heterojunction of porphyrin-based core–shell Zr-MOF@Pro-COF-Br hybrid materials for efficient visible-light-driven CO2 reduction. J Mater Chem A. 2023;11(4):2023-2030.

[58]

Yang X, Lan X, Zhang Y, Li H, Bai G. Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane. Appl Catal, B. 2023;325:122393.

[59]

Li X, Wang J, Xue F, et al. An imine-linked metal–organic framework as a reactive oxygen species generator. Angew Chem Int Ed. 2020;60(5):2534-2540.

[60]

Wang G-B, Li S, Yan C-X, et al. Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. J Mater Chem A. 2020;8(15):6957-6983.

[61]

Wang H, Wang H, Wang Z, et al. Covalent organic framework photocatalysts: structures and applications. Chem Soc Rev. 2020;49(12):4135-4165.

[62]

Jiang Y, Zhao W, Li S, et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J Am Chem Soc. 2022;144(35):15977-15987.

[63]

Wu S, Li Y, Wang T, et al. Design and synthesis of dual functional porphyrin-based COFs as highly selective adsorbent and photocatalyst. Chem Eng J. 2023;470:144135.

[64]

Hao W, Chen D, Li Y, et al. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis. Chem Mater. 2019;31(19):8100-8105.

[65]

Qian Y, Li D, Han Y, Jiang H-L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J Am Chem Soc. 2020;142(49):20763-20771.

[66]

Wang Q-Y, Liu J, Cao M, et al. Aminal-linked porphyrinic covalent organic framework for rapid photocatalytic decontamination of mustard-gas simulant. Angew Chem Int Ed. 2022;61(32):e202207130.

[67]

Li S, Dai L, Li L, et al. Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. J Mater Chem A. 2022;10(25):13325-13332.

[68]

Li Q, Lan X, An G, Ricardez-Sandoval L, Wang Z, Bai G. Visible-light-responsive anthraquinone functionalized covalent organic frameworks for metal-free selective oxidation of sulfides: effects of morphology and structure. ACS Catal. 2020;10(12):6664-6675.

[69]

Atilgan A, Islamoglu T, Howarth AJ, Hupp JT, Farha OK. Detoxification of a sulfur mustard simulant using a BODIPY-functionalized zirconium-based metal–organic framework. ACS Appl Mater Interfaces. 2017;9(29):24555-24560.

[70]

Liu Y, Howarth AJ, Hupp JT, Farha OK. Selective Photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal–organic framework. Angew Chem Int Ed. 2015;54(31):9001-9005.

[71]

Atilgan A, Cetin MM, Yu J, et al. Post-synthetically elaborated BODIPY-based porous organic polymers (POPs) for the photochemical detoxification of a sulfur mustard simulant. J Am Chem Soc. 2020;142(43):18554-18564.

[72]

Long Z-H, Luo D, Wu K, et al. Superoxide ion and singlet oxygen photogenerated by metalloporphyrin-based metal–organic frameworks for highly efficient and selective photooxidation of a sulfur mustard simulant. ACS Appl Mater Interfaces. 2021;13(31):37102-37110.

[73]

Chen W, Yang Z, Xie Z, et al. Benzothiadiazole functionalized D–A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(vi). J Mater Chem A. 2019;7(3):998-1004.

[74]

Yue J-Y, Wang Y-T, Ding X-L, et al. Single-atom substitution in donor–acceptor covalent organic frameworks for tunable visible light photocatalytic Cr(vi) reduction. Mater Chem Front. 2022;6(24):3748-3754.

[75]

Cui WR, Li FF, Xu RH, et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew Chem Int Ed. 2020;59(40):17684-17690.

[76]

Liu X, Wang X, Jiang W, et al. Covalent organic framework modified carbon nanotubes for removal of uranium (VI) from mining wastewater. Chem Eng J. 2022;450:138062.

[77]

Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces. 2018;10:8527-8535.

[78]

Guan Q, Zhou L-L, Lv F-H, Li W-Y, Li Y-A, Dong Y-B. A glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew Chem Int Ed. 2020;59(41):18042-18047.

[79]

Zhou K, Qiu X, Xu L, et al. Poly(selenoviologen)-assembled upconversion nanoparticles for low-power single-NIR light-triggered synergistic photodynamic and photothermal antibacterial therapy. ACS Appl Mater Interfaces. 2020;12(23):26432-26443.

[80]

Wang D, Zhang Z, Lin L, et al. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials. 2019;223:119459.

[81]

Guan Q, Zhou LL, Li YA, et al. Nanoscale covalent organic framework for combinatorial antitumor photodynamic and photothermal therapy. ACS Nano. 2019;13(11):13304-13316.

[82]

Yang G-P, Meng X-L, Xiao S-J, et al. Construction of D–A-conjugated covalent organic frameworks with enhanced photodynamic, photothermal, and nanozymatic activities for efficient bacterial inhibition. ACS Appl Mater Interfaces. 2022;14(24):28289-28300.

[83]

Yong Z, Ma T. Solar-to-H2O2 catalyzed by covalent organic frameworks. Angew Chem Int Ed. 2023;62(49):e202308980.

[84]

Tan D, Zhuang R, Chen R, et al. Covalent organic frameworks enable sustainable solar to hydrogen peroxide. Adv Funct Mater. 2023.

[85]

Qiu J, Dai D, Yao J. Tailoring metal–organic frameworks for photocatalytic H2O2 production. Coord Chem Rev. 2024;501:215597.

[86]

Krishnaraj C, Sekhar Jena H, Bourda L, et al. Strongly reducing (diarylamino)benzene-Based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J Am Chem Soc. 2020;142(47):20107-20116.

[87]

McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB. Earth-abundant hydrogen evolution electrocatalysts. Chem Sci. 2014;5(3):865-878.

[88]

Liu M, Xu Q, Miao Q, et al. Atomic Co–N4 and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. J Mater Chem A. 2022;10(1):228-233.

[89]

McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc. 2015;137(13):4347-4357.

[90]

Zhao Y, Liang Y, Wu D, et al. Ruthenium complex of sp2 carbon-conjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small. 2022;18(14):2107750.

[91]

Ma Y, Fu Y, Jiang W, et al. Excellent electrocatalytic performance of metal-free thiophene–sulfur covalent organic frameworks for hydrogen evolution in alkaline medium. J Mater Chem A. 2022;10(18):10092-10097.

[92]

Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337-365.

[93]

Liu M, Fu Y, Bi S, et al. Dimensionally-controlled interlayer spaces of covalent organic frameworks for the oxygen evolution reaction. Chem Eng J. 2024;479:147682.

[94]

Xiao L, Qi L, Sun J, et al. Structural regulation of covalent organic frameworks for advanced electrocatalysis. Nano Energy. 2024;120:109155.

[95]

Guo Z, Yang S, Liu M, Xu Q, Zeng G. Construction of core-shelled covalent/metal–organic frameworks for oxygen evolution reaction. Small. 2023;2023:2308598.

[96]

Mondal S, Mohanty B, Nurhuda M, et al. A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020;10:5623-5630.

[97]

Gao Z, Gong LL, He XQ, Su XM, Xiao LH, Luo F. General strategy to fabricate metal-incorporated pyrolysis-free covalent organic framework for efficient oxygen evolution reaction. Inorg Chem. 2020;59(7):4995-5003.

[98]

Yang S, Li X, Tan T, et al. A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Appl Catal, B. 2022;307:121147.

[99]

Miao Q, Chen Z, Li X, et al. Construction of catalytic Fe2N5P sites in covalent organic framework-derived carbon for catalyzing the oxygen reduction reaction. ACS Catal. 2023;13(16):11127-11135.

[100]

Liu S, Liu M, Li X, et al. Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions. Carbon Energy. 2023;5: e303.

[101]

Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed. 2013;52(33):8526-8544.

[102]

Zhou X, Qiao J, Yang L, Zhang J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater. 2014;4(8):1301523.

[103]

Yue J-Y, Wang Y-T, Wu X, et al. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem Commun. 2021;57(94):12619-12622.

[104]

Chen H, Li Q-H, Yan W, Gu Z-G, Zhang J. Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction. Chem Eng J. 2020;401:126149.

[105]

Yang X, Li X, Liu M, Yang S, Xu Q, Zeng G. Quantitative construction of boronic-ester linkages in covalent organic frameworks for the carbon dioxide reduction. Angew Chem Int Ed. 2024;63(5):e2317785.

[106]

Liu M, Zhao X, Yang S, et al. Modulating the density of catalytic sites in multiple-component covalent organic frameworks for electrocatalytic carbon dioxide reduction. ACS Appl Mater Interfaces. 2023;15(37):44384-44393.

[107]

Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev. 2018;118(13):6337-6408.

[108]

Lim RJ, Xie M, Sk MA, et al. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today. 2014;233:169-180.

[109]

Lu Y, Zhang J, Wei W, Ma D-D, Wu X-T, Zhu Q-L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl Mater Interfaces. 2020;12(34):37986-37992.

[110]

Liu M, Yang S, Yang X, et al. Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat Commun. 2023;14(1):3800.

[111]

Fang B, Zhang C, Li J, et al. Enhanced ammonia synthesis activity of carbon-supported Mo catalyst by Mo carburization. Chem Commun. 2022;58(56):7785-7788.

[112]

Jiang M, Han L, Peng P, et al. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022;22(1):372-379.

RIGHTS & PERMISSIONS

2024 The Authors. Electron published by Harbin Institute of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/