Electrochemical Characterization and Modulation of Biological Processes

Yue-Qi Li , Wei-Hua Huang , De-Chen Jiang , Bao-Hong Liu , Bin Su , Yang Tian , Jing-Juan Xu , Ping Yu , Feng Zhao , Huang-Xian Ju , Jing-Hong Li

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (12) : 2516003

PDF (3537KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (12) :2516003 DOI: 10.61558/2993-074X.3599
Review
research-article

Electrochemical Characterization and Modulation of Biological Processes

Author information +
History +
PDF (3537KB)

Abstract

Electrochemical processes lie at the core of biological function, governing energy transduction, metabolic flux, and molecular signaling. Recent advances in electrochemical science now allow these processes to be probed and controlled with unprecedented spatial, temporal, and chemical resolution. In this review, we present an integrated framework that progresses from fundamental mechanisms to analytical technologies and functional modulation. We begin by outlining electron transfer pathways in mitochondrial respiration, microbial extracellular electron transfer, and DNA- and protein-based charge conduction, followed by the principles of photon-electron conversion in photosynthesis and the central role of redox equilibrium in coordinating cellular responses. We then highlight electrochemical analytical strategies that enable multiscale biological characterization, including biosensing, electrochemical and scanning probe imaging, electrogenerated chemiluminescence detection, and measurements of membrane potentials and neurotransmitter dynamics. Emerging platforms such as flexible biointerfaces, ultramicroelectrodes, and nanopore systems further extend these capabilities to in vivo and single-molecule contexts. Finally, we discuss how electrochemical inputs can be used to regulate metabolic pathways, microbial and protein activities, and neural signaling, enabling precision therapeutic and bioengineering applications. Together, these developments establish electrochemistry as a powerful foundation for decoding and directing biological systems.

Keywords

Electrochemical analysis / Single-cell electrochemistry / Biological electron transfer / Photosynthesis / Electrochemical biosensing

Cite this article

Download citation ▾
Yue-Qi Li, Wei-Hua Huang, De-Chen Jiang, Bao-Hong Liu, Bin Su, Yang Tian, Jing-Juan Xu, Ping Yu, Feng Zhao, Huang-Xian Ju, Jing-Hong Li. Electrochemical Characterization and Modulation of Biological Processes. Journal of Electrochemistry, 2025, 31(12): 2516003 DOI:10.61558/2993-074X.3599

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ju H X, Li J. Bioelectrochemistry[M]. Beijing, China: Science Press, 2022.

[2]

Sies H, Mailloux R J, Jakob U. Fundamentals of redox regulation in biology[J]. Nat. Rev. Mol. Cell Biol., 2024, 25(9): 701-719. http://dx.doi.org/10.1038/s41580-024-00730-2.

[3]

Sedenho G C, Colombo R N P, Iost R M, Lima F C D A, Crespilho F N. Exploring electron transfer: Bioinspired, biomimetics, and bioelectrochemical systems for sustainable energy and value-added compound synthesis[J]. Appl. Phys. Rev., 2024, 11(2): 021341. http://dx.doi.org/10.1063/5.0204996.

[4]

Saura P, Riepl D, Frey D M, Wikström M, Kaila V R I. Electric fields control water-gated proton transfer in cytochrome c oxidase[J]. Proc. Natl. Acad. Sci., 2022, 119(38): e2207761119. http://dx.doi.org/10.1073/pnas.2207761119.

[5]

Pugh J. The current state of nanopore sequencing[M]//Nanopore sequencing: Methods and protocols, Arakawa K Ed.; Springer US, 2023: 3-14.

[6]

Gandhi M, Rajagopal D, Senthil Kumar AD. Molecularly wiring of cytochrome c with carboxylic acid functionalized hydroquinone on mwcnt surface and its bioelectrocatalytic reduction of H2O2 relevance to biomimetic electron-transport and redox signalling[J]. Electrochim. Acta, 2021, 368: 137596. http://dx.doi.org/10.1016/j.electacta.2020.137596.

[7]

Liu Y N, Lv Z T, Lv W L, Liu D F, Liu X W. Label-free optical imaging of the electron transfer in single live microbial cells[J]. Nano Lett., 2023, 23(2): 558-566. http://dx.doi.org/10.1021/acs.nanolett.2c04018.

[8]

Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauß N. Three-dimensional structure of cyanobacterial photosystem I at 2.5Å resolution[J]. Nature, 2001, 411(6840): 909-917. http://dx.doi.org/10.1038/35082000.

[9]

Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I[J]. Nature, 2003, 426(6967): 630-635. http://dx.doi.org/10.1038/nature02200.

[10]

Liu Z F, Yan H C, Wang K B, Kuang T Y, Zhang J P, Gui L L, An X M, Chang W R. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution[J]. Nature, 2004, 428(6980): 287-292. http://dx.doi.org/10.1038/nature02373.

[11]

Umena Y, Kawakami K, Shen J R, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å[J]. Nature, 2011, 473(7345): 55-60. http://dx.doi.org/10.1038/nature09913.

[12]

Zhang L, Chu M G, Ji C L, Wang W J, Tan J, Yuan Q. Electron transfer in protein modifications: From detection to imaging[J]. Sci. China Chem., 2023, 66(2): 388-405. http://dx.doi.org/10.1007/s11426-022-1417-3.

[13]

Shin I S, Chand R, Lee S W, Rhee H W, Kim Y S, Hong J I. Homogeneous electrochemical assay for protein kinase activity[J]. Anal. Chem., 2014, 86(22): 10992-10995. http://dx.doi.org/10.1021/ac502549s.

[14]

Yan Z Y, Wang Z H, Miao Z, Liu Y. Dye-sensitized and localized surface plasmon resonance enhanced visible-light photoelectrochemical biosensors for highly sensitive analysis of protein kinase activity[J]. Anal. Chem., 2015, 88(1): 922-929. http://dx.doi.org/10.1021/acs.analchem.5b03661.

[15]

Yan Z Y, Wang F, Deng P Y, Wang Y, Cai K, Chen Y H, Wang Z H, Liu Y. Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of Au and Pt loaded metal-organic frameworks nanocomposites[J]. Biosens. Bioelectron., 2018, 109: 132-138. http://dx.doi.org/10.1016/j.bios.2018.03.004.

[16]

Wu J, Liu H, Chen W W, Ma B, Ju H X. Device integration of electrochemical biosensors[J]. Nat. Rev. Bioeng., 2023, 1(5): 346-360. http://dx.doi.org/10.1038/s44222-023-00032-w.

[17]

Cesewski E, Johnson B N. Electrochemical biosensors for pathogen detection[J]. Biosens. Bioelectron., 2020, 159(1): 112214. http://dx.doi.org/10.1016/j.bios.2020.112214.

[18]

Vigneshvar S, Sudhakumari C C, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications - an overview[J]. Front. Bioeng.Biotechnol., 2016, 4(16): 11. http://dx.doi.org/10.3389/fbioe.2016.00011.

[19]

Yan Y J, Zhou P, Ding L R, Hu W, Chen W, Su B. T cell antigen recognition and discrimination by electrochemiluminescence imaging[J]. Angew. Chem. Int. Ed., 2023, 62(50): e202314588. http://dx.doi.org/10.1002/anie.202314588.

[20]

Zhang J J, Jin R, Jiang D C, Chen H Y. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane[J]. J. Am. Chem. Soc., 2019, 141(26): 10294-10299. http://dx.doi.org/10.1021/jacs.9b03007.

[21]

Descamps J, Colin C, Tessier G, Arbault S, Sojic N. Ultrasensitive imaging of cells and sub-cellular entities by electrochemiluminescence[J]. Angew. Chem. Int. Ed., 2023, 62(16): e202218574. http://dx.doi.org/10.1002/anie.202218574.

[22]

Hercules D M. Chemiluminescence resulting from electrochemically generated species[J]. Science, 1964, 145(3634): 808-809. http://dx.doi.org/doi:10.1126/science.145.3634.808.

[23]

Afshari Babazad M, Foroozandeh A, Abdouss M, SalarAmoli H, Babazad R A, Hasanzadeh M. Recent progress and challenges in biosensing of carcinoembryonic antigen[J]. TrAC Trends Anal. Chem., 2024, 180: 117964. http://dx.doi.org/10.1016/j.trac.2024.117964.

[24]

Kavetskyy T, Alipour M, Smutok O, Mushynska O, Kiv A, Fink D, Farshchi F, Ahmadian E, Hasanzadeh M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis[J]. Microchem. J., 2021, 167: 106320. http://dx.doi.org/10.1016/j.microc.2021.106320.

[25]

Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Ed., 2020, 59(26): 10426-10430. http://dx.doi.org/10.1002/anie.202002417.

[26]

Phan N T N, Li X C, Ewing A G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging[J]. Nat. Rev. Chem., 2017, 1(6): 0048. http://dx.doi.org/10.1038/s41570-017-0048.

[27]

De Belly H, Paluch E K, Chalut K J. Interplay between mechanics and signalling in regulating cell fate[J]. Nat. Rev. Mol. Cell Biol., 2022, 23(7): 465-480. http://dx.doi.org/10.1038/s41580-022-00472-z.

[28]

Flannagan R S, Cosío G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J]. Nat. Rev. Microbiol., 2009, 7(5): 355-366. http://dx.doi.org/10.1038/nrmicro2128.

[29]

Chen K L, Yu R J, Zhong C B, Wang Z Y, Xie B K, Ma H, Ao M J, Zheng P, Ewing A G, Long Y T. Electrochemical monitoring of real-time vesicle dynamics induced by tau in a confined nanopipette[J]. Angew. Chem. Int. Ed., 2024, 63(39): e202406677. http://dx.doi.org/10.1002/anie.202406677.

[30]

Momcilovic M, Jones A, Bailey S T, Waldmann C M, Li R, Lee J T, Abdelhady G, Gomez A, Holloway T, Schmid E, Stout D, Fishbein M C, Stiles L, Dabir D V, Dubinett S M, Christofk H, Shirihai O, Koehler C M, Sadeghi S, Shackelford D B. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer[J]. Nature, 2019, 575(7782): 380-384. http://dx.doi.org/10.1038/s41586-019-1715-0.

[31]

Boyman L, Karbowski M, Lederer W J. Regulation of mitochondrial atp production: Ca2+ signaling and quality control[J]. Trends Mol. Med., 2020, 26(1): 21-39. http://dx.doi.org/10.1016/j.molmed.2019.10.007.

[32]

Wai T, Langer T. Mitochondrial dynamics and metabolic regulation[J]. Trends Endocrinol. Metab., 2016, 27(2): 105-117. http://dx.doi.org/10.1016/j.tem.2015.12.001.

[33]

Zhang J Q, Li F, Liu D Y, Liu Q J, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production[J]. Chem. Soc. Rev., 2024, 53(3): 1375-1446. http://dx.doi.org/10.1039/d3cs00537b.

[34]

Graham A J, Partipilo G, Dundas C M, Miniel Mahfoud I E, Halwachs K N, Holwerda A J, Simmons T R, FitzSimons T M, Coleman S M, Rinehart R. Transcriptional regulation of living materials via extracellular electron transfer[J]. Nat. Chem. Biol., 2024, 20(10): 1329-1340. http://dx.doi.org/10.1038/s41589-024-01628-y.

[35]

Ko H, Hofer S B, Pichler B, Buchanan K A, Sjöström P J, Mrsic-Flogel T D. Functional specificity of local synaptic connections in neocortical networks[J]. Nature, 2011, 473(7345): 87-91. http://dx.doi.org/10.1038/nature09880.

[36]

Chen J, Liu Y Y, Chen F X, Guo M N, Zhou J J, Fu P F, Zhang X, Wang X L, Wang H, Hua W, Chen J Q, Hu J, Mao Y, Jin D Y, Bu W B. Non-faradaic optoelectrodes for safe electrical neuromodulation[J]. Nat. Commun., 2024, 15(1): 405. http://dx.doi.org/10.1038/s41467-023-44635-8.

[37]

Hussain S, Manuel C T, Protsenko D E, Wong B J F. Electromechanical reshaping of ex vivo porcine trachea[J]. Laryngoscope, 2015, 125(7): 1628-1632. http://dx.doi.org/10.1002/lary.25189.

[38]

Moy W J, Su E, Chen J J, Oh C, Jing J C, Qu Y Q, He Y M, Chen Z P, Wong B J F. Association of electrochemical therapy with optical, mechanical, and acoustic impedance properties of porcine skin[J]. JAMA Facial Plast. Surg., 2017, 19(6): 502-509. http://dx.doi.org/10.1001/jamafacial.2017.0341.

[39]

Pham T T, Hong E M, Moy W J, Zhao J, Hu A C, Barnes C H, Borden P A, Sivoraphonh R, Krasieva T B, Lee L H, Heidari A E, Kim E H, Nam S H, Jia W, Mo J H, Kim S, Hill M G, Wong B J F. The biophysical effects of localized electrochemical therapy on porcine skin[J]. J. Dermatol. Sci., 2020, 97(3): 179-186. http://dx.doi.org/10.1016/j.jdermsci.2020.01.006.

[40]

Liu Y C, Atanassov P. Charge transfer at biotic/abiotic interfaces in biological electrocatalysis[J]. Curr. Opin. Electrochem., 2020, 19: 175-183. http://dx.doi.org/10.1016/j.coelec.2019.09.007.

[41]

Diederichsen U. Charge transfer in DNA: A controversy[J]. Angew. Chem. Int. Ed., 2003, 36(21): 2317-2319. http://dx.doi.org/10.1002/anie.199723171.

[42]

Slinker J D, Muren N B, Renfrew S E, Barton J K. DNA charge transport over 34 nm[J]. Nat. Chem., 2011, 3(3): 228-233. http://dx.doi.org/10.1038/nchem.982.

[43]

Marques H M. Electron transfer in biological systems[J]. JBIC J. Biol. Inorg. Chem., 2024, 29(7-8): 641-683. http://dx.doi.org/10.1007/s00775-024-02076-8.

[44]

Palanisamy G, Jung H Y, Sadhasivam T, Kurkuri M D, Kim S C, Roh S H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes[J]. J. Cleaner Prod., 2019, 221: 598-621. http://dx.doi.org/10.1016/j.jclepro.2019.02.172.

[45]

Fukushima T, Gupta S, Rad B, Cornejo J A, Petzold C J, Chan L J G, Mizrahi R A, Ralston C Y, Ajo-Franklin C M. The molecular basis for binding of an electron transfer protein to a metal oxide surface[J]. J. Am. Chem. Soc., 2017, 139(36): 12647-12654. http://dx.doi.org/10.1021/jacs.7b06560.

[46]

Gu Y, Guberman-Pfeffer M J, Srikanth V, Shen C, Giska F, Gupta K, Londer Y, Samatey F A, Batista V S, Malvankar N S. Structure of geobacter cytochrome omcz identifies mechanism of nanowire assembly and conductivity[J]. Nat. Microbiol., 2023, 8(2): 284-298. http://dx.doi.org/10.1038/s41564-022-01315-5.

[47]

Min D, Liu D F, Wu J, Cheng L, Zhang F, Cheng Z H, Li W W, Yu H Q. Extracellular electron transfer via multiple electron shuttles in waterborneaeromonas hydrophilafor bioreduction of pollutants[J]. Biotechnol. Bioeng., 2021, 118(12): 4760-4770. http://dx.doi.org/10.1002/bit.27940.

[48]

Nelson N, Yocum C F. Structure and function of photosystems I and II[J]. Annu. Rev. Plant. Biol., 2006, 57: 521-565. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105350.

[49]

Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem i in sustaining photosynthesis and plant growth[J]. Annu. Rev. Plant. Biol., 2016, 67: 81-106. http://dx.doi.org/10.1146/annurev-arplant-043015-112002.

[50]

El-Khouly M E, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis[J]. J. Photochem. Photobiol., C, 2017, 31: 36-83. http://dx.doi.org/10.1016/j.jphotochemrev.2017.02.001.

[51]

Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nat. Catal., 2020, 3(3): 245-255. http://dx.doi.org/10.1038/s41929-020-0428-y.

[52]

Bassham J A, Benson A A, Kay L D, Anne Z. Harris, Wilson A T, Calvin M. The path of carbon in photosynthesis. Xxi. The cyclic regeneration of carbon dioxide acceptor[J]. J. Am. Chem. Soc., 1954, 76: 1760-1770. https://doi.org/10.1021/ja01636a012.

[53]

Ogren W L. Affixing the o to rubisco: Discovering the source of photorespiratory glycolate and its regulation[J]. Photosynth. Res., 2003, 76(1): 53-63. http://dx.doi.org/10.1023/A:1024913925002.

[54]

Pan X W, Ma J, Su X D, Cao P, Chang W R, Liu Z F, Zhang X Z, Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II[J]. Science, 2018, 360(6393): 1109-1113. http://dx.doi.org/doi:10.1126/science.aat1156.

[55]

Zhang C X, Chen C H, Dong H X, Shen J R, Dau H, Zhao J Q. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis[J]. Science, 2015, 348(6235): 690-693. http://dx.doi.org/doi:10.1126/science.aaa6550.

[56]

Kim J, Lin J A, Kim J, Roh I, Lee S, Yang P. A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization[J]. Nat. Catal., 2024, 7(9): 977-986. http://dx.doi.org/10.1038/s41929-024-01198-1.

[57]

Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U, Zelcbuch L, Amram S, Wides A, Tepper N, Davidi D, Bar-On Y, Bareia T, Wernick D G, Shani I, Malitsky S, Jona G, Bar-Even A, Milo R. Sugar synthesis from CO2 in escherichia coli[J]. Cell, 2016, 166(1): 115-125. http://dx.doi.org/10.1016/j.cell.2016.05.064.

[58]

Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G. Water splitting-biosynthetic system with CO2reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. http://dx.doi.org/doi:10.1126/science.aaf5039.

[59]

Wang Z H, Zhu C W, Chen W J, Gao Z Q, Zhang M M, Huang Y M, Lv F T, Bai H T, Zhu D B, Wang S. Electrochemiluminescence-driven chloroplast photosynthesis with conjugated polymers[J]. CCS Chem., 2025, 7(3): 752-764. http://dx.doi.org/doi:10.31635/ccschem.024.202405262.

[60]

Lam E, Reisner E. A TiO2-CO(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas[J]. Angew. Chem. Int. Ed., 2021, 60(43): 23306-23312. http://dx.doi.org/10.1002/anie.202108492.

[61]

Li B W, Ming H, Qin S Y, Nice E C, Dong J S, Du Z Y, Huang C H. Redox regulation: Mechanisms, biology and therapeutic targets in diseases[J]. Signal Transduct. Target. Ther., 2025, 10(1): 72. http://dx.doi.org/10.1038/s41392-024-02095-6.

[62]

Sies H, Berndt C, Jones D P. Oxidative stress[J]. Annu. Rev. Biochem., 2017, 86(1): 715-748. http://dx.doi.org/10.1146/annurev-biochem-061516-045037.

[63]

Lennicke C, Cochemé H M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function[J]. Mol. Cell, 2021, 81(18): 3691-3707. http://dx.doi.org/10.1016/j.molcel.2021.08.018.

[64]

Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress[J]. Chem. Rev., 2008, 108(7): 2585-2621. http://dx.doi.org/10.1021/cr068062g.

[65]

Hillard E A, de Abreu F C, Ferreira D C M, Jaouen G, Goulart M O F, Amatore C. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds[J]. Chem. Commun., 2008, (23): 2612-2628. http://dx.doi.org/10.1039/b718116g.

[66]

Wu W T, Jiang H, Qi Y T, Fan W T, Yan J, Liu Y L, Huang W H. Large‐scale synthesis of functionalized nanowires to construct nanoelectrodes for intracellular sensing[J]. Angew. Chem. Int. Ed., 2021, 60(35): 19337-19343. http://dx.doi.org/10.1002/anie.202106251.

[67]

Zhang S, Qin H C, Cheng S W, Zhang Y, Gao N, Zhang M N. An electrochemical nanosensor for monitoring the dynamics of intracellular h2o2 upon nadh treatment[J]. Angew. Chem. Int. Ed., 2023, 62(16): e202300083. http://dx.doi.org/10.1002/anie.202300083.

[68]

Shi X M, Xu Y T, Zhou B Y, Wang B, Yu S Y, Zhao W W, Jiang D C, Chen H Y, Xu J J. Electrochemical single-cell protein therapeutics using a double-barrel nanopipette[J]. Angew. Chem. Int. Ed., 2023, 62(9): e202215801. http://dx.doi.org/10.1002/anie.202215801.

[69]

Ma Y M, Hu W K, Hu J, Ruan M Y, Hu J, Yang M, Zhang Y, Xie H H, Hu C Z. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells[J]. Microsyst. Nanoeng., 2024, 10(1): 171. http://dx.doi.org/10.1038/s41378-024-00814-1.

[70]

Sun P, Laforge F O, Abeyweera T P, Rotenberg S A, Carpino J, Mirkin M V. Nanoelectrochemistry of mammalian cells[J]. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(2): 443-448. http://dx.doi.org/10.1073/pnas.0711075105.

[71]

Liu K, Liu R J, Wang D C, Pan R R, Chen H Y, Jiang D C. Spatial analysis of reactive oxygen species in a 3D cell model using a sensitive nanocavity electrode[J]. Anal. Chem., 2022, 94(38): 13287-13292. http://dx.doi.org/10.1021/acs.analchem.2c03444.

[72]

Henne W M. Organelle homeostasis principles: How organelle quality control and inter-organelle crosstalk promote cell survival[J]. Developmental Cell, 2021, 56(7): 878-880. http://dx.doi.org/10.1016/j.devcel.2021.03.012.

[73]

Liu K, Zhang Z, Liu R J, Li J P, Jiang D C, Pan R R. Click-chemistry-enabled nanopipettes for the capture and dynamic analysis of a single mitochondrion inside one living cell[J]. Angew. Chem. Int. Ed., 2023, 62(34): e202303053. http://dx.doi.org/10.1002/anie.202303053.

[74]

Liu K, Wu L, Ma Y Y, Chen D S, Liu R J, Zhang X B, Jiang D C, Pan R R. Highly spatial-temporal electrochemical profiling of molecules trafficking at a single mitochondrion in one living cell[J]. Proc. Natl. Acad. Sci. USA, 2025, 122(12): e2424591122. http://dx.doi.org/10.1073/pnas.2424591122.

[75]

Qi Y T, Zhang F L, Tian S Y, Wu H Q, Zhao Y, Zhang X W, Liu Y L, Fu P Q, Amatore C, Huang W H. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres[J]. Nat. Nanotechnol., 2024, 19(4): 524-533. http://dx.doi.org/10.1038/s41565-023-01575-0.

[76]

Jiao Y T, Kang Y R, Wen M Y, Wu H Q, Zhang X W, Huang W H. Fast antioxidation kinetics of glutathione intracellularly monitored by a dual‐wire nanosensor[J]. Angew. Chem. Int. Ed., 2023, 62(51): e202313612. http://dx.doi.org/10.1002/anie.202313612.

[77]

Pan R R, Hu K K, Jia R, Rotenberg S A, Jiang D C, Mirkin M V. Resistive-pulse sensing inside single living cells[J]. J. Am. Chem. Soc., 2020, 142(12): 5778-5784. http://dx.doi.org/10.1021/jacs.9b13796.

[78]

Hu K K, Li Y, Rotenberg S A, Amatore C, Mirkin M V. Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages[J]. J. Am. Chem. Soc., 2019, 141(11): 4564-4568. http://dx.doi.org/10.1021/jacs.9b01217.

[79]

Qi Y T, Jiang H, Wu W T, Zhang F L, Tian S Y, Fan W T, Liu Y L, Amatore C, Huang W H. Homeostasis inside single activated phagolysosomes: Quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor[J]. J. Am. Chem. Soc., 2022, 144(22): 9723-9733. http://dx.doi.org/10.1021/jacs.2c01857.

[80]

Forman H J, Zhang H Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy[J]. Nat. Rev. Drug Discovery, 2021, 20(9): 689-709. http://dx.doi.org/10.1038/s41573-021-00233-1.

[81]

Liu Y L, Yu S Y, Chen J H, Wang C S, Li H Y, Jiang D C, Ye D J, Zhao W W. Organic molecular probe enabled ionic current rectification toward subcellular detection of glutathione with high selectivity, sensitivity, and recyclability[J]. ACS Sens., 2022, 7(11): 3272-3277. http://dx.doi.org/10.1021/acssensors.2c01897.

[82]

Wu W T, Chen X, Jiao Y T, Fan W T, Liu Y L, Huang W H. Versatile construction of biomimetic nanosensors for electrochemical monitoring of intracellular glutathione[J]. Angew. Chem. Int. Ed., 2022, 61(15): e202115820. http://dx.doi.org/10.1002/anie.202115820.

[83]

Nguyen H H, Lee S H, Lee U J, Fermin C D, Kim M. Immobilized enzymes in biosensor applications[J]. Materials, 2019, 12(1): 121. http://dx.doi.org/10.3390/ma12010121.

[84]

Saha T, Del Caño R, Mahato K, De la Paz E, Chen C, Ding S, Yin L, Wang J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review[J]. Chem. Rev., 2023, 123(12): 7854-7889. http://dx.doi.org/10.1021/acs.chemrev.3c00078.

[85]

Felix F S, Angnes L. Electrochemical immunosensors - a powerful tool for analytical applications[J]. Biosens. Bioelectron., 2018, 102(15): 470-478. http://dx.doi.org/10.1016/j.bios.2017.11.029.

[86]

Zhou W H, Jimmy Huang P J, Ding J S, Liu J W. Aptamer-based biosensors for biomedical diagnostics[J]. Analyst, 2014, 139(11): 2627-2640. http://dx.doi.org/10.1039/C4AN00132J.

[87]

Sun H, Zhou P, Su B. Electrochemiluminescence of semiconductor quantum dots and its biosensing applications: A comprehensive review[J]. Biosensors, 2023, 13(7): 708. http://dx.doi.org/10.3390/bios13070708.

[88]

Zhou L, Li X R, Zhu B Y, Su B. An overview of antifouling strategies for electrochemical analysis[J]. Electroanalysis, 2021, 33(6): 1-11. http://dx.doi.org/10.1002/elan.202100406.

[89]

Zhou L, Ding H, Yan F, Guo W L, Su B. Electrochemical detection of alzheimer's disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes[J]. Analyst, 2018, 143(19): 4756-4763. http://dx.doi.org/10.1039/C8AN01457D.

[90]

Zhou L, Hou H F, Wei H, Yao L N, Sun L, Yu P, Su B, Mao L Q. In vivo monitoring of oxygen in rat brain by carbon fiber microelectrode modified with antifouling nanoporous membrane[J]. Anal. Chem., 2019, 91(5): 3645-3651. http://dx.doi.org/10.1021/acs.analchem.8b05658.

[91]

Zhou L, Li X R, Su B. Spatial regulation control of oxygen metabolic consumption in mouse brain[J]. Adv. Sci., 2022, 9(34): 2204468. http://dx.doi.org/10.1002/advs.202204468.

[92]

Yin Y Y, Zeng H, Wang H M, Zhang M N. Biocompatible microelectrode for in vivo sensing with improved performance[J]. Langmuir, 2023, 39(5): 1719-1729. http://dx.doi.org/10.1021/acs.langmuir.2c03267.

[93]

Wang L Y, Xie S L, Wang Z Y, Liu F, Yang Y F, Tang C Q, Wu X Y, Liu P, Li Y J, Saiyin H, Zheng S, Sun X M, Xu F, Yu H B, Peng H S. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers[J]. Nat. Biomed. Eng., 2019, 3(4): 1-13. http://dx.doi.org/10.1038/s41551-019-0462-8.

[94]

Ozer T, Henry C S. Review—recent advances in sensor arrays for the simultaneous electrochemical detection of multiple analytes[J]. J. Electrochem. Soc., 2021, 168(5): 057507. http://dx.doi.org/10.1149/1945-7111/abfc9f.

[95]

Ying X D, Fu W X, Zhu L H, Sun T, Qi M, Zhou L, Wang Y F, Wang J, Su B, Zhang J. Electrochemical lateral flow immunoassay with built-in electrodes for ultrasensitive and wireless detection of inflammatory biomarkers[J]. Anal. Chem., 2024, 96(26): 10630-10638. http://dx.doi.org/10.1021/acs.analchem.4c01224.

[96]

Zhu B Y, Zhu L H, Li X R, Zhao Z Y, Cao J Y, Qi M, Gao Z G, Zhou L, Su B. A wearable integrated microneedle electrode patch for exercise management in diabetes[J]. Research, 2024, 7(1): 0508. http://dx.doi.org/10.34133/research.0508.

[97]

Zhao Z Y, Zhu B Y, Li X R, Cao J Y, Qi M, Zhou L, Su B. Microneedle electrode patch modified with graphene oxide and carbon nanotubes for continuous uric acid monitoring and diet management in hyperuricemia[J]. ACS Appl. Bio Mater., 2024, 7(12): 8456-8464. http://dx.doi.org/10.1021/acsabm.4c01286.

[98]

Li X R, Zhu B Y, Dong N, Zhao Z Y, Cao J Y, Zhou L, Gao Z G, Su B. Early detection of high-altitude hypoxic brain injury by in vivo electrochemistry[J]. Angew. Chem. Int. Ed., 2025, 64(4): e202416395. http://dx.doi.org/10.1002/anie.202416395.

[99]

Zhou L, Yang R, Li X R, Dong N, Zhu B Y, Wang J, Lin X, Su B. COF-coated microelectrode for space-confined electrochemical sensing of dopamine in parkinson’s disease model mouse brain[J]. J. Am. Chem. Soc., 2023, 145(43): 23727-23738. http://dx.doi.org/10.1021/jacs.3c08256.

[100]

Zhu B Y, Li X R, Zhu L H, Qi M, Cao J Y, Zhou L, Su B. In vivo electrochemical measurement of glucose variation in the brain of early diabetic mice[J]. ACS Sens., 2023, 8(11): 4064-4070. http://dx.doi.org/10.1021/acssensors.3c01165.

[101]

Liu Y J, Zhang H D, Li B X, Liu J W, Jiang D C, Liu B H, Sojic N. Single biomolecule imaging by electrochemiluminescence[J]. J. Am. Chem. Soc., 2021, 143(43): 17910-17914. http://dx.doi.org/10.1021/jacs.1c06673

[102]

Zhao Y X, Ye Z Y, Liu Y L, Zhang J J, Kuermanbayi S, Zhou Y, Guo H, Xu F, Li F. Investigating the role of extracellular matrix stiffness in modulating the ferroptosis process in hepatocellular carcinoma cells via scanning electrochemical microscopy[J]. Anal. Chem., 2024, 96(3): 1102-1111. http://dx.doi.org/10.1021/acs.analchem.3c03771.

[103]

Swiatlowska P, Sanchez-Alonso J L, Wright P T, Novak P, Gorelik J. Microtubules regulate cardiomyocyte transversal young's modulus[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(6): 2764-2766. http://dx.doi.org/10.1073/pnas.1917171117.

[104]

Ma C, Wu S J, Zhou Y, Wei H F, Zhang J R, Chen Z X, Zhu J J, Lin Y H, Zhu W L. Bio-coreactant-enhanced electrochemiluminescence microscopy of intracellular structure and transport[J]. Angew. Chem. Int. ed. Engl., 2021, 60(9): 4907-4914. http://dx.doi.org/10.1002/anie.202012171.

[105]

Chen M M, Xu C H, Zhao W, Chen H Y, Xu J J. Single cell imaging of electrochemiluminescence-driven photodynamic therapy[J]. Angew. Chem. Int. Ed., 2022, 61(16): e202117401. http://dx.doi.org/10.1002/anie.202117401.

[106]

Han D N, Yang M, Feng Z Y, Wu Y L, Sojic N, Jiang D C. Thickness-resolved electrochemiluminescence microscopy of extracellular matrix at tumor tissues for rapid cancer diagnosis[J]. ACS Appl. Mater. Interfaces, 2024, 16(25): 32078-32086. http://dx.doi.org/10.1021/acsami.4c05735.

[107]

Han D N, Sojic N, Jiang D C. Spatial profiling of multiple enzymatic activities at single tissue sections via fenton-promoted electrochemiluminescence[J]. J. Am. Chem. Soc., 2025, 147(11): 9610-9619. http://dx.doi.org/10.1021/jacs.4c17749.

[108]

Bard A J, Fan F R F, Kwak J, Lev O. Scanning electrochemical microscopy. Introduction and principles[J]. Anal. Chem., 1989, 61(2): 132-138. http://dx.doi.org/10.1021/ac00177a011.

[109]

Thinda S, Limaa D, Booyb E, Trinhc D, McKennab S A, Kussa S. Cytochrome c oxidase deficiency detection in human fibroblasts using scanning electrochemical microscopy[J]. Proc. Natl. Acad. Sci. USA, 2024, 1021: e2310288120. http://dx.doi.org/10.1073/pnas.

[110]

Zhao Y X, Li Y B, Kuermanbayi S, Liu Y L, Zhang J J, Ye Z Y, Guo H, Qu K, Xu F, Li F. In situ and quantitatively monitoring the dynamic process of ferroptosis in single cancer cells by scanning electrochemical microscopy[J]. Anal. Chem., 2023, 95(3): 1940-1948. http://dx.doi.org/10.1021/acs.analchem.2c04179.

[111]

Lin T E, Lu Y J, Sun C L, Pick H, Chen J P, Lesch A, Girault H H. Soft electrochemical probes for mapping the distribution of biomarkers and injected nanomaterials in animal and human tissues[J]. Angew. Chem. Int. Ed., 2017, 56(52): 16498-16502. https://doi.org/10.1002/anie.201709271.

[112]

Hansma P K, Drake B, Marti, Gould S A C, Prater C B. The scanning ion-conductance microscope[J]. Science, 1989, 243: 641-643. http://dx.doi.org/10.1126/science.2464851.

[113]

Zhu C, Huang K X, Siepser N P, Baker L A. Scanning ion conductance microscopy[J]. Chem. Rev., 2021, 121(19): 11726-11768. http://dx.doi.org/10.1021/acs.chemrev.0c00962.

[114]

Novak P, Li C, Shevchuk A I, Stepanyan R, Caldwell M, Hughes S, Smart T G, Gorelik J, Ostanin V P, Lab M J, Moss G W, Frolenkov G I, Klenerman D, Korchev Y E. Nanoscale live-cell imaging using hopping probe ion conductance microscopy[J]. Nat. Methods, 2009, 6(4): 279-281. http://dx.doi.org/10.1038/nmeth.1306.

[115]

Nikolaev V O, Moshkov A, Lyon A R, Miragoli M, Novak P, Paur H, Lohse M J, Korchev Y E, Harding S E, Gorelik J. Β2-adrenergic receptor redistribution in heart failure changes camp compartmentation[J]. Science, 2010, 327: 1653-1657. http://dx.doi.org/10.1126/science.1185988.

[116]

Bednarska J, Pelchen-Matthews A, Novak P, Burden J J, Summers P A, Kuimova M K, Korchev Y, Marsh M, Shevchuk A. Rapid formation of human immunodeficiency virus-like particles[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(35): 21637-21646. http://dx.doi.org/10.1073/pnas.2008156117.

[117]

Takahashi Y, Zhou Y S, Miyamoto T, Higashi H, Nakamichi N, Takeda Y, Kato Y, Korchev Y, Fukuma T. High-speed sicm for the visualization of nanoscale dynamic structural changes in hippocampal neurons[J]. Anal. Chem., 2019, 92(2): 2159-2167. http://dx.doi.org/10.1021/acs.analchem.9b04775.

[118]

Han T T, Ma C, Wang L Y, Cao Y, Chen H Y, Zhu J J. A novel electrochemiluminescence janus emitter for dual‐mode biosensing[J]. Adv. Funct. Mater., 2022, 32(24): 2200863. http://dx.doi.org/10.1002/adfm.202200863.

[119]

Cao Y, Wu R, Gao Y Y, Zhou Y, Zhu J J. Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks[J]. Nano-Micro Lett., 2023, 16: 37. http://dx.doi.org/10.1007/s40820-023-01249-5.

[120]

Barhoum A, Altintas Z, Devi K S S, Forster R J. Electrochemiluminescence biosensors for detection of cancer biomarkers in biofluids: Principles, opportunities, and challenges[J]. Nano Today, 2023, 50: 101874. http://dx.doi.org/10.1016/j.nantod.2023.101874.

[121]

Cao Y, Zhou J L, Ma Y, Zhou Y S, Zhu J J. Recent progress of metal nanoclusters in electrochemiluminescence[J]. Dalton Trans., 2022, 51(23): 8927-8937. http://dx.doi.org/10.1039/d2dt00810f.

[122]

Fu W X, Wang X X, Ying X D, Sun T, Wang Y F, Wang J, Su B. Electrochemiluminescence lateral flow immunoassay using ruthenium(II) complex‐loaded dendritic mesoporous silica nanospheres for highly sensitive and quantitative detection of SARS‐CoV‐2 nucleocapsid protein[J]. Adv. Funct. Mater., 2024, 34(51): 2409632. http://dx.doi.org/10.1002/adfm.202409632.

[123]

Yu J, Stankovic D, Vidic J, Sojic N. Recent advances in electrochemiluminescence immunosensing[J]. Sens. Diagn., 2024, 3(12): 1887-1898. http://dx.doi.org/10.1039/d4sd00272e.

[124]

Du F X, Chen Y Q, Meng C D, Lou B H, Zhang W, Xu G B. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy[J]. Curr. Opin. Electrochem., 2021, 28: 100725. http://dx.doi.org/10.1016/j.coelec.2021.100725.

[125]

Xu R C, Yang Q T, Yang W, Zhang Y J, Chauvin J, Zhang X J, Cosnier S, Marks R S, Shan D. Embracing nature’s wisdom: Liposome-mediated amplification of electrochemiluminescence for the sensitive and selective immunoassay of serum amyloid a[J]. Anal. Chem., 2024, 97(1): 945-952. http://dx.doi.org/10.1021/acs.analchem.4c05685.

[126]

Chen X, Su C P, Yang Y, Weng Z M, Zhuang Q Q, Hong G L, Peng H P, Chen W. Clinical evaluation of the HER2 extracellular domain in breast cancer patients by herceptin-encapsulated gold nanocluster probe-based electrochemiluminescence immunoassay[J]. Anal. Chem., 2024, 97(1): 872-879. http://dx.doi.org/10.1021/acs.analchem.4c05496.

[127]

Dong X, Zhao G H, Li Y Y, Zeng Q Z, Ma H M, Wu D, Ren X, Wei Q, Ju H X. Dual-mechanism quenching of electrochemiluminescence immunosensor based on a novel ECL emitter polyoxomolybdate-zirconia for 17β-estradiol detection[J]. Anal. Chem., 2022, 94(37): 12742-12749. http://dx.doi.org/10.1021/acs.analchem.2c02350.

[128]

Xia X S, Dong X, Du Y, Wu T T, Liu X J, Jia D H, Li F Y, Wei Q, Cai B. Multivalent redox reversible conversion-enhanced electrochemiluminescence strategy for progesterone detection[J]. Anal. Chem., 2025, 97(6): 3720-3728. http://dx.doi.org/10.1021/acs.analchem.4c06615.

[129]

Yao B, Zhang J, Fan Z Q, Ding Y D, Zhou B, Yang R L, Zhao J F, Zhang K. Rational engineering of the DNA walker amplification strategy by using a Au@Ti3C2@PEI-Ru(dcbpy)32+ nanocomposite biosensor for detection of the SARS-CoV-2 rdrp gene[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 19816-19824. http://dx.doi.org/10.1021/acsami.1c04453.

[130]

Gao X W, Ren X X, Ai Y J, Li M W, Zhang B, Zou G Z. Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag[J]. Biosens. Bioelectron., 2023, 236: 115418. http://dx.doi.org/10.1016/j.bios.2023.115418.

[131]

Li S J, Shi J Y, Yang X, Qiao Y X, Jiang Y, Zhou Y Q, Li Y, Zhang C X. Washing-free electrochemiluminescence biosensor for the simultaneous determination of n6 methyladenosines incorporating a tri-double resolution strategy[J]. ACS Sens., 2023, 8(7): 2771-2779. http://dx.doi.org/10.1021/acssensors.3c00679.

[132]

Li S J, Liu Y, Ma Q. Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection[J]. TrAC Trends Anal. Chem., 2019, 110: 277-292. http://dx.doi.org/10.1016/j.trac.2018.11.019.

[133]

Peng Y, Lu B, Deng Y, Yang N N, Li G X. A dual-recognition-controlled electrochemical biosensor for accurate and sensitive detection of specific circulating tumor cells[J]. Biosens. Bioelectron., 2022, 201: 113973. http://dx.doi.org/10.1016/j.bios.2022.113973.

[134]

Wu Q W, Geng F, Liu C C, Wang J, Song X Z, Ding C F. Ratiometric electrochemiluminescence biosensor based on red blood cell membrane as an efficient antifouling interface for ultrasensitive analysis of circulating tumor cells in human serum[J]. Biosens. Bioelectron., 2025, 278: 117358. http://dx.doi.org/10.1016/j.bios.2025.117358.

[135]

Wang N N, Ao H, Xiao W C, Chen W W, Li G M, Wu J, Ju H X. Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine[J]. Biosens. Bioelectron., 2022, 201: 113959. http://dx.doi.org/10.1016/j.bios.2021.113959.

[136]

Wang Y L, Jiang D C, Chen H Y. Wireless electrochemical visualization of intracellular antigens in single cells[J]. CCS Chem., 2022, 4(7): 2221-2227. http://dx.doi.org/10.31635/ccschem.021.202101017.

[137]

Meng X D, Pang X J, Liu X Y, Luo S Y, Zhang X J, Dong H F. Ultrasensitive electrochemiluminescence biosensor based on DNA-bio-bar-code and hybridization chain reaction dual signal amplification for exosomes detection[J]. Anal. Chem., 2024, 96(32): 13299-13307. http://dx.doi.org/10.1021/acs.analchem.4c02917.

[138]

Duan J X, Cao W W, Zhu X, Li Q, Yuan R, Wang H J. Electrochemiluminescence of ultrasmall silica nanoparticles from size modulation and multipath surface state adjustment for ultrasensitive HIV-DNA fragment detection[J]. Anal. Chem., 2024, 96(28): 11280-11289. http://dx.doi.org/10.1021/acs.analchem.4c01106.

[139]

Zhao X Y, Liu L L, Xu Y Q, Xiang L, Yuan R, Chai Y Q. Dual-ligand europium-organic gels as a highly efficient anodic annihilation electrochemiluminescence emitter for ultrasensitive detection of microrna[J]. Anal. Chem., 2024, 96(24): 9961-9968. http://dx.doi.org/10.1021/acs.analchem.4c01239.

[140]

Zhang J, He H N, Du S M, Xie B T, Gao H J, Fu H Q, Liao Y W. Electrochemiluminescence biosensor based on a self-protected dnazyme walker with a circular bulging DNA shield for microrna detection[J]. Anal. Chem., 2025, 97(8): 4606-4613. http://dx.doi.org/10.1021/acs.analchem.4c06552.

[141]

Han D, Yang K, Sun S G, Wen J. Signal amplification strategies in electrochemiluminescence biosensors[J]. Chem. Eng. J., 2023, 476: 146688. http://dx.doi.org/10.1016/j.cej.2023.146688.

[142]

Collinson M M, Wightman R M. Observation of individual chemical reactions in solution[J]. Science, 1995, 268(5219): 1883-1885. http://dx.doi.org/doi:10.1126/science.268.5219.1883.

[143]

Kim E, Chen C Y, Chu M J, Hamstra M F, Bentley W E, Payne G F. Proline‐selective electrochemiluminescence detecting a single amino acid variation between A1 and A2 β-casein containing milks[J]. Adv. Sci., 2024, 12(5): 2411956. http://dx.doi.org/10.1002/advs.202411956.

[144]

Zhao S Y, Tang X, Tian W W, Partarrieu S, Liu R, Shen H, Lee J Y, Guo S Q, Lin Z W, Liu J. Tracking neural activity from the same cells during the entire adult life of mice[J]. Nat. Neurosci., 2023, 26(4): 696-710. http://dx.doi.org/10.1038/s41593-023-01267-x.

[145]

Xiong T Y, Li C W, He X L, Xie B Y, Zong J W, Jiang Y N, Ma W J, Wu F, Fei J J, Yu P, Mao L Q. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor[J]. Science, 2023, 379(6628): 156-161. http://dx.doi.org/10.1126/science.adc9150.

[146]

Xie B Y, Xiong T Y, Guo G G, Pan C, Ma W J, Yu P. Bioinspired ion-shuttling memristor with both neuromorphic functions and ion selectivity[J]. Proc. Natl. Acad. Sci., 2025, 122(10): e2417040122. http://dx.doi.org/10.1073/pnas.2417040122.

[147]

Yue Q W, Wang K, Guan M, Zhao Z W, Li X C, Yu P, Mao L Q. Single-vesicle electrochemistry reveals sex difference in vesicular storage and release of catecholamine[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202117596. http://dx.doi.org/10.1002/anie.202117596.

[148]

Yang X K, Zhang F L, Wu W T, Tang Y, Yan J, Liu Y L, Amatore C, Huang W H. Quantitative nano-amperometric measurement of intravesicular glutamate content and its sub-quantal release by living neurons[J]. Angew. Chem. Int. Ed., 2021, 60(29): 15803-15808. http://dx.doi.org/10.1002/anie.202100882.

[149]

Phan N T N, Li X, Ewing A G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging[J]. Nat. Rev. Chem., 2017, 1(6): 0048. http://dx.doi.org/10.1038/s41570-017-0048.

[150]

Li J X, Liu Y X, Yuan L, Zhang B B, Bishop E S, Wang K C, Tang J, Zheng Y Q, Xu W H, Niu S M, Beker L, Li T L, Chen G, Diyaolu M, Thomas A L, Mottini V, Tok J B H, Dunn J C Y, Cui B X, Pașca S P, Cui Y, Habtezion A, Chen X K, Bao Z N. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606(7912): 94-101. http://dx.doi.org/10.1038/s41586-022-04615-2.

[151]

Wu F, Cheng H J, Wei H, Xiong T Y, Yu P, Mao L Q. Galvanic redox potentiometry for self-driven in vivo measurement of neurochemical dynamics at open-circuit potential[J]. Anal. Chem., 2018, 90(21): 13021-13029. http://dx.doi.org/10.1021/acs.analchem.8b03854.

[152]

Yang X K, Zhang F L, Jin X K, Jiao Y T, Zhang X W, Liu Y L, Amatore C, Huang W H. Nanoelectrochemistry reveals how soluble aβ42 oligomers alter vesicular storage and release of glutamate[J]. Proc. Natl. Acad. Sci., 2023, 120(19): e2219994120. http://dx.doi.org/10.1073/pnas.2219994120.

[153]

Roberts J G, Sombers L A. Fast-scan cyclic voltammetry: Chemical sensing in the brain and beyond[J]. Anal. Chem., 2018, 90(1): 490-504. http://dx.doi.org/10.1021/acs.analchem.7b04732.

[154]

Shin M, Venton B J. Fast-scan cyclic voltammetry (fscv) reveals behaviorally evoked dopamine release by sugar feeding in the adult drosophila mushroom body[J]. Angew. Chem. Int. Ed., 2022, 61(44): e202207399. http://dx.doi.org/10.1002/anie.202207399.

[155]

Xue Y F, Ji W L, Jiang Y, Yu P, Mao L Q. Deep learning for voltammetric sensing in a living animal brain[J]. Angew. Chem. Int. Ed., 2021, 60(44): 23777-23783. http://dx.doi.org/10.1002/anie.202109170.

[156]

Xu T C, Ji W L, Zhang Y, Wang X F, Gao N, Mao L Q, Zhang M N. Synergistic charge percolation in conducting polymers enables high-performance in vivo sensing of neurochemical and neuroelectrical signals[J]. Angew. Chem. Int. Ed., 2022, 61(41): e202204344. http://dx.doi.org/10.1002/anie.202204344.

[157]

Wang Y, Qian Y J, Zhang L M, Zhang Z H, Chen S W, Liu J F, He X, Tian Y. Conductive metal-organic framework microelectrodes regulated by conjugated molecular wires for monitoring of dopamine in the mouse brain[J]. J. Am. Chem. Soc., 2023, 145(4): 2118-2126. http://dx.doi.org/10.1021/jacs.2c07053.

[158]

Zhou L, Yang R J, Li X R, Dong N, Zhu B Y, Wang J J, Lin X Y, Su B. Cof-coated microelectrode for space-confined electrochemical sensing of dopamine in parkinson’s disease model mouse brain[J]. J. Am. Chem. Soc., 2023, 145(43): 23727-23738. http://dx.doi.org/10.1021/jacs.3c08256.

[159]

Li W Q, Jin J, Xiong T Y, Yu P, Mao L Q. Fast-scanning potential-gated organic electrochemical transistors for highly sensitive sensing of dopamine in living rat brain[J]. Angew. Chem. Int. Ed., 2022, 61(31): e202204134. http://dx.doi.org/10.1002/anie.202204134.

[160]

Zhu F H, Xue Y F, Ji W L, Li X, Ma W J, Yu P, Jiang Y, Mao L Q. Galvanic redox potentiometry for fouling-free and stable serotonin sensing in a living animal brain[J]. Angew. Chem. Int. Ed., 2023, 62(11): e202212458. http://dx.doi.org/10.1002/anie.202212458.

[161]

Li J X, Fan W T, Sun M Y, Zhao Y, Lu Y F, Yang Y B, Huang W H, Liu Y L. Flexible fiber sensors for real-time monitoring of redox signaling molecules in exercise-mimicking engineered skeletal muscle[J]. Angew. Chem. Int. Ed., 2025, 64(11): e202421684. http://dx.doi.org/10.1002/anie.202421684.

[162]

Qin Y, Li J X, Cai W, Fan W T, Duan B, Zhao Y, Huang G Y, Huang W H, Liu Y L. A cartilage-on-a-chip for recapitulating cell microenvironment and real-time nitric oxide monitoring[J]. Device, 2024, 2(6): 100410. http://dx.doi.org/10.1016/j.device.2024.100410.

[163]

Yan J, Zhang F L, Jin K Q, Li J X, Wang L J, Fan W T, Huang W H, Liu Y L. Mechanical strain induces and increases vesicular release monitored by microfabricated stretchable electrodes[J]. Angew. Chem. Int. Ed., 2024, 63(30): e202403241. http://dx.doi.org/10.1002/anie.202403241.

[164]

Qi Y T, Jiang H, Wu W T, Zhang F L, Tian S Y, Fan W T, Liu Y L, Amatore C, Huang W H. Homeostasis inside single activated phagolysosomes: Quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor[J]. J. Am. Chem. Soc., 2022, 144(22): 9723-9733. http://dx.doi.org/10.1021/jacs.2c01857.

[165]

Qi Y T, Zhang F L, Tian S Y, Wu H Q, Zhao Y, Zhang X W, Liu Y L, Fu P Q, Amatore C, Huang W H. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres[J]. Nat. Nanotechnol., 2024, 19(4): 524-533. http://dx.doi.org/10.1038/s41565-023-01575-0.

[166]

Zhang S Y, Cao Z Y, Fan P P, Sun W, Xiao Y Q, Zhang P K, Wang Y Q, Huang S. Discrimination of disaccharide isomers of different glycosidic linkages using a modified mspa nanopore[J]. Angew. Chem. Int. Ed., 2024, 63(8): e202316766. http://dx.doi.org/10.1002/anie.202316766.

[167]

Pan R R, Hu K K, Jia R, Rotenberg S A, Jiang D C, Mirkin M V. Resistive-pulse sensing inside single living cells[J]. J. Am. Chem. Soc., 2020, 142(12): 5778-5784. http://dx.doi.org/10.1021/jacs.9b13796.

[168]

Ma H, Wang Y Y, Li Y X, Xie B K, Hu Z L, Yu R J, Long Y T, Ying Y L. Label-free mapping of multivalent binding pathways with ligand-receptor-anchored nanopores[J]. J. Am. Chem. Soc., 2024, 146(41): 28014-28022. http://dx.doi.org/10.1021/jacs.4c04934.

[169]

Titov D V, Cracan V, Goodman R P, Peng J, Grabarek Z, Mootha V K. Complementation of mitochondrial electron transport chain by manipulation of the nad/nadh ratio[J]. Science, 2016, 352(6282): 231-235. http://dx.doi.org/doi:10.1126/science.aad4017.

[170]

Li B W, Ming H, Qin S Y, Nice E C, Dong J S, Du Z Y, Huang C H. Redox regulation: Mechanisms, biology and therapeutic targets in diseases[J]. Signal Transduct. Target. Ther., 2025, 10(1): 72. http://dx.doi.org/10.1038/s41392-024-02095-6.

[171]

Yang C, Guo Y L, Zhang H, Guo X F. Utilization of electric fields to modulate molecular activities on the nanoscale: From physical properties to chemical reactions[J]. Chem. Rev., 2025, 125(1): 223-293. http://dx.doi.org/10.1021/acs.chemrev.4c00327.

[172]

Fourmond V, Plumeré N, Léger C. Reversible catalysis[J]. Nat. Rev. Chem., 2021, 5(5): 348-360. http://dx.doi.org/10.1038/s41570-021-00268-3.

[173]

Hirose A, Kasai T, Aoki M, Umemura T, Watanabe K, Kouzuma A. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways[J]. Nat. Commun., 2018, 9(1): 1083. http://dx.doi.org/10.1038/s41467-018-03416-4.

[174]

Tamirat A G, Guan X Z, Liu J Y, Luo J Y, Xia Y Y. Redox mediators as charge agents for changing electrochemical reactions[J]. Chem. Soc. Rev., 2020, 49(20): 7454-7478. http://dx.doi.org/10.1039/D0CS00489H.

[175]

Huang J, Xue S, Buchmann P, Teixeira A P, Fussenegger M. An electrogenetic interface to program mammalian gene expression by direct current[J]. Nat. Metab., 2023, 5(8): 1395-1407. http://dx.doi.org/10.1038/s42255-023-00850-7.

[176]

Terrell J L, Tschirhart T, Jahnke J P, Stephens K, Liu Y, Dong H, Hurley M M, Pozo M, McKay R, Tsao C Y, Wu H C, Vora G, Payne G F, Stratis-Cullum D N, Bentley W E. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals[J]. Nat. Nanotechnol., 2021, 16(6): 688-697. http://dx.doi.org/10.1038/s41565-021-00878-4.

[177]

Park J, Jin K, Sahasrabudhe A, Chiang P H, Maalouf J H, Koehler F, Rosenfeld D, Rao S Y, Tanaka T, Khudiyev T, Schiffer Z J, Fink Y, Yizhar O, Manthiram K, Anikeeva P. In situ electrochemical generation of nitric oxide for neuronal modulation[J]. Nat. Nanotechnol., 2020, 15(8): 690-697. http://dx.doi.org/10.1038/s41565-020-0701-x.

[178]

Bhokisham N, VanArsdale E, Stephens K T, Hauk P, Payne G F, Bentley W E. A redox-based electrogenetic crispr system to connect with and control biological information networks[J]. Nat. Commun., 2020, 11(1): 2427. http://dx.doi.org/10.1038/s41467-020-16249-x.

[179]

Jain A, Gosling J, Liu S C, Wang H W, Stone E M, Chakraborty S, Jayaraman P-S, Smith S, Amabilino D B, Fromhold M, Long Y T, Pérez-García L, Turyanska L, Rahman R, Rawson F J. Wireless electrical-molecular quantum signalling for cancer cell apoptosis[J]. Nat. Nanotechnol., 2023, 19(1): 106-114. http://dx.doi.org/10.1038/s41565-023-01496-y.

[180]

Loynd C, Roy S J S, Ovalle V J, Canarelli S E, Mondal A, Jewel D, Ficaretta E D, Weerapana E, Chatterjee A. Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation[J]. Nat. Chem., 2024, 16(3): 389-397. http://dx.doi.org/10.1038/s41557-023-01375-y.

[181]

Depienne S, Bouzelha M, Courtois E, Pavageau K, Lalys P A, Marchand M, Alvarez-Dorta D, Nedellec S, Marín-Fernández L, Grandjean C, Boujtita M, Deniaud D, Mével M, Gouin S G. Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces[J]. Nat. Commun., 2023, 14(1): 5122 http://dx.doi.org/10.1038/s41467-023-40534-0.

[182]

Jain A, Gosling J, Liu S C, Wang H W, Stone E M, Chakraborty S, Jayaraman P S, Smith S, Amabilino D B, Fromhold M, Long Y T, Pérez-García L, Turyanska L, Rahman R, Rawson F J. Wireless electrical-molecular quantum signalling for cancer cell apoptosis[J]. Nat. Nanotechnol., 2024, 19(1): 106-114. http://dx.doi.org/10.1038/s41565-023-01496-y.

[183]

Verdin E, Hirschey M D, Finley L W S, Haigis M C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling[J]. Trends Biochem. Sci., 2010, 35(12): 669-675. http://dx.doi.org/10.1016/j.tibs.2010.07.003.

[184]

Wang S B, Murray C I, Chung H S, Van Eyk J E. Redox regulation of mitochondrial atp synthase[J]. Trends Cardiovasc. Med., 2013, 23(1): 14-18. http://dx.doi.org/10.1016/j.tcm.2012.08.005.

[185]

Ostojić J, Panozzo C, Lasserre J P, Nouet C, Courtin F, Blancard C, di Rago J P, Dujardin G. The energetic state of mitochondria modulates complex iii biogenesis through the atp-dependent activity of Bcs1[J]. Cell Metab., 2013, 18(4): 567-577. http://dx.doi.org/10.1016/j.cmet.2013.08.017.

[186]

Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L. Towards environmental systems biology of shewanella[J]. Nat. Rev. Microbiol., 2008, 6(8): 592-603. https://doi.org/10.1038/nrmicro1947.

[187]

Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proc. Natl. Acad. Sci., 2008, 105(10): 3968-3973. http://dx.doi.org/10.1073/pnas.0710525105

[188]

Li X, Tian X C, Yan X Y, Huo N, Wu X E, Zhao F. Lumichrome from the photolytic riboflavin acts as an electron shuttle in microbial photoelectrochemical systems[J]. Bioelectrochemistry, 2023, 152: 108439. http://dx.doi.org/10.1016/j.bioelechem.2023.108439.

[189]

Li F H, Liang Z H, Sun H, Tang Q, Yu H Q. Engineering programmable electroactive living materials for highly efficient uranium capture and accumulation[J]. Environ. Sci. Technol., 2024, 58(52): 23053-23063. http://dx.doi.org/10.1021/acs.est.4c07276.

[190]

Li F H, Tang Q, Fan Y Y, Li Y, Li J, Wu J H, Luo C F, Sun H, Li W W, Yu H Q. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in shewanella oneidensis[J]. Proc. Natl. Acad. Sci., 2020, 117(37): 23001-23010. http://dx.doi.org/10.1073/pnas.2006534117.

[191]

Ren C Y, Bai R, Chen W, Li J P, Zhou X D, Tian X C, Zhao F. Advances in nanomaterial-microbe coupling system for removal of emerging contaminants[J]. Chem. Res. Chin. Univ., 2023, 39(3): 389-394. http://dx.doi.org/10.1007/s40242-023-3053-x.

[192]

Bai R, He Y, Li J P, Zhou X D, Zhao F. Assembly strategies for microbe-material hybrid systems in solar energy conversion[J]. Plant Physiol. Biochem., 2024, 216: 109091. http://dx.doi.org/10.1016/j.plaphy.2024.109091.

[193]

Wang R W, Li H D, Sun J Z, Zhang L, Jiao J, Wang Q Q, Liu S Q. Nanomaterials facilitating microbial extracellular electron transfer at interfaces[J]. Adv. Mater., 2021, 33(6): e2004051 http://dx.doi.org/10.1002/adma.202004051.

[194]

Zhang Z Y, Zhang Z H, Zhang C Y, Chang Q, Fang Q X, Liao C M, Chen J B, Alvarez P J J, Chen W, Zhang T. Simultaneous reduction and methylation of nanoparticulate mercury: The critical role of extracellular electron transfer[J]. Environ. Sci. Technol., 2024, 58(41): 18368-18378. http://dx.doi.org/10.1021/acs.est.4c07573.

[195]

Wang R W, Yan M, Li H D, Zhang L, Peng B Q, Sun J Z, Liu D, Liu S Q. FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density[J]. Adv. Mater., 2018, 30(22): 1800618. http://dx.doi.org/10.1002/adma.201800618.

[196]

Zhao J T, Li F, Kong S T, Chen T, Song H, Wang Z W. Elongated riboflavin‐producing shewanella oneidensis in a hybrid biofilm boosts extracellular electron transfer[J]. Adv. Sci., 2023, 10(9): 2206622. https://doi.org/10.1002/advs.202206622.

[197]

Xu H, Wang M W, Hei S Q, Qi X, Zhang X Y, Liang P, Fu W Y, Pan B C, Huang X. Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes[J]. Water Res., 2024, 262: 122125. http://dx.doi.org/10.1016/j.watres.2024.122125.

[198]

Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras G G. Next-generation probes, particles, and proteins for neural interfacing[J]. Sci. Adv., 3(6): e1601649. http://dx.doi.org/10.1126/sciadv.1601649.

[199]

Gaub B M, Kasuba K C, Mace E, Strittmatter T, Laskowski P R, Geissler S A, Hierlemann A, Fussenegger M, Roska B, Müller D J. Neurons differentiate magnitude and location of mechanical stimuli[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(2): 848-856. http://dx.doi.org/10.1073/pnas.1909933117.

[200]

Liu Y X, Liu J, Chen S C, Lei T, Kim Y, Niu S M, Wang H L, Wang X, Foudeh A M, Tok J B H, Bao Z N. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation[J]. Nat. Biomed. Eng., 2019, 3(1): 58-68. http://dx.doi.org/10.1038/s41551-018-0335-6.

[201]

Wang Y, Zhu C X, Pfattner R, Yan H P, Jin L H, Chen S C, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z N. A highly stretchable, transparent, and conductive polymer[J]. Sci. Adv., 3(3): e1602076. http://dx.doi.org/10.1126/sciadv.1602076.

[202]

Feng J Y, Chen C R, Sun X M, Peng H S. Implantable fiber biosensors based on carbon nanotubes[J]. Acc. Mater. Res., 2021, 2(3): 138-146. http://dx.doi.org/10.1021/accountsmr.0c00109.

[203]

Tran K A, Jin Y, Bouyer J, DeOre B J, Suprewicz Ł, Figel A, Walens H, Fischer I, Galie P A. Magnetic alignment of injectable hydrogel scaffolds for spinal cord injury repair[J]. Biomater. Sci., 2022, 10(9): 2237-2247. http://dx.doi.org/10.1039/D1BM01590G.

[204]

Sudhadevi T, Vijayakumar H S, Hariharan E V, Sandhyamani S, Krishnan L K. Optimizing fibrin hydrogel toward effective neural progenitor cell delivery in spinal cord injury[J]. Biomed. Mater., 2022, 17(1): 014102. http://dx.doi.org/10.1088/1748-605X/ac3680.

[205]

Ghane N, Beigi M-H, Labbaf S, Nasr-Esfahani M-H, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries[J]. J. Mater. Chem. B, 2020, 8(47): 10712-10738. http://dx.doi.org/10.1039/D0TB01842B.

[206]

Qian Z Y, Yang Y Q, Wang L Y, Wang J J, Guo Y, Liu Z W, Li J Z, Zhang H Y, Sun X M, Peng H S. An implantable fiber biosupercapacitor with high power density by multi-strand twisting functionalized fibers[J]. Angew. Chem. Int. Ed., 2023, 62(28): e202303268. http://dx.doi.org/10.1002/anie.202303268.

[207]

Bai L M, Elósegui C G, Li W Q, Yu P, Fei J J, Mao L Q. Biological applications of organic electrochemical transistors: Electrochemical biosensors and electrophysiology recording[J]. Front. Chem., 2019, 7: 559-574. http://dx.doi.org/10.3389/fchem.2019.00313.

[208]

Chen S Y, Tong X Y, Huo Y H, Liu S J, Yin Y Y, Tan M L, Cai K Y, Ji W. Piezoelectric biomaterials inspired by nature for applications in biomedicine and nanotechnology[J]. Adv. Mater., 2024, 36(35): 2406192. http://dx.doi.org/10.1002/adma.202406192.

[209]

Chen S, Zhu P, Mao L J, Wu W C, Lin H, Xu D L, Lu X Y, Shi J L. Piezocatalytic medicine: An emerging frontier using piezoelectric materials for biomedical applications[J]. Adv. Mater., 2023, 35(25): 2208256. http://dx.doi.org/10.1002/adma.202208256.

[210]

DiFrancesco M L, Lodola F, Colombo E, Maragliano L, Bramini M, Paternò G M, Baldelli P, Serra M D, Lunelli L, Marchioretto M, Grasselli G, Cimò S, Colella L, Fazzi D, Ortica F, Vurro V, Eleftheriou C G, Shmal D, Maya-Vetencourt J F, Bertarelli C, Lanzani G, Benfenati F. Neuronal firing modulation by a membrane-targeted photoswitch[J]. Nat. Nanotechnol., 2020, 15(4): 296-306. http://dx.doi.org/10.1038/s41565-019-0632-6.

[211]

Beckham J L, van Venrooy A R, Kim S, Li G, Li B W, Duret G, Arnold D, Zhao X, Li J T, Santos A L, Chaudhry G, Liu D D, Robinson J T, Tour J M. Molecular machines stimulate intercellular calcium waves and cause muscle contraction[J]. Nat. Nanotechnol., 2023, 18(9): 1051-1059. http://dx.doi.org/10.1038/s41565-023-01436-w.

[212]

García-López V, Liu D, Tour J M. Light-activated organic molecular motors and their applications[J]. Chem. Rev., 2020, 120(1): 79-124. http://dx.doi.org/10.1021/acs.chemrev.9b00221.

[213]

Zhang L, Berg H. Electrostimulation of the dehydrogenase system of yeast by alternating currents[J]. Bioelectrochem. Bioenerg., 1992, 28(1): 341-353. http://dx.doi.org/10.1016/0302-4598(92)80024-B.

[214]

Kwee S, Raskmark P. Changes in cell proliferation due to environmental non-ionizing radiation 1. Elf electromagnetic fields[J]. Bioelectrochem. Bioenerg., 1995, 36(2): 109-114. http://dx.doi.org/10.1016/0302-4598(94)01760-x.

[215]

Wong J Y, Langer R, Ingber D E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells[J]. Proc. Natl. Acad. Sci., 1994, 91(8): 3201-3204. http://dx.doi.org/10.1073/pnas.91.8.3201.

[216]

Xin Y. Electrochemical methods for cancer.[M] Beijing, China: People's Health Press, 1995.

[217]

Heller R, Jaroszeski M, Leo-Messina J, Perrot R, Van Voorhis N, Reintgen D, Gilbert R. Treatment of B16 mouse melanoma with the combination of electropermeabilization and chemotherapy[J]. Bioelectrochem. Bioenerg., 1995, 36(1): 83-87. http://dx.doi.org/10.1016/0302-4598(94)05013-k.

[218]

Naegele T E, Gurke J, Rognin E, Willis‐Fox N, Dennis A, Tao X D, Daly R, Keyser U F, Malliaras G G. Redox flow iontophoresis for continuous drug delivery[J]. Adv. Mater. Technol., 2024, 9(6): 2301641. http://dx.doi.org/10.1002/admt.202301641.

[219]

Weaver J C, Astumian R D. The response of living cells to very weak electric fields: The thermal noise limit[J]. Science, 1990, 247(4941): 459-462. http://dx.doi.org/10.1126/science.2300806.

[220]

Finch J G, Fosh B, Anthony A, Slimani E, Texler M, Berry D P, Dennison A R, Maddern G J. Liver electrolysis: pH can reliably monitor the extent of hepatic ablation in pigs[J]. Clin. Sci., 2002, 102(4): 389-395. http://dx.doi.org/10.1042/cs1020389.

[221]

Fosdick S E, Knust K N, Scida K, Crooks R M. Bipolar electrochemistry[J]. Angew. Chem. Int. Ed., 2013, 52(40): 10438-10456. http://dx.doi.org/10.1002/anie.201300947.

[222]

Yoon J, Shin M, Kim D, Lim J, Kim H W, Kang T, Choi J W. Bionanohybrid composed of metalloprotein/DNA/MoS2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device[J]. Biosens. Bioelectron., 2022, 196: 113725. http://dx.doi.org/10.1016/j.bios.2021.113725.

[223]

Cury F L, Bhindi B, Rocha J, Scarlata E, El Jurdi K, Ladouceur M, Beauregard S, Vijh A K, Taguchi Y, Chevalier S. Electrochemical red-ox therapy of prostate cancer in nude mice[J]. Bioelectrochemistry, 2015, 104: 1-9. http://dx.doi.org/10.1016/j.bioelechem.2014.12.004.

[224]

Zhou H Y, Zhong Z X, Wei S Y, Yu P, Jiang J, Mao L Q. Transmembrane graphene as an electron tunnel to regulate the intracellular redox state[J]. Nano Lett., 2024, 24(33): 10396-10401. http://dx.doi.org/10.1021/acs.nanolett.4c03255.

[225]

Li H N, Ci Y X, Feng J, Cheng K, Fu S, Wang D B. The voltammetric behavior of bone marrow of leukaemia and its clinical application[J]. Bioelectrochem. Bioenerg., 1999, 48(1): 171-175. http://dx.doi.org/10.1016/s0302-4598(98)00218-9.

[226]

Du D, Liu S L, Chen J, Ju H X, Lian H Z, Li J X. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability[J]. Biomaterials, 2005, 26(33): 6487-6495. http://dx.doi.org/10.1016/j.biomaterials.2005.03.048.

[227]

Chen J, Du D, Yan F, Ju H X, Lian H Z. Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon‐nanotube‐modified electrode[J]. Chem. Eur. J., 2005, 11(5): 1467-1472. http://dx.doi.org/10.1002/chem.200400956.

[228]

Besant J D, Sargent E H, Kelley S O. Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria[J]. Lab Chip, 2015, 15(13): 2799-2807. http://dx.doi.org/10.1039/c5lc00375j.

[229]

Gu T X, Wang Y, Lu Y H, Cheng L, Feng L Z, Zhang H, Li X, Han G R, Liu Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment[J]. Adv. Mater., 2019, 31(14): 1806803. http://dx.doi.org/10.1002/adma.201806803.

[230]

Huang J H, Yu P, Liao M C, Dong X L, Xu J, Ming J, Bin D, Wang Y G, Zhang F, Xia Y Y. A self-charging salt water battery for antitumor therapy[J]. Sci. Adv., 2023, 9(13): eadf3992. http://dx.doi.org/doi:10.1126/sciadv.adf3992.

PDF (3537KB)

330

Accesses

0

Citation

Detail

Sections
Recommended

/