Carbon Supported Octahedral PtNi Nanoparticles (Oct-PtNi/C) as a Cathode Catalyst for Proton Exchange Membrane Fuel Cells (PEMFCs) with Improved Activity and Durability

Zi-Wei Feng , Hai-Zhong Chen , Xiao Duan , Ling Tang , Yun-kun Zhao , Long Huang

Journal of Electrochemistry ›› 2026, Vol. 32 ›› Issue (1) : 2515009

PDF (3217KB)
Journal of Electrochemistry ›› 2026, Vol. 32 ›› Issue (1) :2515009 DOI: 10.61558/2993-074X.3588
Article
research-article

Carbon Supported Octahedral PtNi Nanoparticles (Oct-PtNi/C) as a Cathode Catalyst for Proton Exchange Membrane Fuel Cells (PEMFCs) with Improved Activity and Durability

Author information +
History +
PDF (3217KB)

Abstract

Proton exchange membrane fuel cells (PEMFCs) are considered as a promising renewable power source. However, the massive commercial application of PEMFCs has been greatly hindered by their high expense and less-satisfied performance mainly due to the sluggish oxygen reduction reaction (ORR) kinetics even on state-of-the-art Pt catalyst. Octahedral PtNi nanoparticles (oct-PtNi NPs) with excellent ORR activity in a half-cell have been widely studied, while their performance in membrane electrode assembly (MEA) has much less reported. Herein, we investigated the MEA performance using the carbon supported oct-PtNi NPs (oct-PtNi/C) as the cathode catalyst. Under the mild acid washing condition, the surface Ni atoms of oct-PtNi/C were largely removed, and the performance of the MEA using the acid-leaching oct-PtNi/C (PNC-A) as the cathode catalyst was greatly improved. The maximum power density of the MEA reached 1.0 W·cm-2 with the cathode Pt loading of 0.2 mg·cm-2, which is 15% higher than that using Pt/C as the catalyst. After 30k cycles in the accelerated degradation test (ADT), the MEA using PNC-A as the catalyst showed a performance retention of 82%, higher than that of Pt/C (74%). The results reported here verify the possibility of using PNC-A as an advanced cathode catalyst in PEMFCs, thus enhancing the performance of PEMFCs while lowering the amount of expensive Pt.

Keywords

Proton exchange membrane fuel cell / octahedral PtNi / oxygen reduction reaction / membrane electrode assembly

Cite this article

Download citation ▾
Zi-Wei Feng, Hai-Zhong Chen, Xiao Duan, Ling Tang, Yun-kun Zhao, Long Huang. Carbon Supported Octahedral PtNi Nanoparticles (Oct-PtNi/C) as a Cathode Catalyst for Proton Exchange Membrane Fuel Cells (PEMFCs) with Improved Activity and Durability. Journal of Electrochemistry, 2026, 32(1): 2515009 DOI:10.61558/2993-074X.3588

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information.

Detailed physical characterization results including TEM analyses of catalysts before and after single cell tests and EIS data of different MEAs.

Acknowledgements

This work was mainly supported by grants from the Natural Science Foundation of China (22362031 and 21805121), and the Science and Technology Project of Yunnan Province (2019FD137). We thank Professor Zipeng Zhao in Beijing Institute of Technology for the guidance during the synthesis of oct-PtNi/C catalysts.

Conflict of Interests

The authors declare no competing financial interest.

Data Availability

Data will be made available on request.

Author Contributions

Ziwei Feng: Investigation, Writing-original draft, Formal analysis. Haizhong Chen: Investigation, Formal analysis. Xiao Duan: Investigation. Ling Tang: Investigation. Yunkun Zhao: Writing- review & editing. Long Huang: Conceptualization, Investigation, Writing- review & editing, Funding acquisition, Project administration.

References

[1]

Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat. Catal., 2019, 2(7): 578-589. http://dx.doi.org/10.1038/s41929-019-0304-9.

[2]

Swider Lyons K E, Campbell S A. Physical chemistry research toward proton exchange membrane fuel cell advancement[J]. J. Phys. Chem. Lett., 2013, 4(3): 393-401. http://dx.doi.org/10.1021/jz3019012.

[3]

Liu Z, Peng B, Tsai Y H J, Zhang A, Xu M, Zang W, Yan X, Xing L, Pan X, Duan X, Huang Y. Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications[J]. Nat. Nanotechnol., 2025, 20: 807-814. http://dx.doi.org/10.1038/s41565-025-01895-3.

[4]

Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: Particle Size effect on oxygen reduction reaction activity[J]. Nano Lett., 2011, 11(9): 3714-3719. http://dx.doi.org/10.1021/nl2017459.

[5]

Hernandez Fernandez P, Masini F, McCarthy D N, Strebel C E, Friebel D, Deiana D, Malacrida P, Nierhoff A, Bodin A, Wise A M, Nielsen J H, Hansen T W, Nilsson A, StephensIfan E L, Chorkendorff I. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction[J]. Nat Chem., 2014, 6(8): 732-738. http://dx.doi.org/10.1038/nchem.2001.

[6]

Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. http://dx.doi.org/doi:10.1126/science.1249061.

[7]

Cui C, Gan L, Heggen M, Rudi S, Strasser P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J]. Nat. Mater., 2013, 12(8): 765-771. http://dx.doi.org/10.1038/nmat3668.

[8]

Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang K C, Paulikas A P, Tripkovic D, Pearson J, More K L, Markovic N M, Stamenkovic V R. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. J. Am. Chem. Soc., 2011, 133(36): 14396-14403. http://dx.doi.org/10.1021/ja2047655.

[9]

Polani S, Amitrano R, Baumunk A F, Pan L, Lu J, Schmitt N, Gernert U, Klingenhof M, Selve S, Günther C M, Etzold B J M, Strasser P. Oxygen reduction reaction activity and stability of shaped metal-doped PtNi electrocatalysts evaluated in gas diffusion electrode half-cells[J]. ACS Appl. Mater. Interfaces., 2024, 16(39): 52406-52413. http://dx.doi.org/10.1021/acsami.4c11068.

[10]

Fikry M, Weiß N, Bozzetti M, Ünsal S, Georgi M, Khavlyuk P, Herranz J, Tileli V, Eychmüller A, Schmidt T J. Up-scaled preparation of Pt-Ni aerogel catalyst layers for polymer electrolyte fuel cell cathodes[J]. ACS Appl. Energy Mater., 2024, 7: 896-905. http://dx.doi.org/10.1021/acsaem.3c01930.

[11]

Polani S, MacArthur K E, Klingenhof M, Wang X, Paciok P, Pan L, Feng Q, Kormányos A, Cherevko S, Heggen M, Strasser P. Size and composition dependence of oxygen reduction reaction catalytic activities of Mo-doped PtNi/C octahedral nanocrystals[J]. ACS Catal., 2021, 11(18): 11407-11415. http://dx.doi.org/10.1021/acscatal.1c01761.

[12]

Lu B A, Shen L F, Liu J, Zhang Q, Wan L Y, Morris D J, Wang R X, Zhou Z Y, Li G, Sheng T, Gu L, Zhang P, Tian N, Sun S G. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction[J]. ACS Catal., 2021, 11(1): 355-363. http://dx.doi.org/10.1021/acscatal.0c03137.

[13]

Zhao X, Xi C, Zhang R, Song L, Wang C, Spendelow J S, Frenkel A I, Yang J, Xin H L, Sasaki K. High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen Reduction Reaction[J]. ACS Catal., 2020, 10(18): 10637-10645. http://dx.doi.org/10.1021/acscatal.0c03036.

[14]

Yang T, Cheng C, Xiao L, Wang M, Zhang F, Wang J, Yin P, Shen G, Yang J, Dong C, Liu H, Du X. A descriptor of IB alloy catalysts for hydrogen evolution reaction[J]. SmartMat, 2024, 5(3): e1204. http://dx.doi.org/https://doi.org/10.1002/smm2.1204.

[15]

Chen J, Arce Ramos J M, Katsounaros I, de Smit E, Abubakar S M, Lum Y, Zhang J, Wang L. Modulating oxygen affinity to enhance liquid products for the electrochemical reduction of carbon monoxide[J]. 2025, 6(2): e70010. http://dx.doi.org/https://doi.org/10.1002/smm2.70010.

[16]

Wang C C, Guo Z S, Shen Q, Xu Y R, Lin C P, Yang X D, Li C C, Sun Y Q, Hang L F. Recent advances in core-shell structured noble metal-based catalysts for electrocatalysis[J]. Rare Metals, 2025, 44(4): 2180-2207. http://dx.doi.org/10.1007/s12598-024-03081-1.

[17]

Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A, Zettl A, Wang Y M, Duan X F, Mueller T, Huang Y. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348(6240): 1230-1234. http://dx.doi.org/doi:10.1126/science.aaa8765.

[18]

Cui C, Gan L, Li H H, Yu S H, Heggen M, Strasser P. Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition[J]. Nano Lett., 2012, 12(11): 5885-5889. http://dx.doi.org/10.1021/nl3032795.

[19]

Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Marković N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. http://dx.doi.org/doi:10.1126/science.1135941.

[20]

Dionigi F, Weber C C, Primbs M, Gocyla M, Bonastre A M, Spöri C, Schmies H, Hornberger E, Kühl S, Drnec J, Heggen M, Sharman J, Dunin-Borkowski R E, Strasser P. Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst[J]. Nano Lett., 2019, 19(10): 6876-6885. http://dx.doi.org/10.1021/acs.nanolett.9b02116.

[21]

Kim O H, Ahn C Y, Kang S Y, Kim S, Choi H J, Cho Y H, Sung Y E. From half-cells to membrane-electrode assemblies: a comparison of oxygen reduction reaction catalyst Performance Characteristics[J]. Fuel Cells, 2019, 19(6): 695-707. http://dx.doi.org/https://doi.org/10.1002/fuce.201900120.

[22]

Jia Q, Li J, Caldwell K, Ramaker D E, Ziegelbauer J M, Kukreja R S, Kongkanand A, Mukerjee S. Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis[J]. ACS Catal., 2016, 6(2): 928-938. http://dx.doi.org/10.1021/acscatal.5b02750.

[23]

Han B, Carlton C E, Kongkanand A, Kukreja R S, Theobald B R, Gan L, O'Malley R, Strasser P, Wagner F T, Shao-Horn Y. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells[J]. Energy Environ. Sci., 2015, 8(1): 258-266. http://dx.doi.org/10.1039/C4EE02144D.

[24]

Wang J, Xue Q, Li B, Yang D, Lv H, Xiao Q, Ming P, Wei X, Zhang C. Preparation of a graphitized-carbon-supported PtNi octahedral catalyst and application in a proton-exchange membrane fuel cell[J]. ACS Appl. Mater. Interfaces., 2020, 12(6): 7047-7056. http://dx.doi.org/10.1021/acsami.9b17248.

[25]

Wang J, Li B, Gao X, Yang D J, Lv H, Xiao Q F, Zhang C M. From rotating disk electrode to single cell: Exploration of PtNi/C octahedral nanocrystal as practical proton exchange membrane fuel cell cathode catalyst[J]. J. Power. Sources, 2018, 406: 118-127. http://dx.doi.org/https://doi.org/10.1016/j.jpowsour.2018.10.010.

[26]

Huang X Q, Zhao Z P, Chen Y, Zhu E B, Li M F, Duan X F, Huang Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts[J]. Energy Environ. Sci., 2014, 7(9): 2957-2962. http://dx.doi.org/10.1039/C4EE01082E.

[27]

FCTT AST and polarization curve protocols for PEMFCs[EB/OL]. https://uscar.org/technologies-teams/hydrogen-fuel-cell.

[28]

Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. App. Catal. B: Environ., 2005, 56(1-2): 9-35. http://dx.doi.org/https://doi.org/10.1016/j.apcatb.2004.06.021.

[29]

Tang M H, Zhang S M, Chen S L. Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights[J]. Chem. Soc. Rev., 2022, 51(4): 1529-1546. http://dx.doi.org/10.1039/D1CS00981H.

[30]

Gan L, Heggen M, O’Malley R, Theobald B, Strasser P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts[J]. Nano Lett., 2013, 13(3): 1131-1138. http://dx.doi.org/10.1021/nl304488q.

[31]

Vliet D F, Wang C, Li D, Paulikas A P, Greeley J, Rankin R B, Strmcnik D, Tripkovic D, Markovic N M, Stamenkovic V R. Unique electrochemical adsorption properties of Pt-skin surfaces[J]. Angew. Chem. Int. Ed., 2012, 51(13): 3139-3142. http://dx.doi.org/https://doi.org/10.1002/anie.201107668.

[32]

Khalakhan I, Bogar M, Vorokhta M, Kúš P, Yakovlev Y, Dopita M, Sandbeck D J S, Cherevko S, Matolínová I, Amenitsch H. Evolution of the PtNi bimetallic alloy fuel cell catalyst under simulated operational conditions[J]. ACS Appl. Mater. Interfaces,. 2020, 12(15): 17602-17610. http://dx.doi.org/10.1021/acsami.0c02083.

[33]

Kelly M J, Egger B, Fafilek G, Besenhard J O, Kronberger H, Nauer G E. Conductivity of polymer electrolyte membranes by impedance spectroscopy with microelectrodes[J]. Solid State Ion., 2005, 176(25): 2111-2114. http://dx.doi.org/https://doi.org/10.1016/j.ssi.2004.07.071.

[34]

Makharia R, Mathias M F, Baker D R. Measurement of catalyst layer electrolyte Resistance in PEFCs using electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 2005, 152(5): A970-A977. http://dx.doi.org/10.1149/1.1888367.

[35]

Sharma R, Gyergyek S, Li Q, Andersen S M. Evolution of the degradation mechanisms with the number of stress cycles during an accelerated stress test of carbon supported platinum nanoparticles[J]. J. Electroanal. Chem., 2019, 838: 82-88. http://dx.doi.org/https://doi.org/10.1016/j.jelechem.2019.02.052.

[36]

Greszler T A, Caulk D, Sinha P. The impact of platinum loading on oxygen transport resistance[J]. J. Electrochem. Soc., 2012, 159(12): F831-F840. http://dx.doi.org/10.1149/2.061212jes.

AI Summary AI Mindmap
PDF (3217KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/