Development Status and Existing Problems of Ion-Solvation Membranes for Electrolysis of Water

Zheng-Yuan Zhou , Yu-Tao Sun , Zheng-Bang Liu , Chuan-Zheng Wang , Yong-Nan Zhou , Xi Luo , Tian-Chi Zhou , Jin-Li Qiao

Journal of Electrochemistry ›› 2026, Vol. 32 ›› Issue (1) : 2515006

PDF (5829KB)
Journal of Electrochemistry ›› 2026, Vol. 32 ›› Issue (1) :2515006 DOI: 10.61558/2993-074X.3586
Reviews
research-article

Development Status and Existing Problems of Ion-Solvation Membranes for Electrolysis of Water

Author information +
History +
PDF (5829KB)

Abstract

Ion-solvaing membranes (ISMs) have received extensive attention in recent years as a key component in electrochemical energy conversion and storage devices. This article provides an overview of structural composition, performance advantages, research progress, ion conduction mechanism and existing issues of ISMs, primarily classifying them according to the matrix structure. A detailed analysis of performance enhancement methods, key performance indicators of ISMs and performance influencing factors is also presented. The article contributes to further optimizing the design and application of ion-solvation membranes, providing theoretical support for the development of fields such as hydrogen production through electrolysis of water and electrochemical energy in the future.

Keywords

Ion-solvation membrane / Alkaline water electrolysis / Deprotonated group / Ionic conduction mechanism / Hydrogen energy

Cite this article

Download citation ▾
Zheng-Yuan Zhou, Yu-Tao Sun, Zheng-Bang Liu, Chuan-Zheng Wang, Yong-Nan Zhou, Xi Luo, Tian-Chi Zhou, Jin-Li Qiao. Development Status and Existing Problems of Ion-Solvation Membranes for Electrolysis of Water. Journal of Electrochemistry, 2026, 32(1): 2515006 DOI:10.61558/2993-074X.3586

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFE0138900), the National Natural Science Foundation of China (21972017) and the “Scientific and Technical Innovation Action Plan” Basic Research Field of Shanghai Science and Technology Committee (19JC1410500).

Conflicts of Interest

The authors declare no financial interests/personal relationships, which may be considered as potential competing interests.

Data Availability

Data are available from the corresponding author upon reasonable request.

Author Contributions

Tian-Chi Zhou, Jin-Li Qiao conceived the study; Yu-Tao Sun, Zheng-Bang Liu, Chuan-Zheng Wang, Yong-Nan Zhou, Xi Luo analyzed the data; Zheng-Yuan Zhou wrote the manuscript.

Ethics Approval

This article does not require ethical approval.

Consent to Publish

Written consent for publication was obtained from all participants.

References

[1]

Wang Z D, Zhang Y, Zhang J X, Xu N N, Lu T, Zhuang B Y, Liu G C, Liang Y Z, Lei H, Tian B L, Qiao J L. Photo-enhanced Co single-atom catalyst with a staggered pn heterojunction: unraveling its high oxygen catalytic performance in zinc-air batteries and fuel cells[J]. Chin. J. Catal., 2025, 73: 311-321. https://doi.org/10.1016/S1872-2067(25)64704-8.

[2]

Bai G, Wang M, Peng L W, Li L L, Yu Y D, Li W Y, Yang N J, D I, Kolokolove, Qiao J L. Optimizing CO production in electrocatalytic CO2 Reduction via electron accumulation at Ni Sites in Ni3ZnC0.7/Ni on N-doped carbon nanofibers[J]. Green Energy Environ., in press. https://doi.org/10.1016/j.gee.2025.04.010.

[3]

Luo J, Zheng J J, Wu M J, Dong F, Liu Y Y, Qiao J L, Yang Y. Local microenvironment reactive zone engineering promotes water activation[J]. Mater. Rep. Energy, 2025, 5(2): 100327. https://doi.org/10.1016/j.matre.2025.100327.

[4]

Yollandaa N, Dedib R, Heriantoe M. E, Nirwan S, Addy R, Hawa Y. D, Nyimas F. S. Variation of membrane electrode assembly (MEA) catalyst layer in unitized regenerative fuel cell (URFC)[J]. J. Electrochem., 2025, 31(4): 4. https://doi.org/10.61558/2993-074X.3540.

[5]

Yi X N, Lu T G, Li Y X, Ai Q, Hao R. Collaborative planning of multi-energy systems integrating complete hydrogen energy chain[J]. Renew. Sustain. Energy Rev., 2025, 210: 115147. https://doi.org/10.1016/j.rser.2024.115147.

[6]

Du L J, Sun Y J, You B. Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond[J]. Mater. Rep. Energy, 2021, 1(1): 100004. https://doi.org/10.1016/j.matre.2020.12.001.

[7]

Cai L, Li N B, Li B B, Zhou T C, Zhou Z Y, Zhou Y N, Luo X, Zhao K Y, Lai Y K, Qiao J L. Enhanced hydroxide conductivity in zwitterionic polyacrylate-based anion exchange membranes via side-chain length optimization[J]. Green Energy Environ., in press. https://doi.org/10.1016/j.gee.2025.06.003.

[8]

Pan S Y, Ma Z L, Yang W Y, Dongyang B K, Yang H Z, Lai S M, Dong F F, Yang X X, Lin Z. Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution[J]. Mater. Rep. Energy, 2023, 3(3): 100212. https://doi.org/10.1016/j.matre.2023.100212.

[9]

Li J, Tang C, Zhang H, Zou Z, Li C M. Mesoporous molybdenum carbide for greatly enhanced hydrogen evolution at high current density and its mechanism studies[J]. Mater. Rep. Energy, 2023, 3(3): 100215. https://doi.org/10.1016/j.matre.2023.100215.

[10]

Shi K, Wan H Y, Wang K Y, Fang F M H, Li S Y, Wang Y X, Lei L F, Zhuang L Z, Xu Z. Self-sustaining alkaline seawater electrolysis via forward osmosis membranes[J]. Green Energy Environ., 2025, 10(3): 518-527. https://doi.org/10.1016/j.gee.2024.04.003.

[11]

Zhao Y L, Yu Z P, Ge A M, Liu L J, Faria J L, Xu G Y, Zhu M F. Direct seawater splitting for hydrogen production: Recent advances in materials synthesis and technological innovation[J]. Green Energy Environ., 2025, 10(1): 11-33. https://doi.org/10.1016/j.gee.2024.02.001.

[12]

Ayub M. N, Shahzad U, Rabbee M. F, Saeed M, Khan M. M. R, Rahman M. M. Recent advances on water electrolysis based on nanoscale inorganic metal-oxides and metal-oxyhydroxides for hydrogen energy production[J]. Int. J. Hydrogen Energy, 2025, 97: 307-327. https://doi.org/10.1016/j.ijhydene.2024.11.348.

[13]

Zheng K, Sun Z Y, Song Y, Zhang C, Zhang C Y, Chang F H, Yang D C, Fu X Q. Stochastic scenario generation methods for uncertainty in wind and photovoltaic power outputs: A comprehensive review[J]. Energies, 2025, 18(3): 503. https://doi.org/10.3390/en18030503.

[14]

Yang Q, Tong X, Wang Z M. Progress in manipulating spin polarization for solar hydrogen production[J]. Mater. Rep. Energy, 2024, 4(1): 100253. https://doi.org/10.1016/j.matre.2024.100253.

[15]

Hao A H, Wan X, Liu X F, Yu R H, Shui J L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions[J]. Nano Res. Energy, 2022, 1(2): e9120013-e9120013. https://doi.org/10.26599/NRE.2022.9120013.

[16]

Kim J. H, Jo H. J, Han S. M, Kim Y. J, Kim S. Y. Recent advances in electrocatalysts for anion exchange membrane water electrolysis: design strategies and characterization approaches[J]. Energy Mater., 2025, 5(8): 500099. https://doi.org/10.20517/energymater.2024.290.

[17]

Zhang Z, Song L J. Hydrogen production by water electrolysis: Advances, challenges and future prospects[J]. Chin. J. Eng., 2025, 47(2): 282-295. https://doi.org/10.13374/j.issn2095-9389.2024.06.03.004.

[18]

Zakaria Z, Kamarudin S. K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer[J]: Int. J. Energy Res., 2021, 45(13), 18337-18354. https://doi.org/10.1002/er.6983.

[19]

Janietz S, Brening T, Schiestel T, Götz T. Block copoly (phenylquinoxaline) s as potential ionomers for proton exchange membranes[J]. Polymer, 2023, 271: 125794. https://doi.org/10.1016/j.polymer.2023.125794.

[20]

Guo H, Zhang P, Huang S Y, Li M, Sun G X, Li J Y, Lin Y, Liu B, Pan Y. Achilles’ heel of single atom catalysts towards practical PEMFC application: Degradation mechanisms and regulatory strategies[J]. Nano Res. Energy, 2025, 4(1): e9120144.https://doi.org/10.26599/NRE.2024.9120144.

[21]

Zhang Y, Gong B B, Zhou B J, Liu Z B, Xu N N, Wang Y X, Xu X Q, Cao Q, D I Kolokolov, Huang H T, Lou S F, Liu G C, Yang W, Qiao J L. Hydrophobicity engineering of hierarchically ordered SiO2/Fe-NC catalyst with optimized triple-phase boundary for boosting oxygen reduction reaction[J]. Nano Res. Energy. 2025, 4(3): e9120180. https://doi.org/10.26599/NRE.2025.9120180.

[22]

Kim J, Seo J. H, Lee J. K, Oh M. H, Jang H. W. Challenges and strategies in catalysts design towards efficient and durable alkaline seawater electrolysis for green hydrogen production[J]. Energy Mater., 2025, 5(7): 500076. https://doi.org/10.20517/energymater.2024.220.

[23]

Xue W F, Shao M F. Alkaline water electrolysis for efficient hydrogen production[J]. J. Electrochem., 2022, 28(10): 4. https://doi.org/10.13208/j.electrochem.2214008.

[24]

Zhang H X, Wang X Y, Wang Y, Zhang Y, Zhang W J, You W. Alkaline-stable anion-exchange membranes with barium [2.2.2] cryptate cations: The importance of high binding constants[J]. Angew. Chem., 2023, 135(15): e202217742. https://doi.org/10.1002/ange.202217742.

[25]

Zhou T C, Shao R, Chen S, He X M, Qiao J L, Zhang J J. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells[J]. J. Power Sources, 2015, 293: 946-975. https://doi.org/10.1016/j.jpowsour.2015.06.026.

[26]

Hu X, Huang Y D, Liu L, Ju Q, Zhou X X, Qiao X Q, Zheng Z F, Li N W. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability[J]. J. Membr. Sci., 2021, 621: 118964. https://doi.org/10.1016/j.memsci.2020.118964.

[27]

Holmes T, Skalski T J, Adamski M, Holdcroft S. Stability of hydrocarbon fuel cell membranes: reaction of hydroxyl radicals with sulfonated phenylated polyphenylenes[J]. Chem. Mater., 2019, 31(4): 1441-1449. https://doi.org/10.1021/acs.chemmater.8b05302.

[28]

Lu Q C, Yan X P, Guo W Q, Li G S, Wang J Y, Jiang N, Wang X L, Ba T, Liu P, Zhou J N, Wang J, Hu L, Zhou T Y, Huang R L, Hu B, Zhang K X, Ren Z B. Research progress on alkaline anion exchange membranes (AEMs) for the application of hydrogen production by water electrolysis[J]. Nano Res., 2025, 18(3): 94907252. https://doi.org/10.26599/NR.2025.94907252.

[29]

Yu J, Dai Y W, He Q J, Zhao D Q, Shao Z P, Ni M. A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes[J]. Mater. Rep. Energy, 2021, 1(2): 100024. https://doi.org/10.1016/j.matre.2021.100024.

[30]

Xu H F, Yan X Q, Li X, Li W. The dissolution of perfluorinated proton exchange membrane and the analysis on the performance of the recast membrane[J]. J. Electrochem., 2001, 7(3): 7. https://doi.org/10.61558/2993-074X.1431.

[31]

Paidar M, Fateev V, Bouzek K. Membrane electrolysis history, current status and perspective[J]. Electrochim. Acta, 2016, 209: 737-756. https://doi.org/10.1016/j.electacta.2016.05.209.

[32]

Wang X T, Li Z H, Zhang M L, Fan T T, Cheng B W. Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation[J]. RSC Adv., 2017, 7(17): 10503-10516. https://doi.org/10.1039/C6RA28762J.

[33]

Zheng X X, Böttger A. J, Jansen K. M. B, Van Turnhout J, Van Kranendonk J. Aging of polyphenylene sulfide-glass composite and polysulfone in highly oxidative and strong alkaline environments[J]. Front. Mater., 2020, 7: 610440. https://doi.org/10.3389/fmats.2020.610440.

[34]

Otero J Sese, J Michaus, I Santa Maria, M Guelbenzu, E Irusta, S Carrilero, I Arruebo, M. Sulphonated polyether ether ketone diaphragms used in commercial scale alkaline water electrolysis[J]. J. Power Sources, 2014, 247: 967-974. https://doi.org/10.1016/j.jpowsour.2013.09.062.

[35]

Wu Y T, Xu G Q, Zhou J B, Cao D P. Research progress of the porous membranes in alkaline water electrolysis for green hydrogen production[J]. Chem. Eng. J., 2025, 505: 159291. https://doi.org/10.1016/j.cej.2025.159291.

[36]

Liu L P, Wang J, Yang G J, Wang S Y, Wang J Y, Ren Z B, Guo W Q, Liu P. High-performance composite separator with a porous bicontinuous structure for alkaline water electrolysis[J]. ACS omega, 2025, 10(9): 9007-9017. https://doi.org/10.1021/acsomega.4c07167.

[37]

Li D G, Motz A. R, Bae C, Fujimoto C, Yang G Q, Zhang F Y, Ayers K, E Kim, Y. S. Durability of anion exchange membrane water electrolyzers[J]. Energy Environ. Sci., 2021, 14(6): 3393-3419. https://doi.org/10.1039/D0EE04086J.

[38]

Alam A, Park C, Lee J, Ju H. Comparative analysis of performance of alkaline water electrolyzer by using porous separator and ion-solvating polybenzimidazole membrane[J]. Renew. Energy, 2020, 166: 222-233. https://doi.org/10.1016/j.renene.2020.11.151.

[39]

Kraglund M. R, Aili D, Jankova K, Christensen E, Li Q, Jensen J. O. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations[J]. J. Electrochem. Soc., 2016, 163(11): F3125. https://doi.org/10.1149/2.0161611jes.

[40]

Jensen J O, Aili D, Hansen M K, Li Q, Bjerrum N J, Christensen E. A stability study of alkali doped PBI membranes for alkaline electrolyzer cells[J]. ECS Trans., 2014, 64(3): 1175. https://doi.org/10.1149/06403.1175ecst.

[41]

Kraglund M. R, Carmo M, Schiller G, Ansar S. A, Aili D, Christensen E, Jensen J. O. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers[J]. Energy Environ. Sci., 2019, 12(11): 3313-3318. https://doi.org/10.1039/C9EE00832B.

[42]

Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review[J]. J. Membr. Sci., 2011, 377(1-2): 1-35. https://doi.org/10.1016/j.memsci.2011.04.043.

[43]

Miller H. A, Bouzek K, Hnat J, Loos S, Bernäcker C, I Weißgärber, T Röntzsch, L Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sust. Energy Fuels, 2020, 4, 2114-2133. https://doi.org/10.1039/C9SE01240K.

[44]

Hu X, Hu B, Niu C Y, Yao J, Liu M, Tao H B, HuangY D, Kang S Y, Geng K, Li N W. An operationally broadened alkaline water electrolyser enabled by highly stable poly (oxindole biphenylene) ion-solvating membranes[J]. Nat. Energy, 2024, 9(4): 401-410. https://doi.org/10.1038/s41560-023-01447-w.

[45]

You W, Noonan K J, Coates G W. Alkaline-stable anion exchange membranes: A review of synthetic approaches[J]. Prog. Polym. Sci., 2020, 100: 101177. https://doi.org/10.1016/j.progpolymsci.2019.101177.

[46]

Babic U, Suermann M, Büchi F N, Gubler L, Schmidt T J. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development[J]. J. Electrochem. Soc., 2017, 164(4): F387. https://doi.org/10.1149/2.1441704jes.

[47]

Arges C G, Zhang L. Anion exchange membranes evolution towards high hydroxide ion conductivity and alkaline resiliency[J]. ACS Appl. Energy Mater., 2018, 1: 2991-3012. https://doi.org/10.1021/acsaem.8b00387.

[48]

Hu B, Huang Y D, Liu L, Hu X, Geng K, Ju Q, Liu M, Bi J C, Luo S J, Li N W. A stable ion-solvating PBI electrolyte enabled by sterically bulky naphthalene for alkaline water electrolysis[J]. J. Membr. Sci., 2022, 643: 120042. https://doi.org/10.1016/j.memsci.2021.120042.

[49]

Diaz L A, Coppola R E, Abuin G C, Escudero-Cid R, Herranz D, Ocón P. Alkali-doped polyvinyl alcohol-Polybenzimidazole membranes for alkaline water electrolysis[J]. J. Membr. Sci., 2017, 535: 45-55. https://doi.org/10.1016/j.memsci.2017.04.021.

[50]

Liu M, Geng K, Huang Y D, Hu B, Li H J, Niu C Y, Li N W. A high performance ion-solvating membrane-type direct ammonia fuel cell[J]. J. Membr. Sci., 2024, 692: 122222. https://doi.org/10.1016/j.memsci.2023.122222.

[51]

Aili D, Jankova K, Han J, Bjerrum N J, Jensen O, Li Q. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes[J]. Polymer, 2016, 84: 304-310. https://doi.org/10.1016/j.polymer.2016.01.011.

[52]

Chen Q H, Huang Y D, Hu X, Hu B, Liu M, Bi J C, Liu L, Li N W. A novel ion-solvating polymer electrolyte based on imidazole-containing polymers for alkaline water electrolysis[J]. J. Membr. Sci., 2023, 668: 121186. https://doi.org/10.1016/j.memsci.2022.121186.

[53]

Aili D, Jankova K, Li Q, Bjerrum N J, Jensen J O. The stability of poly (2, 2′-(m-phenylene)-5, 5′-bibenzimidazole) membranes in aqueous potassium hydroxide[J]. J. Membr. Sci., 2015, 492: 422-429. https://doi.org/10.1016/j.memsci.2015.06.001.

[54]

Chen Y H, Li S H. Super-stable ionic solvation membrane: A new opportunity for alkaline water electrolysis[J]. Innov. Mater., 2024, 2(2): 100063. https://doi.org/10.59717/j.xinn-mater.2024.100063.

[55]

Lin B C, Dong H L, Li Y Y, Si Z H, Gu F L, Yan F. Alkaline stable C2-substituted imidazolium-based anion-exchange membranes[J]. Ind. Chem. Mater., 2013, 25(9): 1858-1867. https://doi.org/10.1021/cm400468u.

[56]

Wang Y X, Guo T G, Chao G, Yang E R, Gao R F, Zhou X W, Yao J, Liu L, Li N W. Stable sulfonated poly (oxindole biphenylene) as ion-solvating membranes toward durable alkaline zinc-iron redox flow battery[J]. J. Membr. Sci., 2025, 717: 123619. https://doi.org/10.1016/j.memsci.2024.123619.

[57]

Jung J, Park Y S, Hwang D J, Choi G H, Choi D H, Park H J, Ahn C, Lee A S. Polydiallylammonium interpenetrating cationic network ion-solvating membranes for anion exchange membrane water electrolyzers[J]. J. Mater. Chem. A, 2023, 11(20): 10891-0900. https://doi.org/10.1039/D3TA01511D.

[58]

Xia Y F, Rajappan S C, Chen S, Kraglund M R, Serhiichuk D, Pan D, Jensen O, Aili D. Poly(arylene alkylene)s with tetrazole pendants for alkaline ion-solvating polymer electrolytes[J]. ChemSusChem, 2024, 17: e202400844. https://doi.org/10.1002/cssc.202400844.

[59]

Xiao W, Luo X, Zhou Y N, Meng J J, Wang M, Liu Y Y, Qiao J L. Poly(vinyl alcohol)/poly(ethylene glycol) ion-solvating membrane with NiFe-LDH for high-performance alkaline water electrolysis[J]. Separation Purif. Technol., 2025, 366: 132769. https://doi.org/10.1016/j.seppur.2025.132769.

[60]

Liu Q L, Tang T, Tian Z Y, Ding S W, Wang L Q, Chen D X, Wang Z W, Zheng W T, Lee H, Lu X Y, Miao X H, Liu L, Sun L C. A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction[J]. Nat. Commun., 2024, 15(1): 6722. https://doi.org/10.1038/s41467-024-51139-6.

[61]

Makrygianni M, Aivali S, Xia Y F, Kraglund M R, Aili D, Deimede V. Polyisatin derived ion-solvating blend membranes for alkaline water electrolysis[J]. J. Membr. Sci., 2023, 669: 121331. https://doi.org/10.1016/j.memsci.2022.121331.

[62]

Xia Y F, Sara B A, Rajappan S C, Serhiichuk D, Kraglund M R, Jensen J O, Deimede V, Aili D. Macromolecular reinforcement of alkaline ion-solvating polymer electrolytes[J]. Polymer, 2024 302: 127068. https://doi.org/10.1016/j.polymer.2024.127068.

[63]

Aili D, Wright A. G, Kraglund M. R, Jankova K, Holdcroft S, Jensen J. O. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis[J]. J. Mater. Chem. A, 2017, 5(10): 5055-5066. https://doi.org/10.1039/C6TA10680C.

[64]

Gao R F, Wang Y X, Liu M, Hu B, Yang E R, Zhou X W, Chen L, Huang Y D, Yao J, Zhang Q Y, Li N W. Optimization of alkaline water electrolysis performance with binaphthyl-derived polybenzimidazole ion-solvating gel membrane[J]. J. Membr. Sci., 2025, 713: 123350. https://doi.org/10.1016/j.memsci.2024.123350.

[65]

Hu X, Liu M, Huang Y D, Liu L, Li N W. Sulfonate-functionalized polybenzimidazole as ion-solvating membrane toward high-performance alkaline water electrolysis[J]. J. Membr. Sci., 2022, 663: 121005. https://doi.org/10.1016/j.memsci.2022.121005.

[66]

Liu M, Gao R F, Geng K, Huang Y, Zhou X W, Yao J, Hu B, Li H J, Xue B X, Li N W. Highly durable alkaline water electrolyzer with branched poly(oxindole biphenylene) ion-solvating membrane[J]. Chem. Catal., 2025, 5(3): 101199. https://doi.org/10.1016/j.checat.2024.101199.

[67]

Serhiichuk D, Rajappan S C, Krishnan Y, Xia Y F, Kraglund M R, Hansen H A, Jensen J O, Aili D. Tetrazole functionalization: a new strategy toward stable alkaline ion-solvating polymer electrolytes[J]. J. Mater. Chem. A, 2024, 12(47): 32697-32702. https://doi.org/10.1039/D4TA06255H.

[68]

Dayan A, Trisno M L A, Yang C, Kraglund M R, Almind M R, Hjelm J, Jensen J O, Aili D, Park H S, Henkensmeier D. Quaternary ammonium‐free membranes for water electrolysis with 1 m KOH[J]. Adv. Energy Mater., 2023, 13(46): 2302966.https://doi.org/10.1002/aenm.202302966.

[69]

Hu B, Li Z Y, Liu L, Liu M, Huang Y D, Guo T G, Zhang R, Geng K, Li N W. Highly ion conductive ion solvating membranes for durable alkaline water electrolysis at low temperature and voltage[J]. J. Mater. Chem. A, 2024, 12(31): 20449-20458. https://doi.org/10.1039/D4TA02511C.

[70]

Huang Z Q, Zhu D Y, Benicewicz B C, Zhu T Y, Liang J Z, Zhu T Z, Zhang L, Liu M J, Gao C J, Huang F, Xue L X. Anisotropic polybenzimidazole ion-solvating membranes composed of aligned nano-sheets for efficient acid-alkaline amphoteric water electrolysis[J]. Adv. Energy Mater., 2024, 14(11): 2303481. https://doi.org/10.1002/aenm.202303481.

[71]

Huang Z Q, Zhu D Y, Ma M J, Zhao B, Liang J Z, Zhang L, Chen C, Liu M J, Gao C J, Huang F, Xue L X. Highly efficient and durable water electrolysis at high KOH concentration enabled by cationic group-free ion solvating membranes in free-standing gel form[J]. Small, 2025, 21(4): 2408159. https://doi.org/10.1002/smll.202408159.

[72]

Beattie P D, Orfino F P, Basura V I, Zychowska K, Ding J, Chuy C, Schmeisser J, Holdcroft S. Ionic conductivity of proton exchange membranes[J]. J. Electroanal. Chem., 2001, 503(1-2): 45-56. https://doi.org/10.1016/S0022-0728(01)00355-2.

[73]

Narducci R, Chailan J F, Fahs A, Pasquini L, Di Vona M L, Knauth P. Mechanical properties of anion exchange membranes by combination of tensile stress-strain tests and dynamic mechanical analysis[J]. J. Polym. Sci. B: Polym. Phys., 2016, 54(12): 1180-1187. https://doi.org/10.1002/polb.24025.

[74]

Banham D, Ye S, Pei K, Ozaki J I, Kishimoto T, Imashiro Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285: 334-348. https://doi.org/10.1016/j.jpowsour.2015.03.047.

[75]

Jeong K I, Oh J, Song S A, Lee D, Lee D G, Kim S S. A review of composite bipolar plates in proton exchange membrane fuel cells: Electrical properties and gas permeability[J]. Compos. Struct., 2021, 262: 113617. https://doi.org/10.1016/j.compstruct.2021.113617.

[76]

Chu H S, Yeh C, Chen F. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell[J]. J. Power Sources, 2003, 123(1): 1-9. https://doi.org/10.1016/S0378-7753(02)00605-5.

[77]

Nassehi V, Das D B, Shigidi I M, Wakeman R J. Numerical analyses of bubble point tests used for membrane characterisation: model development and experimental validation[J]. Asia-Pac. J. Chem. Eng., 2011, 6(6): 850-862. https://doi.org/10.1002/apj.519.

[78]

Jarosch D, Warren J J, Kapischke J. Experimental investigation into the functionality of alkaline water electrolysis with ion-solvating membrane in anode feed mode using diluted potassium hydroxide[J]. Heliyon, 2025, 11: e42075. https://doi.org/10.1016/j.heliyon.2025.e42075.

[79]

Chen S Q, Wei X Z, Zhang G X, Wang X Y, Zhu J G, Feng X N, Dai H F, Ouyang M G. All-temperature area battery application mechanism, performance, and strategies[J]. Innovation, 2023, 4(4): 100465. https://doi.org/10.1016/j.xinn.2023.100465.

PDF (5829KB)

102

Accesses

0

Citation

Detail

Sections
Recommended

/