Strategies for Obtaining High-Performance Li-Ion Solid-State Electrolytes for Solid-State Batteries

Deng Yi-Cheng , You Zi-Chang , Lin Geng-Zhong , Tang Guo , Wu Jing-Hua , Zhou Zhi-Min , Zhuang Xiang-Chun , Yang Li-Xuan , Zhang Zhen-Jie , Wen Zhao-Yin , Yao Xia-Yin , Wang Chang-Hong , Zhou Qian , Cui Guang-Lei , He Ping , Li Hui , Ai Xin-Ping

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (10) : 2516002

PDF (4179KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (10) : 2516002 DOI: 10.61558/2993-074X.3585
REVIEW
research-article

Strategies for Obtaining High-Performance Li-Ion Solid-State Electrolytes for Solid-State Batteries

Author information +
History +
PDF (4179KB)

Abstract

With the widespread adoption of lithium-ion batteries (LIBs), safety concerns associated with flammable organic electrolytes have become increasingly critical. Solid-state lithium batteries (SSLBs), with enhanced safety and higher energy density potential, are regarded as a promising next-generation energy storage technology. However, the practical application of solid-state electrolytes (SSEs) remains hindered by several challenges, including low Li+ ion conductivity, poor interfacial compatibility with electrodes, unfavorable mechanical properties and difficulties in scalable manufacturing. This review systematically examines recent progress in SSEs, including inorganic types (oxides, sulfides, halides), organic types (polymers, plastic crystals, poly(ionic liquids) (PILs)), and the emerging class of soft solid-state electrolytes (S3Es), especially those based on “rigid-flexible synergy” composites and “Li+-desolvation” mechanism using porous frameworks. Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone. In contrast, S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties (e.g., ionic conductivity and stability window), mechanical integrity, and processability, showing great promise as next-generation SSEs. Furthermore, the application-oriented challenges and emerging trends in S3E research are outlined, aiming to provide strategic insights into future development of high-performance SSEs.

Keywords

Solid-state electrolytes / Solid-state batteries / Soft solid-state electrolytes / Lithium-ion conductivity / Interface compatibility

Cite this article

Download citation ▾
Deng Yi-Cheng, You Zi-Chang, Lin Geng-Zhong, Tang Guo, Wu Jing-Hua, Zhou Zhi-Min, Zhuang Xiang-Chun, Yang Li-Xuan, Zhang Zhen-Jie, Wen Zhao-Yin, Yao Xia-Yin, Wang Chang-Hong, Zhou Qian, Cui Guang-Lei, He Ping, Li Hui, Ai Xin-Ping. Strategies for Obtaining High-Performance Li-Ion Solid-State Electrolytes for Solid-State Batteries. Journal of Electrochemistry, 2025, 31(10): 2516002 DOI:10.61558/2993-074X.3585

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

Xin-Ping Ai acknowledges the financial support from the National Key R&D Program of China (Grant No. 2021YFB3800300). Zi-Chang You and Zhao-Yin Wen acknowledge the supports from National Key R&D Program of China (Grant No. 2022YFB3807700) and the National Natural Science Foundation of China (Grant No. U20A20248). Zhi-Min Zhou and Chang-Hong Wang acknowledge the supports from the National Natural Science Foundation of China (Grant Nos. W2441017, 22409103) and the “Innovation Yongjiang 2035” Key R&D Program (Grant Nos. 2024Z040, 2025Z063). Xiang-Chun Zhuang, Li-Xuan Yang, Qian Zhou and Guang-Lei Cui acknowledge the National Key R&D Program of China (Grant No. 2023YFC2812700), the Natural Science Foundation of Shandong Province (Grant No. ZR2024YQ008). Ping He acknowledges funding supports from the National Key R&D Program of China (Grant No. 2021YFB3800300), science and technology innovation fund for emission peak and carbon neutrality of Jiangsu province (Grant Nos. BK20220034, BK20231512). We also thank LetPub (www.letpub.com.cn) for its linguistic assistance during the preparation of this manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contribution

Yi-Cheng Deng: Writing - original draft (Equal); Zichang You Writing - original draft (Equal); Geng-Zhong Lin: Writing - original draft (Equal); Guo Tang: Writing - original draft (Equal); Jing-Hua Wu Writing - original draft (Equal); Zhi-Min Zhou: Writing - original draft (Equal); Xiang-Chun Zhuang: Writing - original draft (Equal); Li-Xuan Yang: Writing - original draft (Equal); Zhen-Jie Zhang: Writing - original draft (Equal); Zhao-Yin Wen: Writing - review & editing (Equal); Xia-yin Yao: Writing - review & editing (Equal); Chang-Hong Wang: Writing - review & editing (Equal); Qian Zhou: Writing - review & editing (Equal); Guang-Lei Cui: Writing - review & editing (Equal); Ping He: Writing - review & editing (Equal); Hui Li: Writing - review & editing (Equal).

Data Availability

This review does not involve the use of primary data. All information is based on previously published studies.

References

[1]

Chang X, Zhao Y M, Yuan B H, Fan M, Meng Q H, Guo Y G, Wan L J. Solid-state lithium-ion batteries for grid energy storage: Opportunities and challenges[J]. Sci. China Chem., 2024, 67(1): 43-66. http://doi.org/10.1007/s11426-022-1525-3.

[2]

Niu H Z, Zhang N, Lu Y, Zhang Z, Li M N, Liu J X, Zhang N, Song W Q, Zhao Y Z, Miao Z C. Strategies toward the development of high-energy-density lithium batteries[J]. J. Energy Storage, 2024, 88: 111666. http://doi.org/10.1016/j.est.2024.111666.

[3]

Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S J. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy Environ. Mater., 2023, 6(5): 12450. http://doi.org/10.1002/eem2.12450.

[4]

Yuan S Y, Ding K, Zeng X Y, Bin D, Zhang Y J, Dong P, Wang Y G. Advanced nonflammable organic electrolyte promises safer Li-metal batteries: From solvation structure perspectives[J]. Adv. Mater., 2023, 35(13): 2206228. http://doi.org/10.1002/adma.202206228.

[5]

Jagger B, Pasta M. Solid electrolyte interphases in lithium metal batteries[J]. Joule, 2023, 7(10): 2228-2244. http://doi.org/10.1016/j.joule.2023.08.007.

[6]

Wan H L, Xu J J, Wang C S. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nat. Rev. Chem., 2024, 8(1): 30-44. http://doi.org/10.1038/s41570-023-00557-z.

[7]

Acebedo B, Morant-Minana M C, Gonzalo E, de Larramendi I R, Villaverde A, Rikarte J, Fallarino L. Current status and future perspective on lithium metal anode production methods[J]. Adv. Energy Mater., 2023, 13(13): 2203744. http://doi.org/10.1002/aenm.202203744.

[8]

Tang X J, Feng M Q, Lv W H, Lv S. Applications of all-solid-state lithium-ion batteries across wide temperature ranges: Challenges, progress, and perspectives[J]. Adv. Energy Mater., 2025, 15: 2500479. http://doi.org/10.1002/aenm.202500479.

[9]

Zhang Z, Han W Q. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments[J]. Nano-Micro Lett., 2024, 16(1): 24. http://doi.org/10.1007/s40820-023-01234-y.

[10]

Zou S H, Yang Y, Wang J R, Zhou X Y, Wan X H, Zhu M, Liu J. Polymerization of solid-state polymer electrolytes for lithium metal batteries: A review[J]. Energy Environ. Sci., 2024, 17(13): 4426-4460. http://doi.org/10.1039/d4ee00822g.

[11]

Liu K X, Cheng H, Wang Z Y, Zhao Y, Lv Y Y, Shi L Y, Cai X S, Cheng Z L, Zhang H J, Yuan S. A 3 μm-ultrathin hybrid electrolyte membrane with integrative architecture for all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(14): 2303940. http://doi.org/10.1002/aenm.202303940.

[12]

Balaish M, Gonzalez-Rosillo J C, Kim K J, Zhu Y T, Hood Z D, Rupp J L M. Processing thin but robust electrolytes for solid-state batteries[J]. Nat. Energy, 2021, 6(3): 227-239. http://doi.org/10.1038/s41560-020-00759-5.

[13]

Jia H H, Hu C J, Zhang Y X, Chen L W. A review on solid-state Li-S battery: From the conversion mechanism of sulfur to engineering design[J]. J. Electrochem., 2023, 29(3): 2217008. http://doi.org/10.13208/j.electrochem.2217008.

[14]

Wang Q J, Bai N N, Wang Y Q, He X, Zhang D, Li Z J, Sun Q J, Sun H L, Wang B, Wang G X, Fan L Z. Optimization and progress of interface construction of ceramic oxide solid-state electrolytes in Li-metal batteries[J]. Energy Storage Mater., 2024, 71: 103589. http://doi.org/10.1016/j.ensm.2024.103589.

[15]

Jia L A, Zhu J H, Zhang X, Guo B J, Du Y B, Zhuang X D. Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries[J]. Electrochem. Energy R., 2024, 7(1): 12. http://doi.org/10.1007/s41918-024-00212-1.

[16]

Wei R, Chen S J, Gao T Y, Liu W. Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries[J]. Nano Sel., 2021, 2(12): 2256-2274. http://doi.org/10.1002/nano.202100110.

[17]

Wu Z, Li X H, Zheng C, Fan Z, Zhang W K, Huang H, Gan Y P, Xia Y, He X P, Tao X Y, Zhang J. Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: Characterization, mechanism and strategy[J]. Electrochem. Energy R., 2023, 6(1): 19. http://doi.org/10.1007/s41918-023-00187-5.

[18]

Xu C, Chen L Q, Wu F. Unveiling the power of sulfide solid electrolytes for next-generation all-solid-state lithium batteries[J]. Next Mater., 2025, 6: 100428. http://doi.org/10.1016/j.nxmate.2024.100428.

[19]

Gamo H, Nagai A, Matsuda A. Toward scalable liquid-phase synthesis of sulfide solid electrolytes for all-solid-state batteries[J]. Batteries-Basel, 2023, 9(7): 355. http://doi.org/10.3390/batteries9070355.

[20]

Nomura Y, Yamamoto K. Advanced characterization techniques for sulfide-based solid-state lithium batteries[J]. Adv. Energy Mater., 2023, 13(13): 2203883. http://doi.org/10.1002/aenm.202203883.

[21]

Liang Z T, Xiang Y X, Wang K J, Zhu J P, Jin Y T, Wang H C, Zheng B Z, Chen Z R, Tao M M, Liu X S, Wu Y Q, Fu R Q, Wang C S, Winter M, Yang Y. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nat. Commun., 2023, 14(1): 259. http://doi.org/10.1038/s41467-023-35920-7.

[22]

Ren F C, Liang Z T, Zhao W A, Zuo W H, Lin M, Wu Y Q, Yang X R, Gong Z L, Yang Y. The nature and suppression strategies of interfacial reactions in all-solid-state batteries[J]. Energy Environ. Sci., 2023, 16(6): 2579-2590. http://doi.org/10.1039/d3ee00870c.

[23]

Liu H, Liang Y H, Wang C, Li D B, Yan X Q, Nan C W, Fan L Z. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv. Mater., 2023, 35(50): 2206013. http://doi.org/10.1002/adma.202206013.

[24]

Zhang S M, Zhao F P, Chen J T, Fu J M, Luo J, Alahakoon S H, Chang L Y, Feng R F, Shakouri M, Liang J W, Zhao Y, Li X N, He L, Huang Y N, Sham T K, Sun X L. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nat. Commun., 2023, 14(1): 3780. http://doi.org/10.1038/s41467-023-39197-8.

[25]

Kim W, Noh J, Lee S, Yoon K, Han S, Yu S, Ko K H, Kang K. Aging property of halide solid electrolyte at the cathode interface[J]. Adv. Mater., 2023, 35(32): 2301631. http://doi.org/10.1002/adma.202301631.

[26]

Wang Q D, Zhou Y N, Wang X L, Guo H, Gong S P, Yao Z P, Wu F T, Wang J L, Ganapathy S, Bai X D, Li B H, Zhao C L, Janek J, Wagemaker M. Designing lithium halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1050. http://doi.org/10.1038/s41467-024-45258-3.

[27]

Song Z Y, Wang T R, Yang H, Kan W H, Chen Y W, Yu Q, Wang L K, Zhang Y N, Dai Y M, Chen H C, Yin W, Honda T, Avdeev M, Xu H H, Ma J W, Huang Y H, Luo W. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1481. http://doi.org/10.1038/s41467-024-45864-1.

[28]

Chen S, Yu C, Luo Q Y, Wei C C, Li L P, Li G S, Cheng S J, Xie J. Research progress of lithium metal halide solid electrolytes[J]. Acta Phys-chim. Sin., 2023, 39(8): 2210032. http://doi.org/10.3866/Pku.Whxb202210032.

[29]

Wu J H, Li J H, Yao X Y. Exploring the potential of halide electrolytes for next-generation all-solid-state lithium batteries[J]. Adv. Funct. Mater., 2025, 35(10): 2416671. http://doi.org/10.1002/adfm.202416671.

[30]

Fan L Z, He H C, Nan C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nat. Rev. Mater., 2021, 6(11): 1003-1019. http://doi.org/10.1038/s41578-021-00320-0.

[31]

Guo B, Fu Y D, Wang J A, Gong Y, Zhao Y L, Yang K, Zhou S D, Liu L S, Yang S C, Liu X H, Pan F. Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries[J]. Chem. Commun., 2022, 58(59): 8182-8193. http://doi.org/10.1039/d2cc02306g.

[32]

Lu X, Wang Y M, Xu X Y, Yan B G, Wu T, Lu L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries-review[J]. Adv. Energy Mater., 2023, 13(38): 2301746. http://doi.org/10.1002/aenm.202301746.

[33]

Jung Y C, Park M S, Kim D H, Ue M, Eftekhari A, Kim D W. Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries[J]. Sci. Rep., 2017, 7: 17482. http://doi.org/0.1038/s41598-017-17697-0.

[34]

Yang X Y, Liu J X, Pei N B, Chen Z Q, Li R Y, Fu L J, Zhang P, Zhao J B. The critical role of fillers in composite polymer electrolytes for lithium battery[J]. Nano-Micro Lett., 2023, 15(1): 74. http://doi.org/10.1007/s40820-023-01051-3.

[35]

Kim H W, Manikandan P, Lim Y J, Kim J H, Nam S C, Kim Y. Hybrid solid electrolyte with the combination of LiLaZrO ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries[J]. J. Mater. Chem. A, 2016, 4(43): 17025-17032. http://doi.org/10.1039/c6ta07268b.

[36]

Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K N, Kim B J, Lee S W. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217. http://doi.org/10.1038/s41586-021-04209-4.

[37]

Chen X B, Put B, Sagara A, Gandrud K, Murata M, Steele J A, Yabe H, Hantschel T, Roeffaers M, Tomiyama M, Arase H, Kaneko Y, Shimada M, Mees M, Vereecken P M. Silica gel solid nanocomposite electrolytes with interfacial conductivity promotion exceeding the bulk Li-ion conductivity of the ionic liquid electrolyte filler[J]. Sci. Adv., 2020, 6(2): 3400. http://doi.org/10.1126/sciadv.aav3400.

[38]

Croce F, Appetecchi G B, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. http://doi.org/10.1038/28818.

[39]

Chang Z, Yang H J, Zhu X Y, He P, Zhou H S. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nat. Commun., 2022, 13(1): 1510. http://doi.org/10.1038/s41467-022-29118-6.

[40]

Gong W, Ouyang Y, Guo S J, Xiao Y B, Zeng Q H, Li D X, Xie Y F, Zhang Q, Huang S M. Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries[J]. Angew. Chem. Int. Ed., 2023, 62(25): 2302505. http://doi.org/10.1002/anie.202302505.

[41]

Abdelmaoula A E, Shu J, Cheng Y, Xu L, Zhang G, Xia Y Y, Tahir M, Wu P J, Mai L Q. Core-shell mof-in-mof nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries[J]. Small Methods, 2021, 5(8): 2100508. http://doi.org/10.1002/smtd.202100508.

[42]

Wang Y, Zanelotti C J, Wang X E, Kerr R, Jin L Y, Kan W H, Dingemans T J, Forsyth M, Madsen L A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nat. Mater., 2021, 20(9): 1255. http://doi.org/10.1038/s41563-021-00995-4.

[43]

Wu M S, Xu B, Ouyang C Y. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries[J]. Chin. Phys. B, 2016, 25(1): 018206. http://doi.org/10.1088/1674-1056/25/1/018206

[44]

Song Z Y, Chen F F, Martinez-Ibañez M, Feng W F, Forsyth M, Zhou Z B, Armand M, Zhang H. A reflection on polymer electrolytes for solid-state lithium metal batteries[J]. Nat. Commun., 2023, 14(1): 4884. http://doi.org/10.1038/s41467-023-40609-y.

[45]

Hong H Y P. Crystal-structure and ionic-conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117-124. http://doi.org/10.1016/0025-5408(78)90075-2.

[46]

Bruce P G, West A R. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1-xGeO4, and a model for intergranular constriction resistances[J]. J. Electrochem Soc., 1983, 130(3): 662-669. http://doi.org/10.1149/1.2119778.

[47]

Santosh K C, Longo R C, Xiong K, Cho K. Electrode-electrolyte interface for solid state Li-ion batteries: Point defects and mechanical strain[J]. J. Electrochem Soc., 2014, 161(11): F3104-F3110. http://doi.org/10.1149/2.0151411jes.

[48]

Mariappan C R, Yada C, Rosciano F, Roling B. Correlation between micro-structural properties and ionic conductivity of lialge(po)ceramics[J]. J. Power Sources, 2011, 196(15): 6456-6464. http://doi.org/10.1016/j.jpowsour.2011.03.065.

[49]

Kumar B, Thomas D, Kumar J. Space-charge-mediated superionic transport in lithium ion conducting glass-ceramics[J]. J. Electrochem Soc., 2009, 156(7): A506-A513. http://doi.org/10.1149/1.3122903.

[50]

Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research[J]. Ionics, 2006, 12(1): 81-92. http://doi.org/10.1007/s11581-006-0013-7.

[51]

Xu X X, Wen Z Y, Yang X L, Zhang J C, Gu Z H. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling[J]. Solid State Ionics, 2006, 177(26-32): 2611-2615. http://doi.org/10.1016/j.ssi.2006.04.010.

[52]

Zhao G W, Suzuki K, Yonemura M, Hirayama M, Kanno R. Enhancing fast lithium ion conduction in Li4GeO4-Li3PO4 solid electrolytes[J]. ACS Appl. Energy Mater., 2019, 2(9): 6608-6615. http://doi.org/10.1021/acsaem.9b01152.

[53]

Yu T W, Yang X F, Yang R, Bai X T, Xu G F, Zhao S Q, Duan Y, Wu Y L, Wang J T. Progress and perspectives on typical inorganic solid-state electrolytes[J]. J. Alloy. Compd., 2021, 885: 161013. http://doi.org/10.1016/j.jallcom.2021.161013.

[54]

Gao X, Fisher C A J, Kimura T, Ikuhara Y H, Moriwake H, Kuwabara A, Oki H, Tojigamori T, Huang R, Ikuhara Y. Lithium atom and a-site vacancy distributions in lanthanum lithium titanate[J]. Chem. Mater., 2013, 25(9): 1607-1614. http://doi.org/10.1021/cm3041357.

[55]

Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. J. Solid State Chem., 2009, 182(8): 2046-2052. http://doi.org/10.1016/j.jssc.2009.05.020.

[56]

Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chem. Lett., 2011, 40(1): 60-62. http://doi.org/10.1246/cl.2011.60.

[57]

Yu R, Chen Y J, Gao X, Chao D L. Elucidating the role of multi-scale microstructures in Li7La3Zr2O12 based all-solid-state lithium batteries[J]. Energy Storage Mater., 2024, 72: 103752. http://doi.org/10.1016/j.ensm.2024.103752.

[58]

Ibarra J, Várez A, León C, Santamaría J, Torres-Martínez L M, Sanz J. Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03≤x≤0.167)[J]. Solid State Ionics, 2000, 134(3-4): 219-228. http://doi.org/10.1016/S0167-2738(00)00761-X.

[59]

Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: A review[J]. Chem. Mater., 2003, 15(21): 3974-3990. http://doi.org/10.1021/cm0300516.

[60]

Thangadurai V, Kaack H, Weppner W J F. Novel fast lithium ion conduction in garnet-type LiLaMO (M=Nb, Ta)[J]. J. Am. Ceram. Soc., 2003, 86(3): 437-440. http://doi.org/10.1111/j.1151-2916.2003.tb03318.x.

[61]

Orera A, Larraz G, Rodríguez-Velamazán J A, Campo J, Sanjuán M L. Influence of Li+ and H+ distribution on the crystal structure of Li7-xHxLa3Zr2O12 (0≤ x ≤5) garnets[J]. Inorg. Chem., 2016, 55(3): 1324-1332. http://doi.org/10.1021/acs.inorgchem.5b02708.

[62]

Larraz G, Orera A, Sanz J, Sobrados I, Diez-Gómez V, Sanjuán M L. NMR study of Li distribution in Li7-xHxLa3Zr2O12 garnets[J]. J. Mater. Chem. A, 2015, 3(10): 5683-5691. http://doi.org/10.1039/c4ta04570j.

[63]

Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chem. Soc. Rev., 2014, 43(13): 4714-4727. http://doi.org/10.1039/c4cs00020j.

[64]

Huang X, Lu Y, Song Z, Rui K, Wang Q S, Xiu T P, Badding M E, Wen Z Y. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Mater., 2019, 22: 207-217. http://doi.org/10.1016/j.ensm.2019.01.018.

[65]

Zhang L, Zhuang Q C, Zheng R G, Wang Z Y, Sun H Y, Arandiyan H, Wang Y A, Liu Y G, Shao Z P. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density[J]. Energy Storage Mater., 2022, 49: 299-338. http://doi.org/10.1016/j.ensm.2022.04.026.

[66]

Liu X M, Garcia-Mendez R, Lupini A R, Cheng Y Q, Hood Z D, Han F D, Sharafi A, Idrobo J C, Dudney N J, Wang C S, Ma C, Sakamoto J, Chi M F. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes[J]. Nat. Mater., 2021, 20(11): 1485-1490. http://doi.org/10.1038/s41563-021-01019-x.

[67]

You Z C, Zheng C J, Wu J X, Huang H Y, Bao C S, Lu Y, Wen Z Y. In situ grain boundary engineering enabling ultralong stable cycling garnet-based solid-state electrolytes[J]. Nano Letters, 2025, 25(13): 5110-5116. http://doi.org/10.1021/acs.nanolett.4c05482.

[68]

Nonemacher J F, Arinicheva Y, Yan G, Finsterbusch M, Krüger M, Malzbender J. Fracture toughness of single grains and polycrystalline Li7La3Zr2O12 electrolyte material based on a pillar splitting method[J]. J. Eur. Ceram. Soc., 2020, 40(8): 3057-3064. http://doi.org/10.1016/j.jeurceramsoc.2020.03.028.

[69]

Wu J Y, Yuan L X, Zhang W X, Li Z, Xie X L, Huang Y H. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries[J]. Energ Environ. Sci., 2021, 14(1): 12-36. http://doi.org/10.1039/d0ee02241a.

[70]

Kotobuki M, Koishi M. High conductive Al-free Y-doped Li7La3Zr2O12 prepared by spark plasma sintering[J]. J. Alloy. Compd., 2020, 826: 154213. http://doi.org/10.1016/j.jallcom.2020.154213.

[71]

Sugata S, Saito N, Watanabe A, Watanabe K, Kim J-D, Kitagawa K, Suzuki Y, Honma I. Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes[J]. Solid State Ionics, 2018, 319: 285-290. http://doi.org/10.1016/j.ssi.2018.02.029.

[72]

Wu Y L, Wang K Y, Liu K, Long Y Z, Yang C, Zhang H T, Pan W, Si W J, Wu H. Rapid processing of uniform, thin, robust, and large‐area garnet solid electrolyte by atmospheric plasma spraying[J]. Adv. Energy Mater., 2023, 13(30): 2300809. http://doi.org/10.1002/aenm.202300809.

[73]

Wang C W, Ping W W, Bai Q, Cui H C, Hensleigh R, Wang R L, Brozena A H, Xu Z P, Dai J Q, Pei Y, Zheng C L, Pastel G, Gao J L, Wang X Z, Wang H, Zhao J C, Yang B, Zheng X Y, Luo J, Mo Y F, Dunn B, Hu L B. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521. http://doi.org/10.1126/science.aaz7681.

[74]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12[J]. Angew. Chem. Int. Ed., 2007, 46(41): 7778-7781. http://doi.org/10.1002/anie.200701144.

[75]

Qin S Y, Zhu X H, Jiang Y, Ling M E, Hu Z W, Zhu J L. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity[J]. Appl. Phys. Lett., 2018, 112(11): 113901. http://doi.org/10.1063/1.5019179.

[76]

Zhang Y H, Chen F, Tu R, Shen Q, Zhang L M. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J]. J. Power Sources, 2014, 268: 960-964. http://doi.org/10.1016/j.jpowsour.2014.03.148.

[77]

Wagner R, Redhammer G J, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G. Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon i$\overline{4}$3d structure[J]. Chem. Mater., 2016, 28(16): 5943-5951. http://doi.org/10.1021/acs.chemmater.6b02516.

[78]

Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x=0-2)[J]. J. Power Sources, 2011, 196(6): 3342-3345. http://doi.org/10.1016/j.jpowsour.2010.11.089.

[79]

Dhivya L, Janani N, Palanivel B, Murugan R. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets[J]. AIP Adv., 2013, 3(8): 4818971. http://doi.org/10.1063/1.4818971.

[80]

Rettenwander D, Welzl A, Cheng L, Fleig J, Musso M, Suard E, Doeff M M, Redhammer G J, Amthauer G. Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMOxO12 (x = 0.1-0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+[J]. Inorg. Chem., 2015, 54(21): 10440-10449. http://doi.org/10.1021/acs.inorgchem.5b01895.

[81]

Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. J. Power Sources, 2013, 240: 18-25. http://doi.org/10.1016/j.jpowsour.2013.03.166.

[82]

Narayanan S, Hitz G T, Wachsman E D, Thangadurai V. Effect of excess Li on the structural and electrical properties of garnet-type Li6La3Ta1.5Y0.5O12[J]. J. Electrochem. Soc., 2015, 162(9): A1772-A1777. http://doi.org/10.1149/2.0321509jes.

[83]

Xie H, Li Y T, Han J T, Dong Y Z, Paranthaman M P, Wang L, Xu M W, Gupta A, Bi Z H, Bridges C A, Nakanishi M, Sokolov A P, Goodenough J B. Li6La3SnMO12(M = Sb, Nb,Ta), a family of lithium garnets with high Li-ion conductivity[J]. J. Electrochem. Soc., 2012, 159(8): A1148-A1151. http://doi.org/10.1149/2.009208jes.

[84]

Ramakumar S, Satyanarayana L, Manorama S V, Murugan R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors[J]. Phys. Chem. Chem. Phys., 2013, 15(27): 11327. http://doi.org/10.1039/c3cp50991e.

[85]

Song S F, Yan B G, Zheng F, Duong H M, Lu L. Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet[J]. Solid State Ionics, 2014, 268: 135-139. http://doi.org/10.1016/j.ssi.2014.10.009.

[86]

Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7La3Zr2O12 garnet-based ceramic electrolyte[J]. J. Power Sources, 2013, 230: 261-266. http://doi.org/10.1016/j.jpowsour.2012.12.076.

[87]

Abdulai M, Dermenci K B, Turan S. Lanthanide doping of Li7La3-xMxZr2O12 (M=Sm, Dy, Er, Yb; x=0.1-1.0) and dopant size effect on the electrochemical properties[J]. Ceram. Int., 2021, 47(12): 17034-17040. http://doi.org/10.1016/j.ceramint.2021.03.010.

[88]

Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen J L, Bernstein N, Stewart D A, Johannes M D. Structure and stoichiometry in supervalentdoped Li7La3Zr2O12[J]. Chem. Mater., 2015, 27(10): 3658-3665. http://doi.org/10.1021/acs.chemmater.5b00362.

[89]

Wagner R, Redhammer G J, Rettenwander D, Senyshyn A, Schmidt W, Wilkening M, Amthauer G. Crystal structure of garnet-related Li-ion conductor Li7-3xGaxLa3Zr2O12: Fast Li-ion conduction caused by a different cubic modification?[J]. Chem. Mater., 2016, 28(6): 1861-1871. http://doi.org/10.1021/acs.chemmater.6b00038.

[90]

Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P, Wilkening M, Geiger C A, Amthauer G. DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet[J]. Chem. Mater., 2014, 26(8): 2617-2623. http://doi.org/10.1021/cm5000999.

[91]

Xiang X, Liu Y, Chen F, Yang W Y, Yang J B, Ma X B, Chen D F, Su K, Shen Q, Zhang L M. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12[J]. J. Eur. Ceram. Soc., 2020, 40(8): 3065-3071. http://doi.org/10.1016/j.jeurceramsoc.2020.02.054.

[92]

Shen F, Guo W C, Zeng D Y, Sun Z T, Gao J, Li J, Zhao B, He B, Han X G. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte[J]. ACS Appl. Mater. Inter., 2020, 12(27): 30313-30319. http://doi.org/10.1021/acsami.0c04850.

[93]

Nyman M, Alam T M, McIntyre S K, Bleier G C, Ingersoll D. Alternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes[J]. Chem. Mater., 2010, 22(19): 5401-5410. http://doi.org/10.1021/cm101438x.

[94]

Wang C W, Xie H, Ping W W, Dai J Q, Feng G L, Yao Y G, He S M, Weaver J, Wang H, Gaskell K, Hu L B. A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte[J]. Energy Storage Mater., 2019, 17: 234-241. http://doi.org/10.1016/j.ensm.2018.11.007.

[95]

Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125. http://doi.org/10.1016/j.nanoen.2019.04.058.

[96]

Yi X R, Guo Y, Chi S J, Pan S Y, Geng C N, Li M Y, Li Z S, Lv W, Wu S C, Yang Q H. Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries[J]. Adv. Funct. Mater., 2023, 33(35): 2303574. http://doi.org/10.1002/adfm.202303574.

[97]

Tang C, Fan Z J, Ding B, Xu C, Wu H Y, Dou H, Zhang X G. Functional separator with poly(acrylic acid)-enabled Li2CO3-free garnet coating for long-cycling lithium metal batteries[J]. Small, 2025, 21(1): 2407558. http://doi.org/10.1002/smll.202407558.

[98]

Zheng C J, Lu Y, Su J M, Song Z, Xiu T P, Jin J, Badding M E, Wen Z Y. Grain boundary engineering enabled high‐performance garnet‐type electrolyte for lithium dendrite free lithium metal batteries[J]. Small Methods, 2022, 6(9): 2200667. http://doi.org/10.1002/smtd.202200667.

[99]

Biao J, Han B, Cao Y D, Li Q D, Zhong G M, Ma J B, Chen L K, Yang K, Mi J S, Deng Y H, Liu M, Lv W, Kang F Y, He Y B. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Adv. Mater., 2023, 35(12): 2208951. http://doi.org/10.1002/adma.202208951.

[100]

Xiong B Q, Liu X Y, Nian Q S, Wang Z H, Zhu Y H, Luo X, Jiang J Y, Ruan D G, Ma J, Jiang J H, Cheng Y F, Li C H, Ren X D. Field-responsive grain boundary against dendrite penetration for all-solid-state batteries[J]. Energy Environ. Sci., 2024, 17(18): 6707-6716. http://doi.org/10.1039/d4ee02853h.

[101]

Kim J-S, Yoon G, Kim S, Sugata S, Yashiro N, Suzuki S, Lee M-J, Kim R, Badding M, Song Z, Chang J, Im D. Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries[J]. Nat. Commun., 2023, 14(1): 782. http://doi.org/10.1038/s41467-023-36401-7.

[102]

Alexander G V, Shi C, O’Neill J, Wachsman E D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture[J]. Nat. Mater., 2023, 22(9): 1136-1143. http://doi.org/10.1038/s41563-023-01627-9.

[103]

Bao C S, Zheng C J, Wu M F, Zhang Y, Jin J, Chen H, Wen Z Y. 12 µm‐thick sintered garnet ceramic skeleton enabling high‐energy‐density solid‐state lithium metal batteries[J]. Adv. Energy Mater., 2023, 13(13): 2204028. http://doi.org/10.1002/aenm.202204028.

[104]

Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all‐solid‐state batteries using sulfide electrolytes[J]. Adv. Mater., 2021, 33(6): 2000751. https://doi.org/10.1002/adma.202000751.

[105]

Gu J B, Liang Z T, Shi J W, Yang Y. Electrochemo‐mechanical stresses and their measurements in sulfide‐based all‐solid‐state batteries: A review[J]. Adv. Energy Mater., 2023, 13(2): 2203153. https://doi.org/10.1002/aenm.202203153.

[106]

Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5[J]. Solid State Ionics, 2006, 177(26-32): 2721-2725. https://doi.org/10.1016/j.ssi.2006.04.017.

[107]

Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686. https://doi.org/10.1038/nmat3066.

[108]

Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J, Zeier W G. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. J. Am. Chem. Soc., 2018, 140(47): 16330-16339. https://doi.org/10.1021/jacs.8b10282.

[109]

Bron P, Johansson S, Zick K, Günne J S, Dehnen S, Roling B. Li10SnP2S12: An affordable lithium superionic conductor[J]. J. Am. Chem. Soc., 2013, 135(42): 15694-15697. https://doi.org/10.1021/ja407393y.

[110]

Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J, Lotsch B V. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys. Chem. Chem. Phys., 2014, 16(28): 14669-14674. https://doi.org/10.1039/C4CP02046D.

[111]

Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 627-631. https://doi.org/10.1039/C3EE41655K.

[112]

Busche M R, Weber D A, Schneider Y, Dietrich C, Wenzel S, Leichtweiss T, Schröder D, Zhang W B, Weigand H, Walter D. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup[J]. Chem. Mater., 2016, 28(17): 6152-6165. https://doi.org/10.1021/acs.chemmater.6b02163.

[113]

Wang S, Gautam A, Wu X B, Li S H, Zhang X, He H C, Lin Y H, Shen Y, Nan C W. Effect of processing on structure and ionic conductivity of chlorine‐rich lithium argyrodites[J]. Adv. Energy Sustainable Res., 2024, 5(8): 2200197. https://doi.org/10.1002/aesr.202200197.

[114]

Liu Z C, Fu W J, Payzant E A, Yu X, Wu Z L, Dudney N J, Kiggans J, Hong K L, Rondinone A J, Liang C D. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J. Am. Chem. Soc., 2013, 135(3): 975-978. https://doi.org/10.1021/ja3110895.

[115]

Zhou L D, Park K-H, Sun X Q, Lalère F B, Adermann T, Hartmann P, Nazar L F. Solvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity[J]. ACS Energy Lett., 2018, 4(1): 265-270. https://doi.org/10.1021/acsenergylett.8b01997.

[116]

Chen Y T, Marple M A, Tan D H, Ham S Y, Sayahpour B, Li W K, Yang H D, Lee J B, Hah H J, Wu E A. Investigating dry room compatibility of sulfide solid-state electrolytes for scalable manufacturing[J]. J. Mater. Chem. A, 2022, 10(13): 7155-7164. https://doi.org/10.1039/D1TA09846B.

[117]

Jin Y M, He Q S, Liu G Z, Gu Z, Wu M, Sun T Y, Zhang Z H, Huang L H, Yao X Y. Fluorinated Li10GeP2S12 enables stable all‐solid‐state lithium batteries[J]. Adv. Mater., 2023, 35(19): 2211047. https://doi.org/10.1002/adma.202211047.

[118]

Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15(3): 991-1033. https://doi.org/10.1039/D1EE03032A.

[119]

Zhao X L, Xiang P, Wu J H, Liu Z Q, Shen L, Liu G Z, Tian Z Q, Chen L, Yao X Y. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Letters, 2022, 23(1): 227-234. https://doi.org/10.1021/acs.nanolett.2c04140.

[120]

Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Interface stability in solid-state batteries[J]. Chem. Mater., 2016, 28(1): 266-273. https://doi.org/10.1021/acs.chemmater.5b04082.

[121]

Zhang J, Zheng C, Li L J, Xia Y, Huang H, Gan Y P, Liang C, He X P, Tao X Y, Zhang W K. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl‐based all‐solid‐state lithium batteries[J]. Adv. Energy Mater., 2020, 10(4): 1903311. https://doi.org/10.1002/aenm.201903311.

[122]

Luo S T, Wang Z Y, Li X L, Liu X Y, Wang H D, Ma W G, Zhang L Q, Zhu L Y, Zhang X. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nat. Comm., 2021, 12(1): 6968. https://doi.org/10.1038/s41467-021-27311-7.

[123]

Rui X Y, Ren D S, Liu X, Wang X D, Wang K Y, Lu Y, Li L W, Wang P B, Zhu G L, Mao Y Q, Feng X N, Lu L G, Wang H W, Ouyang M G. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy Environ. Sci., 2023, 16(8): 3552-3563. http://doi.org/10.1039/d3ee00084b.

[124]

Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A Y, Hartmann P, Janek J, Brezesinski T. Gas evolution in all-solid-state battery cells[J]. ACS Energy Lett., 2018, 3(10): 2539-2543. http://doi.org/10.1021/acsenergylett.8b01457.

[125]

Strauss F, Teo J H, Schiele A, Bartsch T, Hatsukade T, Hartmann P, Janek J, Brezesinski T. Gas evolution in lithium-ion batteries: Solid versus liquid electrolyte[J]. ACS Appl. Mater. Inter., 2020, 12(18): 20462-20468. http://doi.org/10.1021/acsami.0c02872.

[126]

Tu W B, Zhao Y H, Xue J Y, Tian Y, Hong Y H, Li J F, Liu N, Ouyang C Y, Zhang H T, Ning Z Y, Zhang L, Qiao Y, Sun S G. Gas evolution analysis of sulfide-based all-solid-state Li-ion battery[J]. Nano Lett., 2025, 25(30): 11723-11730. http://doi.org/10.1021/acs.nanolett.5c02908.

[127]

Zhang Z H, Chen S J, Yang J, Wang J Y, Yao L L, Yao X Y, Cui P, Xu X X. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2556-2565.

[128]

Ishiguro Y, Ueno K, Nishimura S, Iida G, Igarashib Y. Tacl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries[J]. Chem. Lett., 2023, 52(4): 237-241. http://doi.org/10.1246/cl.220540.

[129]

Tanaka Y, Ueno K, Mizuno K, Takeuchi K, Asano T, Sakai A. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 ms cm-1 for all‐solid‐state batteries[J]. Angew. Chem. Int. Ed., 2023, 62(13): e202217581. http://doi.org/10.1002/anie.202217581.

[130]

Liu Z T, Chien P-H, Wang S, Song S W, Lu M, Chen S, Xia S M, Liu J, Mo Y F, Chen H L. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes[J]. Nat. Chem., 2024, 16(10): 1584-1591. http://doi.org/10.1038/s41557-024-01634-6.

[131]

Park D, Park H, Lee Y, Kim S O, Jung H G, Chung K Y, Shim J H, Yu S. Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2020, 12(31): 34806-34814. http://doi.org/10.1021/acsami.0c07003.

[132]

Wang C H, Liang J W, Kim J T, Sun X L. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci. Adv., 2022, 8(36): eadc9516. http://doi.org/10.1126/sciadv.adc9516.

[133]

Li X N, Kim J T, Luo J, Zhao C T, Xu Y, Mei T, Li R Y, Liang J W, Sun X L. Structural regulation of halide superionic conductors for all-solid-state lithium batteries[J]. Nat. Commun., 2024, 15(1): 53. http://doi.org/10.1038/s41467-023-43886-9.

[134]

Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv. Mater., 2018, 30(44): 1803075. http://doi.org/10.1002/adma.201803075.

[135]

Li X N, Liang J W, Luo J, Banis M N, Wang C H, Li W H, Deng S X, Yu C, Zhao F P, Hu Y F, Sham T-K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Adair K R, Sun X L. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ. Sci., 2019, 12(9): 2665-2671. http://doi.org/10.1039/C9EE02311A.

[136]

Liu Z T, Ma S, Liu J, Xiong S, Ma Y F, Chen H L. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Lett., 2021, 6(1): 298-304. http://doi.org/10.1021/acsenergylett.0c01690.

[137]

Park K-H, Kaup K, Assoud A, Zhang Q, Wu X H, Nazar L F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett., 2020, 5(2): 533-539. http://doi.org/10.1021/acsenergylett.9b02599.

[138]

Chaupatnaik A, Rousse G, Perez A J, Morozov A V, Elkaïm E, Avdeev M, Abakumov A M, Tarascon J M. Synthesis, structure, and electrochemistry of crystallized layered chlorides, LiMCl6 (M = Ta/Nb)[J]. Adv. Energy Mater., 2024: 2402555. http://doi.org/10.1002/aenm.202402555.

[139]

Lei M, Li B, Liu H J, Jiang D E. Dynamic monkey bar mechanism of superionic Li-ion transport in LiTaCl6[J]. Angew. Chem. Int. Ed., 2024, 63(12): 2315628. http://doi.org/10.1002/anie.202315628.

[140]

Wang K, Ren Q Y, Gu Z Q, Duan C M, Wang J Z, Zhu F, Fu Y Y, Hao J P, Zhu J F, He L H, Wang C-W, Lu Y Y, Ma J, Ma C. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat. Commun., 2021, 12(1): 4410. http://doi.org/10.1038/s41467-021-24697-2.

[141]

Hu L, Wang J Z, Wang K, Gu Z Q, Xi Z W, Li H, Chen F, Wang Y X, Li Z Y, Ma C. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat. Commun., 2023, 14(1): 3807. http://doi.org/10.1038/s41467-023-39522-1.

[142]

Li W, Quirk J A, Li M, Xia W, Morgan L M, Yin W, Zheng M, Gallington L C, Ren Y, Zhu N, King G, Feng R, Li R, Dawson J A, Sham T K, Sun X. Precise tailoring of lithium-ion transport for ultralong-cycling dendrite-free all-solid-state lithium metal batteries[J]. Adv. Mater., 2024, 36(13): 2302647. https://doi.org/10.1002/adma.202302647.

[143]

Wang C H, Liang J W, Kim J T, Sun X L. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci. Adv., 2022, 8(36): eadc9516. http://doi.org/10.1126/sciadv.adc9516.

[144]

Wang C H, Liang J W, Luo J, Liu J, Li X N, Zhao F P, Li R Y, Huang H, Zhao S Q, Zhang L, Wang J T, Sun X L. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci. Adv., 2021, 7(37): eabh1896. http://doi.org/10.1126/sciadv.abh1896.

[145]

Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew. Chem. Int. Edit., 2019, 58(24): 8039-8043. http://doi.org/10.1002/anie.201901938.

[146]

Wang C H, Wang S, Liu X D, Wu Y L, Yu R Z, Duan H, Kim J T, Huang H, Wang J T, Mo Y F, Sun X L. New insights into aliovalent substituted halide solid electrolytes for cobalt-free all-solid state batteries[J]. Energy Environ. Sci., 2023, 16(11): 5136-5143. http://doi.org/10.1039/D3EE01119D.

[147]

Song Z Y, Wang T R, Yang H, Kan W H, Chen Y W, Yu Q, Wang L K, Zhang Y N, Dai Y M, Chen H C, Yin W, Honda T, Avdeev M, Xu H H, Ma J W, Huang Y H, Luo W. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1481. http://doi.org/10.1038/s41467-024-45864-1.

[148]

Shao Q N, Yan C H, Gao M X, Du W B, Chen J, Yang Y X, Gan J T, Wu Z J, Sun W P, Jiang Y Z, Liu Y F, Gao M X, Pan H G. New insights into the effects of Zr substitution and carbon additive on Li3-xEr1-xZrxCl6 halide solid electrolytes[J]. ACS Appl. Mater. Inter., 2022, 14(6): 8095-8105. http://doi.org/10.1021/acsami.1c25087.

[149]

Kwak H, Kim J-S, Han D, Kim J S, Park J, Kwon G, Bak S-M, Heo U, Park C, Lee H-W, Nam K-W, Seo D H, Jung Y S. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nat. Commun., 2023, 14(1): 2459. http://doi.org/10.1038/s41467-023-38037-z.

[150]

Kim W, Noh J, Lee S, Yoon K, Han S, Yu S, Ko K-H, Kang K. Aging property of halide solid electrolyte at the cathode interface[J]. Adv. Mater., 2023, 35(32): 2301631. https://doi.org/10.1002/adma.202301631.

[151]

Zhu Y Z, He X F, Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl. Mater. Inter., 2015, 7(42): 23685-23693. http://doi.org/10.1021/acsami.5b07517.

[152]

Yu R Z, Wang C H, Duan H, Jiang M, Zhang A B, Fraser A, Zuo J X, Wu Y L, Sun Y P, Zhao Y, Liang J W, Fu J M, Deng S X, Ren Z M, Li G H, Huang H, Li R Y, Chen N, Wang J T, Li X F, Singh C V, Sun X L. Manipulating charge-transfer kinetics of lithium-rich layered oxide cathodes in halide all-solid-state batteries[J]. Adv. Mater., 2023, 35(5): 2207234. https://doi.org/10.1002/adma.202207234.

[153]

Li W H, Li M S, Chien P-H, Wang S, Yu C, King G, Hu Y F, Xiao Q F, Shakouri M, Feng R F, Fu B L, Abdolvand H, Fraser A, Li R Y, Huang Y N, Liu J, Mo Y F, Sham T K, Sun X L. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Sci. Adv., 2023, 9(42): eadh4626. http://doi.org/doi:10.1126/sciadv.adh4626.

[154]

Yu P C, Zhang H C, Hussain F, Luo J, Tang W, Lei J W, Gao L, Butenko D, Wang C H, Zhu J L, Yin W, Zhang H, Han S B, Zou R Q, Chen W, Zhao Y S, Xia W, Sun X L. Lithium metal-compatible antifluorite electrolytes for solid-state batteries[J]. J. Am. Chem. Soc., 2024, 146(18): 12681-12690. http://doi.org/10.1021/jacs.4c02170.

[155]

Ma B C, Li R H, Zhu H T, Zhou T, Lv L, Zhang H K, Zhang S Q, Chen L, Wang J Z, Xiao X Z, Deng T, Chen L X, Wang C S, Fan X L. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries[J]. Adv. Mater., 2024, 36(30): 2402324. https://doi.org/10.1002/adma.202402324.

[156]

Yin Y C, Yang J T, Luo J D, Lu G X, Huang Z, Wang J P, Li P, Li F, Wu Y C, Tian T, Meng Y F, Mo H S, Song Y H, Yang J N, Feng L Z, Ma T, Wen W, Gong K, Wang L J, Ju H X, Xiao Y, Li Z, Tao X, Yao H B. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. http://doi.org/10.1038/s41586-023-05899-8.

[157]

Panchal A A, Pennebaker T N T, Sebti E, Li Y, Li Y H, Clément R J, Canepa P. Compatibility of halide bilayer separators for all-solid-state batteries[J]. ACS Energy Lett., 2024, 9(12): 5935-5944. http://doi.org/10.1021/acsenergylett.4c02590.

[158]

Koç T, Hallot M, Quemin E, Hennequart B, Dugas R, Abakumov A M, Lethien C, Tarascon J-M. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries[J]. ACS Energy Lett., 2022, 7(9): 2979-2987. http://doi.org/10.1021/acsenergylett.2c01668.

[159]

Sahu G, Lin Z, Li J C, Liu Z C, Dudney N, Liang C D. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy Environ. Sci., 2014, 7(3): 1053-1058. http://doi.org/10.1039/C3EE43357A.

[160]

Wang S H, Liang J N, Li S Y, Liang H Y, Liu X Z, Liu Z H, Xu X X, Lin J, Cui Y M, Zhai T Y, Li H Q. Solvent stability of halide solid electrolytes towards wet processing[J]. Energy Storage Mater., 2024, 72: 103726. https://doi.org/10.1016/j.ensm.2024.103726.

[161]

Kwak H, Wang S, Park J, Liu Y S, Kim K T, Choi Y, Mo Y F, Jung Y S. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Lett., 2022, 7(5): 1776-1805. http://doi.org/10.1021/acsenergylett.2c00438.

[162]

Lei P, Wu G, Liu H, Qi X, Wu M, Li D B, Li Y, Gao L, Nan C-W, Fan L-Z. Boosting ion conduction and moisture stability through Zn2+ substitution of chloride electrolytes for all-solid-state lithium batteries[J]. Adv. Energy Mater., 2025, 15(24): 2405760. https://doi.org/10.1002/aenm.202405760.

[163]

Kim J, Mok D H, Kim H, Back S. Accelerating the search for new solid electrolytes: Exploring vast chemical space with machine learning-enabled computational calculations[J]. ACS Appl. Mater. Inter., 2023, 15(45): 52427-52435. http://doi.org/10.1021/acsami.3c10798.

[164]

Chen C, Nguyen D T, Lee S J, Baker N A, Karakoti A S, Lauw L, Owen C, Mueller K T, Bilodeau B A, Murugesan V, Troyer M. Accelerating computational materials discovery with machine learning and cloud high-performance computing: From large-scale screening to experimental validation[J]. J. Am. Chem. Soc., 2024, 146(29): 20009-20018. http://doi.org/10.1021/jacs.4c03849.

[165]

Wang C, Kim J T, Wang C, Sun X. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells[J]. Adv. Mater., 2023, 35(19): 2209074. https://doi.org/10.1002/adma.202209074.

[166]

Xue Z G, He D, Xie X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. J. Mater. Chem. A, 2015, 3(38): 19218-19253. http://doi.org/10.1039/c5ta03471j.

[167]

Song Z Y, Chen F F, Martinez-Ibanez M, Feng W F, Forsyth M, Zhou Z B, Armand M, Zhang H. A reflection on polymer electrolytes for solid-state lithium metal batteries[J]. Nat. Commun., 2023, 14(1): 4884. http://doi.org/10.1038/s41467-023-40609-y.

[168]

Jia Z H, Liu Y, Li H M, Xiong Y, Miao Y J, Liu Z X, Ren F Z. In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: Challenges, strategies, and perspectives[J]. J. Energy Chem., 2024, 92: 548-571. http://doi.org/10.1016/j.jechem.2024.01.017.

[169]

Nie K, Wang X L, Qiu J L, Wang Y, Yang Q, Xu J J, Yu X Q, Li H, Huang X J, Chen L Q. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Lett., 2020, 5(3): 826-832. http://doi.org/10.1021/acsenergylett.9b02739.

[170]

Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S G, Lu Q W, Li R Y, Singh C V, Sun X L. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal -OH group?[J]. Energy Environ. Sci., 2020, 13(5): 1318-1325. http://doi.org/10.1039/d0ee00342e.

[171]

Wang Z Y, Shen L, Deng S G, Cui P, Yao X Y. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Adv Mater., 2021, 33(25): 2100353. http://doi.org/10.1002/adma.202100353.

[172]

Dai C, Weng M W, Cai B W, Liu J F, Guo S K, Xu H, Yao L, Stadler F J, Li Z-M, Huang Y-F. Ion-conductive crystals of poly(vinylidene fluoride) enable the fabrication of fast-charging solid-state lithium metal batteries[J]. Energy Environ. Sci., 2024, 17(21): 8243-8253. http://doi.org/10.1039/d4ee03467h.

[173]

Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv. Energy Mater., 2015, 5(24): 1501082. http://doi.org/10.1002/aenm.201501082.

[174]

Lv Z L, Tang Y, Dong S M, Zhou Q, Cui G L. Polyurethane-based polymer electrolytes for lithium batteries: Advances and perspectives[J]. Chem. Eng. J., 2022, 430: 132659. https://doi.org/10.1016/j.cej.2021.132659.

[175]

Tian W Y, Lin G L, Yuan S H, Jin T, Wang Q L, Jiao L F. Competitive coordination and dual interphase regulation of mof-modified solid-state polymer electrolytes for high-performance sodium metal batteries[J]. Angew. Chem. Int. Ed., 2025, 13(64): e202423075. http://doi.org/10.1002/anie.202423075.

[176]

Li Z, Fu J L, Zhou X Y, Gui S W, Wei L, Yang H, Li H, Guo X. Ionic conduction in polymer-based solid electrolytes[J]. Adv. Sci., 2023, 10(10): 2201718. http://doi.org/10.1002/advs.202201718.

[177]

Fang R Y, Xu B Y, Grundish N S, Xia Y, Li Y T, Lu C W, Liu Y J, Wu N, Goodenough J B. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2021, 60(32): 17701-17706. http://doi.org/10.1002/anie.202106039.

[178]

Sun Q H, Liu Z N, Zhu P, Liu J, Shang S L. The effects of electrospinning structure on the ion conductivity of PEO-based polymer solid-state electrolytes[J]. Energies, 2023, 16(15): 5819. http://doi.org/10.3390/en16155819.

[179]

Shi Y, Chen Y, Liang Y L, Andrews J, Dong H, Yuan M Y, Ding W Y, Banerjee S, Ardebili H, Robertson M L, Cui X L, Yao Y. Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries[J]. J. Mater. Chem. A, 2019, 7(34): 19691-19695. http://doi.org/10.1039/c9ta05885k.

[180]

Liu T T, Zhang J J, Han W, Zhang J N, Ding G L, Dong S M, Cui G L. Review-in situ polymerization for integration and interfacial protection towards solid state lithium batteries[J]. J. Electrochem. Soc., 2020, 167(7): 070527. http://doi.org/10.1149/1945-7111/ab76a4.

[181]

Yang H, Jing M X, Wang L, Xu H, Yan X H, He X M. PDOL-based solid electrolyte toward practical application: Opportunities and challenges[J]. Nano-Micro Lett., 2024, 16(1): 127. http://doi.org/10.1007/s40820-024-01354-z.

[182]

Doron Aurbach O Y, Yosef Gofer, Arie Meitav. The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions—I. Uncontaminated solutions[J]. Electrochim. Acta, 1990, 35(3): 625-638. http://doi.org/10.1016/0013-4686(90)87055-7.

[183]

Kong L B, Zhan H, Li Y J, Zhou Y H. In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique[J]. Electrochem. Commun., 2007, 9(10): 2557-2563. http://doi.org/10.1016/j.elecom.2007.08.001.

[184]

Yang X T, Deng H Y, Xu J, Ye D Z, Jiang X C, Chen Y Z, Sun K, Liu Z J. Control the explosive polymerization of 1,3-dioxolane in LiPF6 electrolyte by lewis acid-base interactions[J]. J. Energy Storage, 2024, 101: 113793. http://doi.org/10.1016/j.est.2024.113793.

[185]

Ma W Q, Wang X, Bai Y Z, Dong W J, Tang Y F, Zhang L, Huang F Q. Nano LiF-enabled in situ synergistic catalytic polymeric electrolytes for stable lithium metal batteries[J]. ACS Appl. Mater. Inter., 2025, 17(5): 8682-8691. http://doi.org/10.1021/acsami.4c21349.

[186]

Hu A Y, Liao Z, Huang J, Zhang Y, Yang Q R, Zhang Z X, Yang L, Hirano S I. In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries[J]. Chem. Eng. J., 2022, 448: 137661. http://doi.org/10.1016/j.cej.2022.137661.

[187]

Yang G M, Hou W S, Zhai Y F, Chen Z Y, Liu C Y, Ouyang C Y, Liang X, Paoprasert P, Hu N, Song S F. Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries[J]. Ecomat, 2023, 5(4): 12325. http://doi.org/10.1002/eom2.12325.

[188]

Xu H, Mi J S, Ma J B, Han Z, Lv S, Chen L K, Zhang J M, Yang K, Li B Y, Li Y H, An X F, Ma Y T, Guo S K, Su H, Shi P R, Liu M, Kang F Y, He Y B. Mg2+ initiated polymerization of dioxolane enabling stable interfaces in solid-state lithium metal batteries[J]. Energy Environ. Sci., 2025, 18(9): 4231-4240. http://doi.org/10.1039/d4ee05606j.

[189]

Zhao C Z, Zhao Q, Liu X T, Zheng J X, Stalin S, Zhang Q, Archer L A. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode[J]. Adv. Mater., 2020, 32(12): 1905629. http://doi.org/10.1002/adma.201905629.

[190]

Xiang J W, Zhang Y, Zhang B, Yuan L X, Liu X T, Cheng Z X, Yang Y, Zhang X X, Li Z, Shen Y, Jiang J J, Huang Y H. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy Environ. Sci., 2021, 14(6): 3510-3521. http://doi.org/10.1039/d1ee00049g.

[191]

Mindemark J, Lacey M J, Bowden T, Brandell D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes[J]. Prog. Polym. Sci., 2018, 81: 114-143. http://doi.org/10.1016/j.progpolymsci.2017.12.004.

[192]

Huang D R, Wu L, Kang Q, Shen Z Y, Huang Q S, Lin W J, Pei F, Huang Y H. Amino-modified UIO-66-NH2 reinforced polyurethane based polymer electrolytes for high-voltage solid-state lithium metal batteries[J]. Nano Res., 2024, 17(11): 9662-9670. http://doi.org/10.1007/s12274-024-6886-9.

[193]

Zhang S J, Wang D, Cui H R, Zhang Y L, Zhang H, Yuan Z X, Han P X, Yao S Y, Huang L, Zhang J J, Cui G L. Research progress on room-temperature solid-state lithium metal batteries with poly(ethylene oxide)-based solid polymer electrolytes[J]. Acta Chim. Sinica, 2024, 82(6): 690-706. http://doi.org/10.6023/a24020061.

[194]

Fang C D, Huang Y, Sun Y F, Sun P F, Li K, Yao S Y, Zhang M Y, Fang W H, Chen J J. Revealing and reconstructing the 3D Li-ion transportation network for superionic poly(ethylene) oxide conductor[J]. Nat. Commun., 2024, 15(1): 6781. http://doi.org/10.1038/s41467-024-51191-2.

[195]

Sheng J Z, Zhang Q, Sun C B, Wang J X, Zhong X W, Chen B, Li C, Gao R H, Han Z Y, Zhou G M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries[J]. Adv. Funct. Mater., 2022, 32(40): 2203272. https://doi.org/10.1002/adfm.202203272.

[196]

Liu Q Y, Xu S W, Li X Y, Chen R J, Wang X F, Gao Y R, Wang Z X, Chen L Q. Polymer competitive solvation reduced propylene carbonate cointercalation in a graphitic anode[J]. Nano Lett., 2023, 23(7): 2623-2629. http://doi.org/10.1021/acs.nanolett.2c04898.

[197]

Cheng H, Yan C Y, Orenstein R, Dirican M, Wei S Z, Subjalearndee N, Zhang X W. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries[J]. Adv. Fiber Mater., 2022, 4(3): 532-546. http://doi.org/10.1007/s42765-021-00128-1.

[198]

Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Single-ion bab triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater., 2013, 12(5): 452-457. http://doi.org/10.1038/nmat3602.

[199]

Li L, Zhao B J, Hang G H, Gao Y, Hu J W, Zhang T, Zheng S X, Pispas A. Polyhydroxyurethane and poly(ethylene oxide) multiblock copolymer networks: Crosslinking with polysilsesquioxane, reprocessing and solid polyelectrolyte properties[J]. Polymers, 2023, 15(24): 15244634. http://doi.org/10.3390/polym15244634.

[200]

Le Nest J F, Callens S, Gandini A, Armand M. A new polymer network for ionic conduction[J]. Electrochim. Acta, 1992, 37(9): 1585-1588. https://doi.org/10.1016/0013-4686(92)80116-4.

[201]

Ji X Y, Cao M X, Fu X W, Liang R Q, Le A N, Zhang Q T, Zhong M J. Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures[J]. Giant, 2020, 3: 100027. https://doi.org/10.1016/j.giant.2020.100027.

[202]

Chen Y, Shi Y, Liang Y L, Dong H, Hao F, Wang A, Zhu Y X, Cui X L, Yao Y. Hyperbranched PEO-based hyperstar solid polymer electrolytes with simultaneous improvement of ion transport and mechanical strength[J]. ACS Appl. Energy Mater., 2019, 2(3): 1608-1615. http://doi.org/10.1021/acsaem.8b02188.

[203]

Bakar R, Darvishi S, Li T Y, Han M, Aydemir U, Nizamoglu S, Hong K L, Senses E. Effect of polymer topology on microstructure, segmental dynamics, and ionic conductivity in PEO/PMMA-based solid polymer electrolytes[J]. ACS Appl. Polym. Mater., 2022, 4(1): 179-190. http://doi.org/10.1021/acsapm.1c01178.

[204]

Zhang J F, Ma C, Hou H, Li X F, Chen L B, Ivey D G, Wei W F. A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries[J]. J. Membr. Sci., 2018, 552: 107-114. https://doi.org/10.1016/j.memsci.2018.01.063.

[205]

Han S T, Wen P, Wang H J, Zhou Y, Gu Y, Zhang L, Shao-Horn Y, Lin X R, Chen M. Sequencing polymers to enable solid-state lithium batteries[J]. Nat. Mater., 2023, 22(12): 1515-1522. http://doi.org/10.1038/s41563-023-01693-z.

[206]

Li R Y, Hua H M, Yang X Y, Tian J L, Chen Q C, Huang R W, Li X, Zhang P, Zhao J B. The deconstruction of a polymeric solvation cage: A critical promotion strategy for PEO-based all-solid polymer electrolytes[J]. Energu Environ. Sci., 2024, 17(15): 5601-5612. http://doi.org/10.1039/D4EE01188K.

[207]

Pei F, Wu L, Zhang Y, Liao Y Q, Kang Q, Han Y, Zhang H W, Shen Y, Xu H H, Li Z, Huang Y H. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries[J]. Nat. Commun., 2024, 15(1): 351. http://doi.org/10.1038/s41467-023-43467-w.

[208]

Akbulut O, Taniguchi I, Kumar S, Shao-Horn Y, Mayes A M. Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)[J]. Electrochim. Acta, 2007, 52(5): 1983-1989. https://doi.org/10.1016/j.electacta.2006.08.007.

[209]

Mackanic D G, Michaels W, Lee M, Feng D, Lopez J, Qin J, Cui Y, Bao Z. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Adv. Energy Mater., 2018, 8(25): 1800703. http://doi.org/10.1002/aenm.201800703.

[210]

Jiang Y C, Wujieti B, Liu Y, Zeng Q H, Li Z F, Guan J Z, Wang H H, Chen L, Cao Y, Li R Z, Zhou Y J, Zhou H H, Cui W, Zhang L Y. A novel aliphatic ketone‐based solid polymer electrolyte with high salt‐soluble ability enabling highly stable lithium‐metal batteries[J]. Adv. Funct. Mater., 2024. https://doi.org/10.1002/adfm.202421160.

[211]

Chen A Q, Zeng Q H, Wen W, Wen X, Li Z F, Liu Y, Guan J Z, Wang H H, Liu W, Chen P P, Zhang L Y. A highly salt-soluble ketone-based all-solid-state polymer electrolyte with superior performances for lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2023, 15(14): 17791-17800. http://doi.org/10.1021/acsami.2c22228.

[212]

Chen P P, Zeng Q H, Li Q Y, Zhao R H, Li Z F, Wen X, Wen W, Liu Y, Chen A Q, Li Z X, Liu X F, Zhang L Y. A ketone-containing all-solid-state polymer electrolyte with rapid Li-ion conduction for lithium metal batteries[J]. Chem. Eng. J., 2022, 427: 132025. https://doi.org/10.1016/j.cej.2021.132025.

[213]

Zhang W R, Koverga V, Liu S F, Zhou J Q, Wang J, Bai P X, Tan S, Dandu N K, Wang Z Y, Chen F, Xia J L, Wan H L, Zhang X Y, Yang H C, Lucht B L, Li A-M, Yang X-Q, Hu E Y, Raghavan S R, Ngo A T, Wang C S. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nat. Energy, 2024, 9(4): 386-400. http://doi.org/10.1038/s41560-023-01443-0.

[214]

Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. J. Power Sources, 2018, 407: 23-30. https://doi.org/10.1016/j.jpowsour.2018.10.045.

[215]

Zhang H, Chen F F, Lakuntza O, Oteo U, Qiao L X, Martinez-Ibañez M, Zhu H J, Carrasco J, Forsyth M, Armand M. Suppressed mobility of negative charges in polymer electrolytes with an ether-functionalized anion[J]. Angew. Chem. Int. Ed, 2019, 58(35): 12070-12075. https://doi.org/10.1002/anie.201905794.

[216]

Mehta M A, Fujinami T. Li+ transference number enhancement in polymer electrolytes by incorporation of anion trapping boroxine rings into the polymer host[J]. Chem. Lett., 1997, 26(9): 915-916. http://doi.org/10.1246/cl.1997.915.

[217]

Qiao L X, Oteo U, Zhang Y, Peña S R, Martínez-Ibañez M, Santiago A, Cid R, Meabe L, Manzano H, Carrasco J, Zhang H, Armand M. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries[J]. Energy Storage Mater., 2020, 32: 225-233. https://doi.org/10.1016/j.ensm.2020.07.022.

[218]

Qiao L X, Rodriguez Peña S, Martínez-Ibañez M, Santiago A, Aldalur I, Lobato E, Sanchez-Diez E, Zhang Y, Manzano H, Zhu H, Forsyth M, Armand M, Carrasco J, Zhang H. Anion π-π stacking for improved lithium transport in polymer electrolytes[J]. J. Am. Chem. Soc., 2022, 144(22): 9806-9816. http://doi.org/10.1021/jacs.2c02260.

[219]

Zhang H, Oteo U, Judez X, Eshetu G G, Martinez-Ibañez M, Carrasco J, Li C, Armand M. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702. http://doi.org/10.1016/j.joule.2019.05.003.

[220]

Yan S S, Liu H, Lu Y, Feng Q Q, Zhou H Y, Wu Y H, Hou W H, Xia Y C, Zhou H Y, Zhou P, Song X, Ou Y, Liu K. Selectively fluorinated aromatic lithium salts regulate the solvation structure and interfacial chemistry for all-solid-state batteries[J]. Sci. Adv., 2025, 11(5): eads4014. http://doi.org/10.1126/sciadv.ads4014.

[221]

Tong B, Song Z Y, Feng W F, Zhu J, Yu H L, Huang X J, Armand M, Zhou Z B, Zhang H. Design of a teflon-like anion for unprecedently enhanced lithium metal polymer batteries[J]. Adv. Energy Mater., 2023, 13(15): 2204085. https://doi.org/10.1002/aenm.202204085.

[222]

Yan S S, Liu F X, Ou Y, Zhou H-Y, Lu Y, Hou W H, Cao Q B, Liu H, Zhou P, Liu K. Asymmetric trihalogenated aromatic lithium salt induced lithium halide rich interface for stable cycling of all-solid-state lithium batteries[J]. ACS Nano, 2023, 17(19): 19398-19409. http://doi.org/10.1021/acsnano.3c07246.

[223]

Su X, Xu X P, Ji Z Q, Wu J, Ma F, Fan L Z. Polyethylene oxide-based composite solid electrolytes for lithium batteries: Current progress, low-temperature and high-voltage limitations, and prospects[J]. Electrochem. Energy Rev., 2024, 7(1): 2. http://doi.org/10.1007/s41918-023-00204-7.

[224]

Zixuan W, Jianxiong C, Jialong F, Zhiyong L, Xin G. Polymer-based electrolytes for high-voltage solid-state lithium batteries[J]. Energy Mater., 2024, 4(4): 400050. http://doi.org/10.20517/energymater.2023.130.

[225]

Zhao Q, Stalin S, Zhao C Z, Archer L A. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat. Rev. Mater., 2020, 5(3): 229-252. http://doi.org/10.1038/s41578-019-0165-5.

[226]

Ye M, Chen J H, Deng H J, Zhang L H, Zhang Z A, Zhu C Q, Xiao M, Chen T, Wan F, Guo X D. In-situ electrochemical passivation for constructing high-voltage PEO-based solid-state lithium battery[J]. Chem. Eng. J., 2024, 488: 151108. http://doi.org/10.1016/j.cej.2024.151108.

[227]

An H W, Li M L, Liu Q S, Song Y J, Liu J X, Yu Z H, Liu X J, Deng B, Wang J J. Strong lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 wh kg-1[J]. Nat. Commun., 2024, 15(1): 9150. http://doi.org/10.1038/s41467-024-53094-8.

[228]

Lv Z L, Zhou Q, Zhang S, Dong S M, Wang Q L, Huang L, Chen K, Cui G L. Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries[J]. Energy Storage Mater., 2021, 37: 215-223. https://doi.org/10.1016/j.ensm.2021.01.017.

[229]

Liu L J, Wang T, Sun L, Song T L, Yan H, Li C L, Mu D B, Zheng J C, Dai Y. Stable cycling of all‐solid‐state lithium metal batteries enabled by salt engineering of PEO‐based polymer electrolytes[J]. Energy Environ. Mater., 2022, 7(2): e12580. http://doi.org/10.1002/eem2.12580.

[230]

Sun H, Xie X X, Huang Q, Wang Z X, Chen K J, Li X L, Gao J, Li Y T, Li H, Qiu J S, Zhou W D. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18335-18343. https://doi.org/10.1002/anie.202107667.

[231]

Zhang Z C, Hu L B, Wu H M, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy Environ. Sci., 2013, 6(6): 1806-1810. http://doi.org/10.1039/C3EE24414H.

[232]

Zhu J, Bian P R, Sun G L, Zhang J P, Lou G L, Song X C, Zhao R Q, Liu J, Xu N, Li A H, Wan X J, Ma Y F, Li C X, Zhang H T, Chen Y S. Practical high-voltage lithium metal batteries enabled by the in-situ fabrication of main-chain fluorinated polymer electrolytes[J]. Angew. Chem. Int. Ed., 2024, 16(64): e202424685. https://doi.org/10.1002/anie.202424685.

[233]

Yang L F, Zhang J, Xue W R, Li J Z, Chen R S, Pan H Y, Yu X Q, Liu Y J, Li H, Chen L Q, Huang X J. Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte[J]. Adv. Funct. Mater., 2022, 32(23): 2200096. https://doi.org/10.1002/adfm.202200096.

[234]

Zhou Q, Dong S M, Lv Z L, Xu G J, Huang L, Wang Q L, Cui Z L, Cui G L. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries[J]. Adv. Energy Mater., 2020, 10(6): 1903441. https://doi.org/10.1002/aenm.201903441.

[235]

Dong T T, Xu G J, Xie B, Liu T, Gong T Y, Sun C H, Wang J Z, Zhang S, Zhang X H, Zhang H R, Huang L, Cui G L. An electrode-crosstalk-suppressing smart polymer electrolyte for high safety lithium-ion batteries[J]. Adv. Mater., 2024, 36(26): 2400737. https://doi.org/10.1002/adma.202400737.

[236]

Tang W S, Matsuo M, Wu H, Stavila V, Zhou W, Talin A A, Soloninin A V, Skoryunov R V, Babanova O A, Skripov A V, Unemoto A, Orimo S-I, Udovic T J. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature[J]. Adv. Energy Mater., 2016, 6(8): 1502237. https://doi.org/10.1002/aenm.201502237.

[237]

Klein I S, Zhao Z F, Davidowski S K, Yarger J L, Angell C A. A new version of the lithium ion conducting plastic crystal solid electrolyte[J]. Adv. Energy Mater., 2018, 8(29): 1801324. https://doi.org/10.1002/aenm.201801324.

[238]

Cooper E I, Angell C A. Ambient temperature plastic crystal fast ion conductors (PLICFICS)[J]. Solid State Ionics, 1986, 18-19: 570-576. https://doi.org/10.1016/0167-2738(86)90180-3.

[239]

Pringle J M. Recent progress in the development and use of organic ionic plastic crystal electrolytes[J]. Phys. Chem. Chem. Phys., 2013, 15(5): 1339-1351. http://doi.org/10.1039/C2CP43267F.

[240]

Aronsson R, Jansson B, Knape H E G, Lundén A, Nilsson L, Sjöblom C A, Torell L M. Fast ion conductors with rotating sulphate ions[J]. J. Phys. Colloques, 1980, 41(C6): C6-35-C6-37. https://doi.org/10.1051/jphyscol:1980609.

[241]

Börjesson L, Torell L M. Reorientational motion in superionic sulfates: A raman linewidth study[J]. Phys. Rev. B, 1985, 32(4): 2471-2477. http://doi.org/10.1103/PhysRevB.32.2471.

[242]

Lu Z, Ciucci F. Structural origin of the superionic Na conduction in Na2B10H10 closo-borates and enhanced conductivity by na deficiency for high performance solid electrolytes[J]. J. Mater. Chem. A, 2016, 4(45): 17740-17748. http://doi.org/10.1039/C6TA07443J.

[243]

Kweon K E, Varley J B, Shea P, Adelstein N, Mehta P, Heo T W, Udovic T J, Stavila V, Wood B C. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closo-borate solid electrolytes[J]. Chem. Mater., 2017, 29(21): 9142-9153. http://doi.org/10.1021/acs.chemmater.7b02902.

[244]

Abu-Lebdeh Y, Alarco P J, Armand M. Conductive organic plastic crystals based on pyrazolium imides[J]. Angew. Chem. Int. Ed., 2003, 42(37): 4499-4501. https://doi.org/10.1002/anie.200250706.

[245]

Reuter D, Binder C, Lunkenheimer P, Loidl A. Ionic conductivity of deep eutectic solvents: The role of orientational dynamics and glassy freezing[J]. Phys. Chem. Chem. Phys., 2019, 21(13): 6801-6809. http://doi.org/10.1039/C9CP00742C.

[246]

Sippel P, Krohns S, Reuter D, Lunkenheimer P, Loidl A. Importance of reorientational dynamics for the charge transport in ionic liquids[J]. Phys. Rev. E, 2018, 98(5): 052605. http://doi.org/10.1103/PhysRevE.98.052605.

[247]

Zachariah M, Romanini M, Tripathi P, Tamarit J L, Macovez R. Molecular diffusion and dc conductivity perfectly correlated with molecular rotational dynamics in a plastic crystalline electrolyte[J]. Phys. Chem. Chem. Phys., 2015, 17(24): 16053-16057. http://doi.org/10.1039/C5CP02345A.

[248]

Bauer T, Köhler M, Lunkenheimer P, Loidl A, Angell C A. Relaxation dynamics and ionic conductivity in a fragile plastic crystal[J]. J. Chem. Phys., 2010, 133(14): 144509. http://doi.org/10.1063/1.3487521.

[249]

Zhang Z Z, Nazar L F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors[J]. Nat. Rev. Mater., 2022, 7(5): 389-405. http://doi.org/10.1038/s41578-021-00401-0.

[250]

Li J, Zhang T, Hui X, Zhu R, Sun Q, Li X, Yin L. Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics[J]. Adv. Sci., 2023, 10(23): 2300226. http://doi.org/10.1002/advs.202300226.

[251]

Qin J, Liu Y T, Li G F, Lan Q, Song Z P, Ai X P, Zhan H. Plastic crystal fast ion-conductor electrolyte enabled ultra-low temperature rechargeable organic battery[J]. Adv. Energy Mater., 2024, 14(29): 2400731. https://doi.org/10.1002/aenm.202400731.

[252]

Zhu H J, Huang G Y, O’Dell L A, Forsyth M. New insights into decoupled cation and anion transport and dynamic heterogeneity in a diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate organic ionic plastic crystal[J]. J. Phys. Chem. Lett., 2021, 12(40): 9853-9858. http://doi.org/10.1021/acs.jpclett.1c02943.

[253]

Ueda H. Interphase-driven ion conduction in organic ionic plastic crystal-based solid electrolytes:A review of symmetric cell studies[B]. Encyclopedia of solid-liquid interfaces (first edition), Wandelt, K, Bussetti G. Eds.Eds. Elsevier: Oxford, 2024: 743-775. https://doi.org/10.1016/B978-0-323-85669-0.00084-2.

[254]

Hu Z L, Xian F, Guo Z Y, Lu C L, Du X F, Cheng X Y, Zhang S, Dong S M, Cui G L, Chen L Q. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries[J]. Chem. Mater., 2020, 32(8): 3405-3413. http://doi.org/10.1021/acs.chemmater.9b05003.

[255]

Chen J, Yang Z, Xu X, Qiao Y, Zhou Z M, Hao Z Q, Chen X M, Liu Y, Wu X Q, Zhou X Z, Li L, Chou S-L. Nonflammable succinonitrile-based deep eutectic electrolyte for intrinsically safe high-voltage sodium-ion batteries[J]. Adv. Mater., 2024, 36(28): 2400169. https://doi.org/10.1002/adma.202400169.

[256]

Shekibi Y, Rüther T, Huang J, Hollenkamp A F. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity[J]. Phys. Chem. Chem. Phys., 2012, 14(13): 4597-4604. http://doi.org/10.1039/C2CP24077G.

[257]

Yang Y B, Zhou H, Xie J Y, Bao L X, Li T S, Lei J X, Wang J L. Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage[J]. J. Energy Chem., 2022, 66: 647-656. https://doi.org/10.1016/j.jechem.2021.09.011.

[258]

Makhlooghiazad F, Miguel Guerrero Mejia L, Rollo-Walker G, Kourati D, Galceran M, Chen F, Deschamps M, Howlett P, O'Dell L A, Forsyth M. Understanding polymerized ionic liquids as solid polymer electrolytes for sodium batteries[J]. J. Am. Chem. Soc., 2024, 146(3): 1992-2004. http://doi.org/10.1021/jacs.3c10510.

[259]

Song Y H, Wu K J, Zhang T W, Lu L L, Guan Y, Zhou F, Wang X X, Yin Y C, Tan Y H, Li F, Tian T, Ni Y, Yao H B, Yu S H. A nacre-inspired separator coating for impact-tolerant lithium batteries[J]. Adv. Mater., 2019, 31(51): 1905711. https://doi.org/10.1002/adma.201905711.

[260]

Chen F F, Wang X E, Armand M, Forsyth M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications[J]. Nat. Mater., 2022, 21(10): 1175-1182. http://doi.org/10.1038/s41563-022-01319-w.

[261]

Liu L W, Xue J Y, Liu Y, Lu S W, Weng S X, Wang Z C, Zhang F R, Fu D S, Xu J J, Wu X D. Excellent polymerized ionic-liquid-based gel polymer electrolytes enabled by molecular structure design and anion-derived interfacial layer[J]. ACS Appl. Mater. Inter., 2024, 16(7): 8895-8902. http://doi.org/10.1021/acsami.3c18308.

[262]

Rojaee R, Cavallo S, Mogurampelly S, Wheatle B K, Yurkiv V, Deivanayagam R, Foroozan T, Rasul M G, Sharifi-Asl S, Phakatkar A H, Cheng M, Son S-B, Pan Y, Mashayek F, Ganesan V, Shahbazian-Yassar R. Highly-cyclable room-temperature phosphorene polymer electrolyte composites for Li metal batteries[J]. Adv. Funct. Mater., 2020, 30(32): 1910749. https://doi.org/10.1002/adfm.201910749.

[263]

Yang G, Song Y D, Deng L J. Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries[J]. J. Mater. Chem. A, 2021, 9(11): 6881-6889. http://doi.org/10.1039/D0TA11730G.

[264]

Reinoso D M, Frechero M A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications[J]. Energy Storage Mater., 2022, 52: 430-464. https://doi.org/10.1016/j.ensm.2022.08.019.

[265]

Wang X E, Chen F F, Girard G M A, Zhu H J, MacFarlane D R, Mecerreyes D, Armand M, Howlett P C, Forsyth M. Poly(ionic liquid)s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries[J]. Joule, 2019, 3(11): 2687-2702. http://doi.org/10.1016/j.joule.2019.07.008.

[266]

Kondou S, Abdullah M, Popov I, Martins M L, O’Dell L A, Ueda H, Makhlooghiazad F, Nakanishi A, Sudoh T, Ueno K, Watanabe M, Howlett P, Zhang H, Armand M, Sokolov A P, Forsyth M, Chen F. Poly(ionic liquid) electrolytes at an extreme salt concentration for solid-state batteries[J]. J. Am. Chem. Soc., 2024, 146(48): 33169-33178. http://doi.org/10.1021/jacs.4c12616.

[267]

Li L L, Li W Z, Wang X L, Zou X Y, Zheng S J, Liu Z Y, Li Q N, Xia Q M, Yan F. Ultra-tough and recyclable ionogels constructed by coordinated supramolecular solvents[J]. Angew. Chem. Int. Ed, 2022, 61(50): e202212512. https://doi.org/10.1002/anie.202212512.

[268]

Jones S D, Nguyen H, Richardson P M, Chen Y-Q, Wyckoff K E, Hawker C J, Clément R J, Fredrickson G H, Segalman R A. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport[J]. ACS Central Sci., 2022, 8(2): 169-175. http://doi.org/10.1021/acscentsci.1c01260.

[269]

Huang Z J, Choudhury S, Gong H X, Cui Y, Bao Z N. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium[J]. J. Am. Chem. Soc., 2020, 142(51): 21393-21403. http://doi.org/10.1021/jacs.0c09649.

[270]

Zhang D Z, Ren Y Y, Hu Y, Li L, Yan F. Ionic liquid/poly(ionic liquid)-based semi-solid state electrolytes for lithium-ion batteries[J]. Chinese J. Polym. Sci., 2020, 38(5): 506-513. http://doi.org/10.1007/s10118-020-2390-1.

[271]

Lu G L, Meng G, Liu Q, Feng L G, Luo J, Liu X J, Luo Y, Chu P K. Advanced strategies for solid electrolyte interface design with MOF materials[J]. Adv. Powder Mater., 2024, 3(1): 100154. http://doi.org/10.1016/j.apmate.2023.100154.

[272]

Chang Z, Yang H J, Zhu X Y, He P, Zhou H S. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nat. Commun., 2022, 13(1): 1510. http://doi.org/10.1038/s41467-022-29118-6.

[273]

Zhu X Y, Chang Z, Yang H J, He P, Zhou H S. Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte[J]. J. Mater. Chem. A, 2022, 10(2): 651-663. http://doi.org/10.1039/d1ta09499h.

[274]

Chen Z R, Zhao W, Liu Q, Xu Y F, Wang Q H, Lin J M, Wu H B. Janus quasi-solid electrolyte membranes with asymmetric porous structure for high-performance lithium-metal batteries[J]. Nano-Micro Lett., 2024, 16(1): 114. http://doi.org/10.1007/s40820-024-01325-4.

[275]

Feng Y, Fan Y P, Zhao L F, Yu J T, Liao Y Q, Zhang T R, Zhang R C, Zhu H T, Sun X W, Hu Z, Zhang K, Chen J. Enhancing microdomain consistency in polymer electrolytes towards sustainable lithium batteries[J]. Angew. Chem. Int. Ed, 2025, 64(5): 2417105. http://doi.org/10.1002/anie.202417105.

[276]

Lin Z H, Wang Y, Li Y, Liu Y, Zhong S C, Xie M S, Yan F, Zhang Z Y, Peng J, Li J Q, Wang A P, Chen X B, Zhai M L, Zhang H, Qiu J Y. Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries[J]. Energy Storage Mater., 2022, 53: 917-926. http://doi.org/10.1016/j.ensm.2022.10.019.

[277]

Zhang Z J, Wang J, Sun X Y, Sheng C C, Cheng M Z, Liu H, Wang Y T, Zhou H S, He P. Improved stability of single-crystal LiCoO2 cathodes at 4.8 V through solvation structure regulation[J]. Adv. Funct. Mater., 2024, 34(48): 2411409. http://doi.org/10.1002/adfm.202411409.

[278]

Chang Z, Qiao Y, Yang H J, Deng H, Zhu X Y, He P, Zhou H S. Beyond the concentrated electrolyte: Further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries[J]. Energy Environ. Sci., 2020, 13(11): 4122-4131. http://doi.org/10.1039/d0ee02769c.

[279]

Chang Z, Yang H J, Qiao Y, Zhu X Y, He P, Zhou H S. Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries[J]. Adv. Mater., 2022, 34(34): 2201339. http://doi.org/10.1002/adma.202201339.

[280]

Fu C K, Ma Y L, Lou S F, Cui C, Xiang L Z, Zhao W, Zuo P J, Wang J J, Gao Y Z, Yin G P. A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries[J]. J. Mater. Chem. A, 2020, 8(4): 2066-2073. http://doi.org/10.1039/c9ta11341j.

[281]

Lu Z Y, Yang H J, Wu G, Shan P Z, Lin H X, He P, Zhao J M, Yang Y, Zhou H S. A "liquid-in-solid" electrolyte for high-voltage anode-free rechargeable sodium batteries[J]. Adv. Mater., 2024, 36(33): 2404569. http://doi.org/10.1002/adma.202404569.

[282]

Wei L, Xu X, Xi K, Lei Y, Cheng X, Shi X B, Wu H H, Gao Y F. Ultralong cycling and interfacial regulation of bilayer heterogeneous composite solid-state electrolytes in lithium metal batteries[J]. ACS Appl. Mater. Inter., 2024, 16(26): 33578-33589. http://doi.org/10.1021/acsami.4c06026.

[283]

Ding Z Y, Tang Q M, Liu Y C, Yao P H, Liu C, Liu X J, Wu J W, Lavorgna M. Integrate multifunctional ionic sieve lithiated x zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan[J]. Chem. Eng. J., 2022, 433: 133522. http://doi.org/10.1016/j.cej.2021.133522.

[284]

Chi X W, Li M L, Di J C, Bai P, Song L N, Wang X X, Li F, Liang S, Xu J J, Yu J H. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592(7855): 551-557. http://doi.org/10.1038/s41586-021-03410-9.

[285]

Yang W J, Liu Y W, Sun X Y, He Z Y, He P, Zhou H S. Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(18): 2401428. http://doi.org/10.1002/anie.202401428.

[286]

Didwal Pravin N, Singhbabu Y N, Verma R, Sung B-J, Lee G-H, Lee J-S, Chang D R, Park C-J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries[J]. Energy Storage Mater., 2021, 37: 476-490. http://doi.org/10.1016/j.ensm.2021.02.034.

[287]

Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochim. Acta, 2001, 46(16): 2457-2461. https://doi.org/10.1016/S0013-4686(01)00458-3.

[288]

Xiang H Y, Deng N P, Gao L, Cheng B W, Kang W M. Janus nanofibers with multiple Li+ transport channels and outstanding thermal stability for all-solid-state composite polymer electrolytes[J]. J. Mater. Chem. A, 2024, 12(26): 16022-16033. http://doi.org/10.1039/d4ta01836b.

[289]

Zhao Y M Y, Li L B, Zhou D, Ma Y, Zhang Y H, Yang H, Fan S B, Tong H, Li S, Qu W H. Opening and constructing stable lithium‐ion channels within polymer electrolytes[J]. Angew. Chem. Int. Ed., 2024, 63(31): 2404728. http://doi.org/10.1002/anie.202404728.

[290]

Sasikumar M, Raja M, Krishna R H, Jagadeesan A, Sivakumar P, Rajendran S. Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF-HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries[J]. J. Phys. Chem. C, 2018, 122(45): 25741-25752. http://doi.org/10.1021/acs.jpcc.8b03952.

[291]

An X F, Yuan Y, Yang K, Zhang D F, Cao Y D, Liu M, Kang F Y, He Y-B. Giant dielectric ceramic of Li0.3Ti0.02Ni0.68O with abundant oxygen vacancies enabling high lithium-ion conductivity in composite solid-state electrolyte[J]. Carbon Neutrality, 2024, 3(1): 22. http://doi.org/10.1007/s43979-024-00096-6.

[292]

Hu C J, Shen Y B, Shen M, Liu X, Chen H W, Liu C H, Kang T, Jin F, Li L, Li J, Li Y Q, Zhao N, Guo X X, Lu W, Hu B W, Chen L W. Superionic conductors via bulk interfacial conduction[J]. J. Am. Chem. Soc., 2020, 142(42): 18035-18041. http://doi.org/10.1021/jacs.0c07060.

[293]

Wang N, Jia M Y, Bi Z J, Guo X X. Composite electrolytes with Li2CO3‐free garnets achieved by one‐step poly(propylene carbonate) treatment for high‐rate and long‐life solid lithium batteries[J]. Adv. Funct. Mater., 2024, 34(36): 2401400. http://doi.org/10.1002/adfm.202401400.

[294]

Shi P R, Ma J B, Liu M, Guo S K, Huang Y F, Wang S W, Zhang L H, Chen L K, Yang K, Liu X T, Li Y H, An X F, Zhang D F, Cheng X, Li Q D, Lv W, Zhong G M, He Y B, Kang F Y. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nat. Nanotechnol., 2023, 18(6): 602-610. http://doi.org/10.1038/s41565-023-01341-2.

[295]

Lee M J, Han J H, Lee K, Lee Y J, Kim B G, Jung K-N, Kim B J, Lee S W. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. http://doi.org/10.1038/s41586-021-04209-4.

[296]

Han J H, Lee M J, Lee K, Lee Y J, Kwon S H, Min J H, Lee E, Lee W, Lee S W, Kim B J. Role of bicontinuous structure in elastomeric electrolytes for high‐energy solid‐state lithium‐metal batteries[J]. Adv. Mater., 2022, 35(1): 2205194. http://doi.org/10.1002/adma.202205194.

[297]

Peng H, Long T R, Peng J, Chen H, Ji L F, Sun H, Huang L, Sun S G. Molecular design for in‐situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(22): 2400428. http://doi.org/10.1002/aenm.202400428.

[298]

Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim B J. Design of fluorinated elastomeric electrolyte for solid‐state lithium metal batteries operating at low temperature and high voltage[J]. Adv. Mater., 2024, 36(30): 2403191. http://doi.org/10.1002/adma.202403191.

[299]

Zhang D C, Liu Y X, Sun Z Y, Liu Z B, Xu X J, Xi L, Ji S M, Zhu M, Liu J. Eutectic‐based polymer electrolyte with the enhanced lithium salt dissociation for high‐performance lithium metal batteries[J]. Angew. Chem. Int. Ed., 2023, 62(44): 2310006. http://doi.org/10.1002/anie.202310006.

[300]

Bao D Q, Tao Y, Zhong Y H, Zhao W, Peng M F, Zhang H, Sun X H. High‐performance dual‐salt plastic crystal electrolyte enabled by succinonitrile‐regulated porous polymer host[J]. Adv. Funct. Mater., 2023, 33(17): 2213211. http://doi.org/10.1002/adfm.202213211.

[301]

Liao Z, Hu A Y, Wei Z Z, Huang J, Wu B, Orita A, Zhang Z X, Yang L. Solvent-free in-situ polymerized plastic crystal electrolytes for long-cycling lithium metal batteries[J]. Chem. Eng. J., 2024, 497: 154301. http://doi.org/10.1016/j.cej.2024.154301.

[302]

Lee J H, Shin J C, Kim J, Ho J W, Cho W J, Park M J, Yi G R, Lee M, Yoo P J. Zwitterionic surfactant-stabilized ionogel electrolytes with high ionic conductivity for lithium secondary batteries[J]. J. Power Sources, 2023, 557: 232565. http://doi.org/10.1016/j.jpowsour.2022.232565.

[303]

Hwang J, Matsumoto K, Chen C Y, Hagiwara R. Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries[J]. Energ Environ. Sci., 2021, 14(11): 5834-5863. http://doi.org/10.1039/d1ee02567h.

[304]

Lee J H, Lee A S, Lee J C, Hong S M, Hwang S S, Koo C M. Hybrid ionogel electrolytes for high temperature lithium batteries[J]. J. Mater. Chem. A, 2015, 3(5): 2226-2233. http://doi.org/10.1039/c4ta06062h.

[305]

Balo L, Shalu, Gupta H, Kumar Singh V, Kumar Singh R. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application[J]. Electrochim. Acta, 2017, 230: 123-131. http://doi.org/10.1016/j.electacta.2017.01.177.

[306]

Lu S Y, Cai J W, Zheng W S, Lai Z X, Xie B W, Ding Z H, He H M. Development of solvate ionic liquid immobilized MCM-41 ionogel electrolytes for lithium battery[J]. J. Mater. SCI-Mater. El., 2022, 33(23): 18621-18631. http://doi.org/10.1007/s10854-022-08713-9.

[307]

Hu Y H, Yu L, Meng T, Zhou S S, Sui X, Hu X L. Hybrid ionogel electrolytes for advanced lithium secondary batteries: Developments and challenges[J]. Chem. Asian J., 2022, 17(23): 2200794. http://doi.org/10.1002/asia.202200794.

[308]

Chen N, Dai Y J, Xing Y, Wang L L, Guo C, Chen R J, Guo S J, Wu F. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries[J]. Energy Environ. Sci., 2017, 10(7): 1660-1667. http://doi.org/10.1039/c7ee00988g.

[309]

Kim D, Liu X, Yu B Z, Mateti S, O'Dell L A, Rong Q Z, Chen Y. Amine-functionalized boron nitride nanosheets: A new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number[J]. Adv. Funct. Mater., 2020, 30(15): 1910813. https://doi.org/10.1002/adfm.201910813.

[310]

Wang Z Q, Tan R, Wang H B, Yang L Y, Hu J T, Chen H B, Pan F. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery[J]. Adv. Mater., 2018, 30(2): 1704436. https://doi.org/10.1002/adma.201704436.

[311]

Wu F, Chen N, Chen R J, Zhu Q Z, Ban J, Li L. "Liquid-in-solid" and "solid-in-liquid" electrolytes with high rate capacity and long cycling life for lithium-ion batteries[J]. Chem. Mater., 2016, 28(3): 848-856. http://doi.org/10.1021/acs.chemmater.5b04278.

[312]

Kim J-K, Scheers J, Park T J, Kim Y. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries[J]. ChemSusChem, 2015, 8(4): 636-641. https://doi.org/10.1002/cssc.201402969.

[313]

Cheng M, Jiang Y Z, Yao W T, Yuan Y F, Deivanayagam R, Foroozan T, Huang Z, Song B, Rojaee R, Shokuhfar T, Pan Y Y, Lu J, Shahbazian‐Yassar R. Elevated‐temperature 3D printing of hybrid solid‐state electrolyte for Li‐ion batteries[J]. Adv. Mater., 2018, 30(39): 1800615. http://doi.org/10.1002/adma.201800615.

[314]

Wu F, Chen N, Chen R J, Wang L L, Li L. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries[J]. Nano Energy, 2017, 31: 9-18. http://doi.org/10.1016/j.nanoen.2016.10.060.

[315]

Choi H, Kim H W, Ki J-K, Lim Y J, Kim Y, Ahn J-H. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries[J]. Nano Res., 2017, 10(9): 3092-3102. http://doi.org/10.1007/s12274-017-1526-2.

[316]

Zhang Y F, Huang J J, Liu H, Kou W J, Dai Y, Dang W, Wu W J, Wang J T, Fu Y Z, Jiang Z Y. Lamellar ionic liquid composite electrolyte for wide‐temperature solid‐state lithium‐metal battery[J]. Adv. Energy Mater., 2023, 13(23): 2300156. http://doi.org/10.1002/aenm.202300156.

[317]

Kim H W, Manikandan P, Lim Y J, Kim J H, Nam S-c, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries[J]. J. Mater. Chem. A, 2016, 4(43): 17025-17032. http://doi.org/10.1039/c6ta07268b.

[318]

Oh D Y, Nam Y J, Park K H, Jung S H, Cho S J, Kim Y K, Lee Y G, Lee S Y, Jung Y S. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk‐type all‐solid‐state lithium‐ion batteries[J]. Adv. Energy Mater., 2015, 5(22): 1500865. http://doi.org/10.1002/aenm.201500865.

[319]

Liu M, Zhang S N, van Eck E R H, Wang C, Ganapathy S, Wagemaker M. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nat. Nanotechnol., 2022, 17: 959-967. http://doi.org/10.1038/s41565-022-01162-9.

[320]

Li J F, Zhang T, Hui X B, Zhu R X, Sun Q Q, Li X X, Yin L W. Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics[J]. Adv. Sci., 2023, 10(23): 2300226. https://doi.org/10.1002/advs.202300226.

[321]

Gao N, Yang Y, Wang Z Y, Guo X, Jiang S Q, Li J S, Hu Y F, Liu Z C, Xu C M. Viscosity of ionic liquids: Theories and models[J]. Chem. Rev., 2024, 124(1): 27-123. http://doi.org/10.1021/acs.chemrev.3c00339.

[322]

Yuan Y, Peng X P, Wang B, Xue K S, Li Z Q, Ma Y T, Zheng B, Song Y S, Lu H. Solvate ionic liquid-derived solid polymer electrolyte with lithium bis(oxalato) borate as a functional additive for solid-state lithium metal batteries[J]. J. Mater. Chem. A, 2023, 11(3): 1301-1311. http://doi.org/10.1039/d2ta07393e.

[323]

Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Adv. Mater., 2019, 31(50): 1902029. https://doi.org/10.1002/adma.201902029.

[324]

Ashby D S, DeBlock R H, Choi C S, Sugimoto W, Dunn B. Electrochemical and spectroscopic analysis of the lonogel-electrode interface[J]. ACS Appl. Mater. Inter., 2019, 11(12): 12088-12097. http://doi.org/10.1021/acsami.9b00093.

[325]

Simonetti E, Carewska M, Di Carli M, Moreno M, De Francesco M, Appetecchi G B. Towards improvement of the electrochemical properties of ionic liquid-containing polyethylene oxide-based electrolytes[J]. Electrochim. Acta, 2017, 235: 323-331. https://doi.org/10.1016/j.electacta.2017.03.080.

[326]

Vries H, Jeong S, Passerini S. Ternary polymer electrolytes incorporating pyrrolidinium-imide ionic liquids[J]. RSC Adv., 2015, 5(18): 13598-13606. http://doi.org/10.1039/C4RA16070C.

[327]

Mehdi A, Cerclier C V, Le Bideau J, Guyomard D, Dalmas F, Chenal J-M, Chazeau L, Fontaine O, Vioux A. Peo-silsesquioxane flexible membranes: Organic-inorganic solid electrolytes with controlled homogeneity and nanostructure[J]. Chem. Sel., 2017, 2(6): 2088-2093. https://doi.org/10.1002/slct.201601798.

[328]

Porcarelli L, Shaplov A S, Salsamendi M, Nair J R, Vygodskii Y S, Mecerreyes D, Gerbaldi C. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries[J]. ACS Appl. Mater. Inter., 2016, 8(16): 10350-10359. http://doi.org/10.1021/acsami.6b01973.

[329]

Wang S, Bai M L, Liu C, Li G J, Lu X X, Cai H N, Liu C Y, Lai W-Y. Highly stretchable multifunctional polymer ionic conductor with high conductivity based on organic-inorganic dual networks[J]. Chem. Eng. J., 2022, 440: 135824. https://doi.org/10.1016/j.cej.2022.135824.

[330]

Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chem. Rev., 2017, 117(10): 7190-7239. http://doi.org/10.1021/acs.chemrev.6b00504.

[331]

D’Angelo A J, Grimes J J, Panzer M J. Deciphering physical versus chemical contributions to the ionic conductivity of functionalized poly(methacrylate)-based ionogel electrolytes[J]. J. Phys. Chem. B, 2015, 119(47): 14959-14969. http://doi.org/10.1021/acs.jpcb.5b08250.

[332]

Aidoud D, Etiemble A, Guy-Bouyssou D, Maire E, Le Bideau J, Guyomard D, Lestriez B. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes[J]. J. Power Sources, 2016, 330: 92-103. https://doi.org/10.1016/j.jpowsour.2016.08.141.

[333]

D’Angelo A J, Panzer M J. Enhanced lithium ion transport in poly(ethylene glycol) diacrylate-supported solvate ionogel electrolytes via chemically cross-linked ethylene oxide pathways[J]. J. Phys. Chem. B, 2017, 121(4): 890-895. http://doi.org/10.1021/acs.jpcb.6b10125.

[334]

Li M Y, Li J Y, Na H, Vlassak J J. Mechanical behavior of poly(methyl methacrylate)-based ionogels[J]. Soft Matter, 2014, 10(40): 7993-8000. http://doi.org/10.1039/C4SM01466A.

[335]

Tang W Y, Dong K Y, Chen Z L, Duan Y, Sun Q H, Li X, Zhai D M, Lv T, Chen T. A microphase-separation ionogel electrolyte for highly stretchable all-solid-state supercapacitors[J]. Chem. Eng. J., 2024, 501: 157726. https://doi.org/10.1016/j.cej.2024.157726.

[336]

Jiang X A, Liu Z E, Liu W J, Yu D, Zhang J, Wang X W, Zhang Y, Zhang S G. Physical ionogels with only 2 wt% gelators as efficient quasi-solid-state electrolytes for lithium batteries[J]. Matter, 2024, 7(4): 1558-1574. https://doi.org/10.1016/j.matt.2024.01.021.

[337]

Girard G M A, Hilder M, Nucciarone D, Whitbread K, Zavorine S, Moser M, Forsyth M, MacFarlane D R, Howlett P C. Role of Li concentration and the SEI layer in enabling high performance Li metal electrodes using a phosphonium bis(fluorosulfonyl)imide ionic liquid[J]. J. Phys. Chem. C, 2017, 121(39): 21087-21095. http://doi.org/10.1021/acs.jpcc.7b01929.

[338]

Chen F F, Forsyth M. Computational investigation of mixed anion effect on lithium coordination and transport in salt concentrated ionic liquid electrolytes[J]. J. Phys. Chem. Lett., 2019, 10(23): 7414-7420. http://doi.org/10.1021/acs.jpclett.9b02416.

[339]

Zhang H Q, Qu W J, Chen N, Huang Y X, Li L, Wu F, Chen R J. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries[J]. Electrochim. Acta, 2018, 285: 78-85. https://doi.org/10.1016/j.electacta.2018.07.231.

[340]

Forsyth M, Girard G M A, Basile A, Hilder M, MacFarlane D R, Chen F, Howlett P C. Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage[J]. Electrochim. Acta, 2016, 220: 609-617. https://doi.org/10.1016/j.electacta.2016.10.134.

[341]

Al-Masri D, Yunis R, Hollenkamp A F, Doherty C M, Pringle J M. The influence of alkyl chain branching on the properties of pyrrolidinium-based ionic electrolytes[J]. Phys. Chem. Chem. Phys., 2020, 22(32): 18102-18113. http://doi.org/10.1039/D0CP03046E.

[342]

Thomas C M, Hyun W J, Huang H C, Zeng D, Hersam M C. Blade-coatable hexagonal boron nitride ionogel electrolytes for scalable production of lithium metal batteries[J]. ACS Energy Lett., 2022, 7(4): 1558-1565. http://doi.org/10.1021/acsenergylett.2c00535.

[343]

Yuuki T, Konosu Y, Ashizawa M, Iwahashi T, Ouchi Y, Tominaga Y, Ooyabu R, Matsumoto H, Matsumoto H. Ionic liquid-based electrolytes containing surface-functionalized inorganic nanofibers for quasisolid lithium batteries[J]. ACS Omega, 2017, 2(3): 835-841. http://doi.org/10.1021/acsomega.6b00480.

[344]

Hyun W J, de Moraes A C M, Lim J M, Downing J R, Park K Y, Tan M T Z, Hersam M C. High-modulus hexagonal boron nitride nanoplatelet gel electrolytes for solid-state rechargeable lithium-ion batteries[J]. ACS Nano, 2019, 13(8): 9664-9672. http://doi.org/10.1021/acsnano.9b04989.

[345]

Oh K S, Kim J H, Kim S H, Oh D, Han S P, Jung K, Wang Z Y, Shi L Y, Su Y X, Yim T, Yuan S, Lee S Y. Single‐ion conducting soft electrolytes for semi‐solid lithium metal batteries enabling cell fabrication and operation under ambient conditions[J]. Adv. Energy Mater., 2021, 11(38): 2101813. http://doi.org/10.1002/aenm.202101813.

[346]

Zhu L, Chen J C, Wang Y W, Feng W L, Zhu Y Z, Lambregts S F H, Wu Y M, Yang C, van Eck E R H, Peng L M, Kentgens A P M, Tang W P, Xia Y Y. Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes[J]. J. Am. Chem. Soc., 2024, 146(10): 6591-6603. http://doi.org/10.1021/jacs.3c11988.

[347]

Barbosa J C, Correia D M, Fernández E M, Fidalgo-Marijuan A, Barandika G, Gonçalves R, Ferdov S, de Zea Bermudez V, Costa C M, Lanceros-Mendez S. High-performance room temperature lithium-ion battery solid polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) combining ionic liquid and zeolite[J]. ACS Appl. Mater. Inter., 2021, 13(41): 48889-48900. http://doi.org/10.1021/acsami.1c15209.

[348]

Zhang X X, Su Q M, Du G H, Xu B S, Wang S, Chen Z, Wang L M, Huang W H, Pang H. Stabilizing solid-state lithium metal batteries through in situ generated janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes[J]. Angew. Chem. Int. Ed., 2023, 62(39): e202304947. http://doi.org/10.1002/anie.202304947.

[349]

Yang W, Zheng X F, Wu Y Q, Gong Z L. LiF-Sn composite modification layer to modify garnet/lithium metal interface[J]. J. Electrochem., 2023, 29(11): 2204071.

[350]

Hayashi N, Watanabe K, Ohnishi T, Takada K, Shimanoe K. Impact of intentional composition tuning on the sintering properties of Ca-Bi co-doped Li7La3Zr2O12 for co-fired solid-state batteries[J]. J. Mater. Chem. A, 2023, 11(29): 15681-15690. http://doi.org/10.1039/d3ta00921a.

[351]

Sang J W, Pan K C, Tang B, Zhang Z, Liu Y Y, Zhou Z. One stone, three birds: An air and interface stable argyrodite solid electrolyte with multifunctional nanoshells[J]. Adv. Sci., 2023, 10(32): 2304117. http://doi.org/10.1002/advs.202304117.

[352]

Wang Q D, Zhou Y N, Wang X L, Guo H, Gong S P, Yao Z P, Wu F T, Wang J L, Ganapathy S, Bai X D, Li B H, Zhao C L, Janek J, Wagemaker M. Designing lithium halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1050. http://doi.org/10.1038/s41467-024-45258-3.

[353]

Li X N, Xu Y, Zhao C T, Wu D J, Wang L M, Zheng M, Han X, Zhang S M, Yue J Y, Xiao B W, Xiao W, Wang L G, Mei T, Gu M, Liang J W, Sun X L. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angew. Chem. Int. Ed, 2023, 62(48): e202306433. https://doi.org/10.1002/anie.202306433.

[354]

Tanaka Y, Ueno K, Mizuno K, Takeuchi K, Asano T, Sakai A. New oxyhalide solid electrolytes with high lithium ionic conductivity> 10 ms cm-1 for all-solid-state batteries[J]. Angew. Chem. Int. Ed., 2023, 62(13): 2217581. http://doi.org/10.1002/anie.202217581.

AI Summary AI Mindmap
PDF (4179KB)

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/