A Novel Electrolyte Pyridine Additive for Enhancing Cycle Life of Lithium-ion Batteries

Peng-Cheng Wang , Ding-Chang Li , Jun-Tao Li , Guang-Bo Lu , Shi-Wen Wang

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (12) : 2506131

PDF (1465KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (12) :2506131 DOI: 10.61558/2993-074X.3584
Article
research-article

A Novel Electrolyte Pyridine Additive for Enhancing Cycle Life of Lithium-ion Batteries

Author information +
History +
PDF (1465KB)

Abstract

Lithium-ion (Li-ion) battery using a graphite (Gr.) anode and a lithium iron phosphate (LiFePO4, LFP) cathode (Gr.||LFP) has been widespread in energy storage. To match the warranty period of energy storage systems, the lifespan of this kind of Li-ion battery, not only under room temperature but also under relatively high temperature, is critical. Exploration of functional electrolyte additive provides an efficient approach to address this issue. This study reports the usage of pyridine (Py) as a new electrolyte functional additive for Gr.||LFP. In the first cycle, it was found that Py can be reduced before ethylene carbonate and vinylene carbonate, forming a dense and homogeneous solid electrolyte interface (SEI) layer containing rich nitrogen and fluorine elements. Owing to the merits of the SEI layer, the parasitic reactions which occur at the graphite anode and consume the active lithium ion during cycling were suppressed. With the amount of 0.5wt% Py additive in the electrolyte, the Gr.||LFP pouch cell achieved a capacity of 3.2 Ah, exhibiting remarkablly enhanced cycling stability and high-temperature storage capability. Under the experimental conditions of 25 ℃and 0.5 P, the capacity retention of the pouch cell reached 95.64% after 500 cycles, while still maintained 82.75% of the initial capacity after 1000 cycles under 45 °C and 1 P. After the 30-day storage at 45 °C and 60 °C, the capacity retention rates were 87.38% and 80.56%, respectively, which are significantly higher than those of the pouch cells with the blank control electrolyte. This work identifies Py as a highly promising electrolyte additive in stabilizing the graphite-based anode of Li-ion battery under both room temperature and high temperature.

Keywords

Lithium-ion batteries / Cyclability / Pyridine additive / Solid electrolyte interface

Cite this article

Download citation ▾
Peng-Cheng Wang, Ding-Chang Li, Jun-Tao Li, Guang-Bo Lu, Shi-Wen Wang. A Novel Electrolyte Pyridine Additive for Enhancing Cycle Life of Lithium-ion Batteries. Journal of Electrochemistry, 2025, 31(12): 2506131 DOI:10.61558/2993-074X.3584

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L Q, Zhu C X, Yu S C, Ge D H, Zhou H S. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. J. Energy Chem., 2022, 66: 260-294. https://doi.org/10.1016/j.jechem.2021.08.001.

[2]

Goodenough J B. Energy storage materials: a perspective[J]. Energy Storage Mater., 2015, 1: 158-161. https://doi.org/10.1016/j.ensm.2015.07.001.

[3]

O'Heir J. Building Better Batteries[J]. Mech. Eng., 2017, 139(1): 10-11. https://www.asme.org/topics-resources/content/building-better-batteries.

[4]

Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. https://doi.org/10.1126/science.1212741.

[5]

Kim J H, Woo S C, Park M S, Kin K J, Yim T, Kim J S. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage[J]. J. Power Sources, 2013, 229: 190-197. https://doi.org/10.1016/j.jpowsour.2012.12.024.

[6]

Tasaki K, Goldberg A, Lian J J, Walker M, Timmons A, Harris S J. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. J. Electrochem. Soc., 2009, 156(12): A1019-A1027. https://doi.org/10.1149/1.3239850.

[7]

Ding L, Bagul P, Cui L, Oswald S, Pohle B, Leones R, Mikhailova D. Graphite anode functionalized with a gel biopolymer binder for Li-ion batteries operating in a broad temperature range[J]. ACS Appl. Energy Mater., 2023, 6(8): 4404-4412. https://doi.org/10.1021/acsaem.3c00512.

[8]

Sharifi H, Mosallanejad B, Mohammadzad M, Hosseini-Hosseinabad S M, Ramarkrishna S. Cycling Performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques[J]. Ionics, 2021, 28(1): 213-228. https://doi.org/10.1007/s11581-021-04258-9.

[9]

Dubarry M, Liaw B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. J. Power Sources, 2009, 194(1): 541-549. https://doi.org/10.1016/j.jpowsour.2009.05.036.

[10]

Tan L, Zhang L, Sun Q N, Shen M, Qu Q T, Zheng H H. Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures[J]. Electrochimica Acta, 2013, 111: 802-808. https://doi.org/10.1016/j.electacta.2013.08.074.

[11]

Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO4lithium-ion battery[J]. J. Power Sources, 2011, 196(3): 1513-1520. https://doi.org/10.1016/j.jpowsour.2010.08.070.

[12]

Wu H C, Su C Y, Shieh D T, Yang M H, Wu N L. Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive[J]. Electrochem. Solid-State Lett., 2006, 9(12): A537-A541. https://doi.org/10.1149/1.2351954.

[13]

Song H S, Cao Z, Zhang Z A, Lai Y Q, Li J, Liu Y X. Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO4/graphite cell at elevated temperature[J]. T. Nonferr. Metal. Soc., 2014, 24(3): 723-728. https://doi.org/10.1016/S1003-6326(14)63117-4.

[14]

Liu Y H, Takeda S, Kaneko I, Yoshitake H, Yanagida M, Saito Y, Sakai T. Formation of thermally resistant films induced by vinylene carbonate additive on a hard carbon anode for lithium ion batteries at elevated temperature[J]. RSC Adv., 2016, 6(79): 75777-75781. https://doi.org/10.1039/C6RA15168J.

[15]

Liao L X, Cheng X Q, Ma Y L, Zuo P J, Fang W, Yin G P, Gao Y Z. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472. https://doi.org/10.1016/j.electacta.2012.09.083.

[16]

Wu B R, Ren Y H, Mu D B, Liu X J, Zhao J C, Wu F. Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte[J]. Electrochem. Solid-State Lett., 2012, 17(3): 811-816. https://doi.org/10.1007/s10008-012-1927-9.

[17]

Ma C X, Qiu Z J, Shan B H, Song Y J, Zheng R M, Feng W T, Cui Y P, Xing W. The optimization of the electrolyte for low temperature LiFePO4-graphite battery[J]. Mater. Lett., 2024, 356, 1335594: 1-4. https://doi.org/10.1016/j.matlet.2023.135594.

[18]

Madec L, Ma L, Nelson K J, Petibon R, Sun J-P, Hill I G, Dahn J R. The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells[J]. J. Electrochem. Soc., 2016, 163(6): A1001-A1009. https://doi.org/10.1149/2.1051606jes.

[19]

Dominko R, Goupil J M, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J. Impact of LiFePO4/C composites porosity on their electrochemical performance[J]. J. Electrochem. Soc., 2005, 152(5): A858-A863. https://doi.org/10.1149/1.1872674.

[20]

Hu Y G, Liang J D, Chen X X, Chen G K, Peng Y F, Tang S J, He Z F, Li D J, Zhang Z R, Gong Z L, Wei Y M, Yang Y. Comparative study of thermodynamic & kinetic parameters measuring techniques in lithium-ion batteries[J]. J. Power Sources, 2024, 606: 234590-234605. https://doi.org/10.1016/j.jpowsour.2024.234590.

[21]

Qin G X, Zhang J L, Chen H B, Li H, Hu J, Chen Q, Hou G Y, Tang Y P. Lithium difluoro (oxalate) borate as electrolyte additive to form uniform, stable and LiF-rich solid electrolyte interphase for high performance lithium ion batteries[J]. Surf. Interfaces, 2024, 48, 104297: 1-9. https://doi.org/10.1016/j.surfin.2024.104297.

[22]

Lei Y, Xu X, Yin J Y, Xu Z F, Wei L, Zhu X Q, Pan L N, Jiang S, Gao Y F. Regulating Li-ion solvation structure and electrode-electrolyte interphases via triple-functional electrolyte additive for lithium-metal batteries[J]. Chem. Eng. J., 2024, 497: 154927-154938. https://doi.org/10.1016/j.cej.2024.154927.

[23]

Han F J, Chang Z H, Wang R N, Yun F L, Wang J, Ma C X, Zhang Y, Tang L, Ding H Y, Lu S G. Isocyanate additives improve the low-temperature performance of LiNi0.8Mn0.1Co0.1O2||SiOx@Graphite Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(17): 20966-20976. https://doi.org/10.1021/acsami.3c00554.

PDF (1465KB)

298

Accesses

0

Citation

Detail

Sections
Recommended

/