Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts
Ling Zhang , Wang-Yang Wu , Qiu-Yue Hu , Shi-Dan Yang , Li Li , Rui-Jin Liao , Zi-Dong Wei
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2515007
Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts
The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers. Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis, particularly elucidating hydrogen and oxygen evolution reaction (HER/OER) mechanisms while addressing the persistent activity-stability trade-off. This review summarizes their decade-long progress in developing advanced electrodes, analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations. Professor Wei proposes a unifying “12345 Principle” as an optimization framework. For HER electrocatalysts, they have identified that metal/metal oxide interfaces create synergistic “chimney effect” and “local electric field enhancement effect”, enhancing selective intermediate adsorption, interfacial water enrichment/reorientation, and mass transport under industrial high-polarization conditions. Regarding OER, innovative strategies, including dual-ligand synergistic modulation, lattice oxygen suppression, and self-repairing surface construction, are demonstrated to balance oxygen species adsorption, optimize spin states, and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement. The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.
Alkaline water splitting / Hydron evolution reaction / Oxygen evolution reaction / Intrinsic activity / Stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121. https://doi.org/10.61558/2993-074x.3444. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
/
| 〈 |
|
〉 |