Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts

Ling Zhang , Wang-Yang Wu , Qiu-Yue Hu , Shi-Dan Yang , Li Li , Rui-Jin Liao , Zi-Dong Wei

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2515007

PDF (6009KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2515007 DOI: 10.61558/2993-074X.3583
REVIEW
research-article

Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts

Author information +
History +
PDF (6009KB)

Abstract

The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers. Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis, particularly elucidating hydrogen and oxygen evolution reaction (HER/OER) mechanisms while addressing the persistent activity-stability trade-off. This review summarizes their decade-long progress in developing advanced electrodes, analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations. Professor Wei proposes a unifying “12345 Principle” as an optimization framework. For HER electrocatalysts, they have identified that metal/metal oxide interfaces create synergistic “chimney effect” and “local electric field enhancement effect”, enhancing selective intermediate adsorption, interfacial water enrichment/reorientation, and mass transport under industrial high-polarization conditions. Regarding OER, innovative strategies, including dual-ligand synergistic modulation, lattice oxygen suppression, and self-repairing surface construction, are demonstrated to balance oxygen species adsorption, optimize spin states, and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement. The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.

Keywords

Alkaline water splitting / Hydron evolution reaction / Oxygen evolution reaction / Intrinsic activity / Stability

Cite this article

Download citation ▾
Ling Zhang, Wang-Yang Wu, Qiu-Yue Hu, Shi-Dan Yang, Li Li, Rui-Jin Liao, Zi-Dong Wei. Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts. Journal of Electrochemistry, 2025, 31(9): 2515007 DOI:10.61558/2993-074X.3583

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgements

Authors acknowledge the financial supports from the National Key R&D Program of China (2021YFB4000300) and National Science Foundation for Young Scientists of China (Grant No. 22408030).

Author Contributions

Doctor Ling Zhang and Professor Li Li collaborated on this review. Wang-Yang Wu, Qiu-Yue Hu, and Shi-Dan Yang assisted in gathering and curating the literature. Professor Rui-Jin Liao offered crucial policy guidance for this review. As the Principal Investigator responsible for funding, Professor Zi-Dong Wei was instrumental in this project by proposing the review's core conceptual framework, overseeing the research design, and providing strategic policy support throughout the process.

Data Availability

This study did not generate any new datasets. All data analyzed are from publicly available sources, as cited in the manuscript.

References

[1]

Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. Int. J. Hydrogen Energy, 2003, 28(3): 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5.

[2]

Crabtree G W, Dresselhaus M S, Buchanan M V. The hydrogen economy[J]. Phy. Today, 2004, 57(12): 39-44. https://doi.org/10.1063/1.1878333.

[3]

Penner S S. Steps toward the hydrogen economy[J]. Energy, 2006, 31(1): 33-43. https://doi.org/10.1016/j.energy.2004.04.060.

[4]

Marbán G, Valdés-Solís T. Towards the hydrogen economy?[J]. Int. J. Hydrogen Energy, 2007, 32(12): 1625-1637. https://doi.org/10.1016/j.ijhydene.2006.12.017.

[5]

Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chem. Rev., 2010, 110(11): 6474-6502. https://doi.org/10.1021/cr100246c.

[6]

Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells[J]. Chem. Rev., 2010, 110(11): 6446-6473. https://doi.org/10.1021/cr1002326.

[7]

Bockris J O M. The hydrogen economy: Its history[J]. Int. J. Hydrogen Energy, 2013, 38(6): 2579-2588. https://doi.org/10.1016/j.ijhydene.2012.12.026.

[8]

Zeng Y, Zhao M T, Zeng H L, Jiang Q, Ming F W, Xi K, Wang Z C, Liang H F. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions[J]. eScience, 2023, 3(5): 100156-100178. https://doi.org/10.1016/j.esci.2023.100156.

[9]

Chen M, Kitiphatpiboon N, Feng C, Abudula A, Ma Y F, Guan G Q. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review[J]. eScience, 2023, 3(2): 100111-100127. https://doi.org/10.1016/j.esci.2023.100111.

[10]

Wang N, Song S Z, Wu W T, Deng Z F, Tang C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers[J]. Adv. Energy Mater., 2024, 14(16): 2303451-2303464. https://doi.org/10.1002/aenm.202303451.

[11]

Man I C, Su H Y, Calle‐Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. https://doi.org/10.1002/cctc.201000397.

[12]

Yang B L, Xiang Z H. Nanostructure engineering of cathode layers in proton exchange membrane fuel cells: From catalysts to membrane electrode assembly[J]. ACS Nano, 2024, 18(18): 11598-11630. https://doi.org/10.1021/acsnano.4c01113.

[13]

Cao J F, Ji Y X, Shao Z Q. Nanotechnologies in ceramic electrochemical cells[J]. Chem. Soc. Rev., 2024, 53(1): 450-501. https://doi.org/10.1039/d3cs00303e.

[14]

Ehlers J C, Feidenhans’l A A, Therkildsen K T, Larrazábal G O. Affordable green hydrogen from alkaline water electrolysis: Key research needs from an industrial perspective[J]. ACS Energy Lett., 2023, 8(3): 1502-1509. https://doi.org/10.1021/acsenergylett.2c02897.

[15]

Zheng X Q, Zhang L, Huang J W, Peng L S, Deng M M, Li L, Li J, Chen H M, Wei Z D. Boosting Hydrogen evolution reaction of nickel sulfides by introducing nonmetallic dopants[J]. J. Phys. Chem. C, 2020, 124(44): 24223-24231. https://doi.org/10.1021/acs.jpcc.0c06971.

[16]

Zhang L, Li L, Chen H M, Wei Z D. Recent progress in precious metal‐free carbon‐based materials towards the oxygen reduction reaction: Activity, stability, and anti‐poisoning[J]. Chem. - Eur. J., 2020, 26(18): 3973-3990. https://doi.org/10.1002/chem.201904233.

[17]

Zheng X, Li L, Wei Z D. Constructing and regulating electrocatalysts: from perspective of mesoscale[J]. CIESC Journal, 2020, 71(10): 4445-4461. https://doi.org/10.11949/0438-1157.202007.

[18]

Zhang L, Cheng H M, Wei Z D. Recent advance in transition metal oxide-based materials for oxygen evolution reaction electrocatalysts[J]. CIESC J., 2020, 71(9): 3876-3904. https://doi.org/10.11949/0438-1157.20200573.

[19]

Zhang L, Wang X Y, Zheng X Q, Peng L S, Shen J J, Xiang R, Deng Z H, Li L, Chen H M, Wei Z D. Oxygen-incorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution[J]. ACS Appl. Energy Mater., 2018, 1(10): 5482-5489. https://doi.org/10.1021/acsaem.8b01044.

[20]

Huang M H, Cao C S, Liu L, Wei W B, Zhu Q L, Huang Z G. Controlled synthesis of MOF-derived hollow and yolk-shell nanocages for improved water oxidation and selective ethylene glycol reformation[J]. eScience, 2023, 3(5): 100118-100126. https://doi.org/10.1016/j.esci.2023.100118.

[21]

Liu K K, Meng Z, Fang Y, Jiang H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3(6): 100133-100146. https://doi.org/10.1016/j.esci.2023.100133.

[22]

Menezes P W, Walter C, Hausmann J N, Beltran-Suito R, Schlesiger C, Praetz S, Yu Verchenko V, Shevelkov A V, Driess M. Boosting water oxidation through in situ electroconversion of manganese gallide: An intermetallic precursor approach[J]. Angew. Chem. Int. Ed., 2019, 58(46): 16569-16574. https://doi.org/10.1002/anie.201909904.

[23]

Zhang Z C, Liu G G, Cui X Y, Chen B, Zhu Y H, Gong Y, Saleem F, Xi S B, Du Y H, Borgna A, Lai Z C, Zhang Q H, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): e1801741. https://doi.org/10.1002/adma.201801741.

[24]

Luo F, Zhang Q, Yu X X, Xiao S L, Ling Y, Hu H, Guo L, Yang Z H, Huang L, Cai W W, Cheng H S. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angew. Chem. Int. Ed., 2018, 57(45): 14862-14867. https://doi.org/10.1002/anie.201810102.

[25]

Xu G R, Bai J, Jiang J X, Lee J M, Chen Y. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control[J]. Chem. Sci., 2017, 8(12): 8411-8418. https://doi.org/10.1039/c7sc04109h.

[26]

Zhang L, Xiong K, Nie Y, Wang X X, Liao J H, Wei Z D. Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst[J]. J. Power Sources, 2015, 297: 413-418. https://doi.org/10.1016/j.jpowsour.2015.08.004.

[27]

Hu L, Yang B Z, Hou Z P, Lu Y F, Su W T, Li L W. Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice[J]. eScience, 2023, 3(3): 100117. https://doi.org/https://doi.org/10.1016/j.esci.2023.100117.

[28]

Li A, Zhang L, Wang F Z, Zhang L, Li L, Chen H M, Wei Z D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting[J]. Appl. Catal. B, 2022, 310: 121353-121362. https://doi.org/10.1016/j.apcatb.2022.121353.

[29]

Zhang L, Huang J W, Zheng Q Z, Li A, Li X L, Li J, Shao M H, Chen H M, Wei Z D, Deng Z H. “Superaerophobic” NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts[J]. Chem. Commun., 2021, 57(50): 6173-6176. https://doi.org/10.1039/D1CC01698A.

[30]

Tong C, Xiang R, Peng L S, Tan L Q, Tang X Y, Wang J C, Li L, Liao Q, Wei Z D. Amorphous FeOx (x = 1, 1.5) coated Cu3P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts[J]. J. Mater. Chem. A, 2020, 8(6): 3351-3356. https://doi.org/10.1039/c9ta11779b.

[31]

Peng L S, Liao M S, Zheng X Q, Nie Y, Zhang L, Wang M J, Xiang R, Wang J, Li L, Wei Z D. Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chem. Sci., 2020, 11(9): 2487-2493. https://doi.org/10.1039/c9sc04603h.

[32]

Xiang R, Duan Y J, Tong C, Peng L S, Wang J, Shah S S A, Najam T, Huang X, Wei Z D. Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting[J]. Electrochim. Acta, 2019, 302: 45-55. https://doi.org/10.1016/j.electacta.2019.01.170.

[33]

Cheng C, Shah S S A, Najam T, Zhang L, Qi X Q, Wei Z D. Highly active electrocatalysis of hydrogen evolution reaction in alkaline medium by Ni-P alloy: A capacitance-activity relationship[J]. J. Energy Chem., 2017, 26(6): 1245-1251. https://doi.org/10.1016/j.jechem.2017.09.028.

[34]

Wang X, Yu M H, Feng X L. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis[J]. eScience, 2023, 3(4): 100141-100160. https://doi.org/10.1016/j.esci.2023.100141.

[35]

Anjum M a R, Lee M H, Lee J S. Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. ACS Catal., 2018, 8(9): 8296-8305. https://doi.org/10.1021/acscatal.8b01794.

[36]

Wu Y H, He H W. A novel Ni-S-W-C electrode for hydrogen evolution reaction in alkaline electrolyte[J]. Mater. Lett., 2017, 209: 532-534. https://doi.org/10.1016/j.matlet.2017.08.086.

[37]

Peng L S, Shen J J, Zhang L, Wang Y, Xiang R, Li J, Li L, Wei Z D. Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions[J]. J. Mater. Chem. A, 2017, 5(44): 23028-23034. https://doi.org/10.1039/c7ta07275a.

[38]

Xiong K, Li L, Zhang L, Ding W, Peng L S, Wang Y, Chen S G, Tan S Y, Wei Z D. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. J. Mater. Chem. A, 2015, 3(5): 1863-1867. https://doi.org/10.1039/c4ta05686h.

[39]

Jing S Y, Lu J J, Yu G T, Yin S B, Luo L, Zhang Z S, Ma Y F, Chen W, Shen P K. Carbon-encapsulated wox hybrids as efficient catalysts for hydrogen evolution[J]. Adv. Mater., 2018, 30(28): 1705979-1705986. https://doi.org/10.1002/adma.201705979.

[40]

Najam T, Ahmad Shah S S, Ding W, Ling Z, Li L, Wei Z D. Electron penetration from metal core to metal species attached skin in nitrogen-doped core-shell catalyst for enhancing oxygen evolution reaction[J]. Electrochim. Acta, 2019, 327: 134939-134947. https://doi.org/10.1016/j.electacta.2019.134939.

[41]

Wang Y, Chen L H, Mao Z X, Peng L S, Xiang R, Tang X Y, Deng J H, Wei Z D, Liao Q. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions[J]. Sci. Bull., 2019, 64(15): 1095-1102. https://doi.org/10.1016/j.scib.2019.06.012.

[42]

Yan H J, Xie Y, Wu A P, Cai Z C, Wang L, Tian C G, Zhang X M, Fu H G. Anion-modulated HER and OER activities of 3d Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting[J]. Adv. Mater., 2019, 31(23): e1901174. https://doi.org/10.1002/adma.201901174.

[43]

Li Y B, Tan X, Chen S, Bo X, Ren H J, Smith S C, Zhao C. Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution[J]. Angew. Chem. Int. Ed., 2019, 58(2): 461-466. https://doi.org/10.1002/anie.201808629.

[44]

Yan J Q, Kong L Q, Ji Y J, Li Y T, White J, Liu S Z, Han X P, Lee S T, Ma T Y. Air-stable phosphorus-doped molybdenum nitride for enhanced elctrocatalytic hydrogen evolution[J]. Commun. Chem., 2018, 1(1): 1-10. https://doi.org/10.1038/s42004-018-0097-9.

[45]

Zhang Y Q, Ouyang B, Xu J, Jia G C, Chen S, Rawat R S, Fan H J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution[J]. Angew. Chem. Int. Ed., 2016, 55(30): 8670-8674. https://doi.org/10.1002/anie.201604372.

[46]

Zheng X Q, Zhang L, He W, Li L, Lu S. Heteroatom-doped nickel sulfide for efficient electrochemical oxygen evolution reaction[J]. Energies, 2023, 16(2): 881-895. https://doi.org/10.3390/en16020881.

[47]

Wang M J, Zheng X Q, Song L L, Feng X, Liao Q, Li J, Li L, Wei Z D. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(28): 14145-14151. https://doi.org/10.1039/c9ta13775k.

[48]

Peng L S, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z D. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts[J]. ACS Catal., 2017, 7(12): 8184-8191. https://doi.org/10.1021/acscatal.7b01971.

[49]

Panda C, Menezes P W, Yao S L, Schmidt J, Walter C, Hausmann J N, Driess M. Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor[J]. J. Am. Chem. Soc., 2019, 141(34): 13306-13310. https://doi.org/10.1021/jacs.9b06530.

[50]

Deng S J, Luo M, Ai C Z, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q H, Gu L, Lin S W, Wang X L, Yu L, Wen J G, Wang J A, Pan G X, Xia X H, Tu J P. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2019, 58(45): 16289-16296. https://doi.org/10.1002/anie.201909698.

[51]

Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121. https://doi.org/10.61558/2993-074x.3444.

[52]

Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23-J26. https://doi.org/10.1149/1.1856988.

[53]

Hinnemann B, Moses P G, Bonde J, Joergensen K P, Nielsen J H, Horch S, Chorkendorff I, Noerskov J K. Biomimetic hydrogen evolution: MoS2nanoparticles as catalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2005, 36(25): 5308-5309. https://doi.org/10.1021/ja0504690.

[54]

Zhang L, Huang J W, Zheng Q Z, Li A, Li X L, Li J, Shao M H, Chen H M, Wei Z D, Deng Z H, Li C. “Superaerophobic” NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts[J]. Chem. Commun., 2021, 57(50): 6173-6176. https://doi.org/10.1039/d1cc01698a.

[55]

Angulo A, Van Der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579. https://doi.org/10.1016/j.joule.2020.01.005.

[56]

Jia B B, Zhang B H, Cai Z, Yang X Y, Li L D, Guo L. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes[J]. eScience, 2023, 3(2): 100112. https://doi.org/https://doi.org/10.1016/j.esci.2023.100112.

[57]

Jiang J X, Liao J H, Tao S C, Najam T, Ding W, Wang H J, Wei Z D. Modulation of iridium-based catalyst by a trace of transition metals for hydrogen oxidation/evolution reaction in alkaline[J]. Electrochim. Acta, 2020, 333: 135444-135451. https://doi.org/10.1016/j.electacta.2019.135444.

[58]

Xiong K, Li L, Deng Z H, Xia M R, Chen S G, Tan S Y, Peng X J, Duan C Y, Wei Z D. RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production[J]. RSC Adv., 2014, 4(39): 20521-20526. https://doi.org/10.1039/c4ra01379d.

[59]

Meng Z Y, Qiu Z M, Shi Y X, Wang S X, Zhang G X, Pi Y C, Pang H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3(2): 100092. https://doi.org/https://doi.org/10.1016/j.esci.2023.100092.

[60]

Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions[J]. J. Electroanal. Chem., 1972, 39(1): 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6.

[61]

Peng L S, Zheng X Q, Li L, Zhang L, Yang N, Xiong K, Chen H M, Li J, Wei Z D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction[J]. Appl. Catal. B, 2019, 245: 122-129. https://doi.org/10.1016/j.apcatb.2018.12.035.

[62]

Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557. https://doi.org/10.1038/nmat3313.

[63]

Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. https://doi.org/10.1126/science.1211934.

[64]

Rossmeisl J, Logadottir A, Nørskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038.

[65]

Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Nørskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89. https://doi.org/10.1016/j.jelechem.2006.11.008.

[66]

Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636. https://doi.org/10.1021/acscatal.8b00612.

[67]

Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465. https://doi.org/10.1038/nchem.2695.

[68]

Ping X Y, Liu Y D, Zheng L X, Song Y, Guo L, Chen S G, Wei Z D. Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation[J]. Nat. Commun., 2024, 15(1): 2501-2511. https://doi.org/10.1038/s41467-024-46815-6.

[69]

Chang J W, Shi Y Y, Wu H, Yu J K, Jing W, Wang S Y, Waterhouse G I N, Tang Z Y, Lu S Y. Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation[J]. J. Am. Chem. Soc., 2024, 146(19): 12958-12968. https://doi.org/10.1021/jacs.3c13248.

[70]

Kang W C, Wei R F, Yin H, Li D F, Chen Z, Huang Q G, Zhang P F, Jing H W, Wang X L, Li C. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation[J]. J. Am. Chem. Soc., 2023, 145(6): 3470-3477. https://doi.org/10.1021/jacs.2c11508.

[71]

Pushkar Y, Pineda-Galvan Y, Ravari A K, Otroshchenko T, Hartzler D A. Mechanism for O-O bond formation via radical coupling of metal and ligand based radicals: A new pathway[J]. J. Am. Chem. Soc., 2018, 140(42): 13538-13541. https://doi.org/10.1021/jacs.8b06836.

[72]

Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Van Der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption[J]. Nat. Chem., 2013, 5(4): 300-306. https://doi.org/10.1038/nchem.1574.

[73]

Koper M T M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis[J]. J. Electroanal. Chem., 2011, 660(2): 254-260. https://doi.org/10.1016/j.jelechem.2010.10.004.

[74]

Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schaublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931. https://doi.org/10.1038/nmat4938.

[75]

Deng M M, Li M T, Jiang S K, Nie Y, Li L, Wei Z D. Interfacial water enrichment and reorientation on Pt/C catalysts induced by metal oxides participation for boosting the hydrogen evolution reaction[J]. J. Phys. Chem. Lett., 2022, 13(4): 1069-1076. https://doi.org/10.1021/acs.jpclett.1c03808.

[76]

Boudart M, Vannice M A, Benson J E. Adlineation, portholes and spillover[J]. Zeitschrift für Physikalische Chemie, 1969, 64: 171-177. https://doi.org/10.1524/zpch.1969.64.1_4.171.

[77]

Deng M M, Yang H M, Peng L S, Zhang L, Tan L Q, He G J, Shao M H, Li L, Wei Z D. Insight into the boosted activity of TiO2-CoP composites for hydrogen evolution reaction: Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity[J]. J. Energy Chem., 2022, 74: 111-120. https://doi.org/10.1016/j.jechem.2022.06.047.

[78]

Zheng X Q, Peng L S, Li L, Yang N, Yang Y, Li J, Wang J C, Wei Z D. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction[J]. Chem. Sci., 2018, 9(7): 1822-1830. https://doi.org/10.1039/c7sc04851c.

[79]

Zhang L, Wang X Y, Li A, Zheng X Q, Peng L S, Huang J W, Deng Z H, Chen H M, Wei Z D. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535. https://doi.org/10.1039/c9ta05282h.

[80]

Peng L S, Shen J J, Zheng X Q, Xiang R, Deng M M, Mao Z X, Feng Z P, Zhang L, Li L, Wei Z D. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. J. Catal., 2019, 369: 345-351. https://doi.org/10.1016/j.jcat.2018.11.023.

[81]

Zheng X Q, Li L, Deng M M, Li J, Ding W, Nie Y, Wei Z D. Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations[J]. Catal. Sci. Technol., 2020, 10(14): 4743-4751. https://doi.org/10.1039/d0cy00960a.

[82]

Li M T, Xie Z Y, Zheng X Q, Li L, Li J, Ding W, Wei Z D. Revealing the regulation mechanism of Ir-MoO2 interfacial chemical bonding for improving hydrogen oxidation reaction[J]. ACS Catal., 2021, 11(24): 14932-14940. https://doi.org/10.1021/acscatal.1c04440.

[83]

Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Lett., 2016, 1(3): 589-594. https://doi.org/10.1021/acsenergylett.6b00247.

[84]

Hammer B, Nørskov J K. Theoretical surface science and catalysis—calculations and concepts[J]. Adv. Catal., 2000, 45: 71-129. https://doi.org/10.1016/S0360-0564(02)45013-4.

[85]

Liu Y, Liu S L, Wang Y, Zhang Q H, Gu L, Zhao S C, Xu D D, Li Y F, Bao J C, Dai Z H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance[J]. J. Am. Chem. Soc., 2018, 140(8): 2731-2734. https://doi.org/10.1021/jacs.7b12615.

[86]

Wexler R B, Martirez J M P, Rappe A M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning[J]. J. Am. Chem. Soc., 2018, 140(13): 4678-4683. https://doi.org/10.1021/jacs.8b00947.

[87]

Caban-Acevedo M, Stone M L, Schmidt J R, Thomas J G, Ding Q, Chang H C, Tsai M L, He J H, Jin S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nat. Mater., 2015, 14(12): 1245-1251. https://doi.org/10.1038/nmat4410.

[88]

Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313. https://doi.org/10.1038/s41929-019-0246-2.

[89]

Li L, Feng X H, Nie Y, Chen S G, Shi F, Xiong K, Ding W, Qi X, Hu J S, Wei Z D, Wan L J, Xia M R. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catal., 2015, 5(8): 4825-4832. https://doi.org/10.1021/acscatal.5b00320.

[90]

Xie X H, Song M A, Wang L G, Engelhard M H, Luo L L, Miller A, Zhang Y Y, Du L, Pan H L, Nie Z M, Chu Y Y, Estevez L, Wei Z D, Liu H, Wang C M, Li D S, Shao Y Y. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy[J]. ACS Catal., 2019, 9(9): 8712-8718. https://doi.org/10.1021/acscatal.9b02609.

[91]

Hu C Y, Ma Q Y, Hung S F, Chen Z N, Ou D H, Ren B, Chen H M, Fu G, Zheng N F. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis[J]. Chem, 2017, 3(1): 122-133. https://doi.org/10.1016/j.chempr.2017.05.011.

[92]

Speck F D, Dettelbach K E, Sherbo R S, Salvatore D A, Huang A, Berlinguette C P. On the electrolytic stability of iron-nickel oxides[J]. Chem, 2017, 2(4): 590-597. https://doi.org/10.1016/j.chempr.2017.03.006.

[93]

Zhao J W, Zhang H, Li C F, Zhou X, Wu J Q, Zeng F, Zhang J W, Li G R. Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction via lattice oxygen oxidation[J]. Energy Environ. Sci., 2022, 15(9): 3912-3922. https://doi.org/10.1039/d2ee00264g.

[94]

Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance[J]. J. Am. Chem. Soc., 2018, 140(25): 7748-7759. https://doi.org/10.1021/jacs.8b04546.

[95]

Ma Q Y, Hu C Y, Liu K L, Hung S F, Ou D H, Chen H M, Fu G, Zheng N F. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction[J]. Nano Energy, 2017, 41: 148-153. https://doi.org/10.1016/j.nanoen.2017.09.036.

[96]

Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515. https://doi.org/10.1038/s41929-018-0085-6.

[97]

Li A, Tang X X, Cao R J, Song D C, Wang F Z, Yan H, Chen H M, Wei Z D. Directed surface reconstruction of Fe modified Co2VO4 spinel oxides for water oxidation catalysts experiencing self-terminating surface deterioration[J]. Adv. Mater., 2024: 2401818-2401828. https://doi.org/10.1002/adma.202401818.

[98]

Xiang R, Tong C, Wang Y, Peng L S, Nie Y, Li L, Huang X, Wei Z D. Hierarchical coral-like FeNi(OH) /Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting[J]. Chin. J. Catal., 2018, 39(11): 1736-1745. https://doi.org/10.1016/s1872-2067(18)63150-x.

[99]

Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of electron paramagnetic resonance oximetry[J]. Chem. Rev., 2010, 110(5): 3212-3236. https://doi.org/10.1021/cr900396q.

AI Summary AI Mindmap
PDF (6009KB)

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/