Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping

Chang Lan , Jing-Sen Bai , Xin Guan , Shuo Wang , Nan-Shu Zhang , Yu-Qing Cheng , Jin-Jing Tao , Yu-Yi Chu , Mei-Ling Xiao , Chang-Peng Liu , Wei Xing

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2506181

PDF (3979KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2506181 DOI: 10.61558/2993-074X.3577
ARTICLE
research-article

Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping

Author information +
History +
PDF (3979KB)

Abstract

The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance disparity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction (ORR). In this work, we strategically engineer the active site structure of Co-N-C via B substitution, which is accomplished by the pyrolysis of ammonium borate. During this process, the in-situ generated NH3 gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure. The well-designed CoB1N3 active site endows Co with higher charge density and stronger adsorption energy toward oxygen species, potentially accelerating ORR kinetics. As expected, the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart, with 40 mV, and fivefold enhancement in half-wave potential and turnover frequency (TOF). More importantly, the excellent ORR performance could be translated into membrane electrode assembly (MEA) in a fuel cell test, delivering an impressive peak power density of 824 mW·cm-2, which is currently the best among Co-based catalysts under the same conditions. This work not only demonstrates an effective method for designing advanced catalysts, but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.

Keywords

Oxygen reduction reaction / Proton exchange membrane fuel cell / Single-atom catalyst / Co-N-C / Boron doping

Cite this article

Download citation ▾
Chang Lan, Jing-Sen Bai, Xin Guan, Shuo Wang, Nan-Shu Zhang, Yu-Qing Cheng, Jin-Jing Tao, Yu-Yi Chu, Mei-Ling Xiao, Chang-Peng Liu, Wei Xing. Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping. Journal of Electrochemistry, 2025, 31(9): 2506181 DOI:10.61558/2993-074X.3577

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information

The authors have cited additional references within the Supporting Information [30,31]. ((Please include SI references with consecutive numbering directly after the last manuscript reference: 1, 2, 3, … 30, 31))

Acknowledgements

Authors wish to thank the National Key Research and Development Program of China (2022YFB4004100), National Natural Science Foundation of China (22272161, 22179126), the Jilin Province Science and Technology Development Program (YDZJ202202CXJD011, 20240101019JC), Jilin Province major science and technology project (222648GX0105103875) for financial supports. The Shanghai Synchrotron Radiation Facility for conducting the X-ray absorption spectroscopy experiments at BL11B station is greatly appreciated.

Conflicts of Interest

The authors declare no conflict of interests.

Data Availability

Data will be made available on request.

Author Contribution

Chang Lan: Conceptualization, Investigation, Writing - original draft, Formal analysis. Jing-Sen Bai: Investigation, Formal analysis. Xin Guan: Investigation. Shuo Wang: Formal analysis, Methodology. Nan-Shu Zhang: Investigation. Yu-Qing Cheng: Investigation. Jin-Jing Tao: Investigation. Yu-Yi Chu: Writing - review & editing. Mei-Ling Xiao: Writing - review & editing, Supervision. Chang-Peng Liu: Writing - review & editing, Supervision. Wei Xing: Writing - review & editing, Funding acquisition, Project administration.

References

[1]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486: 43-51. https://doi.org/10.1038/nature11115.

[2]

Bates J S, Johnson M. R, Khamespanah F, Root T W, Stahl S S. Heterogeneous M-N-C catalysts for aerobic oxidation reactions: lessons from oxygen reduction electrocatalysts[J]. Chem. Rev., 2023, 123(9): 6233-6256. https://doi.org/10.1021/acs.chemrev.2c00424.

[3]

Ma M, Shen L X, Zhao Z G, Guo P, Liu J, Xu B, Zhang Z Y, Zhang Y L, Zhao L, Wang Z B. Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer[J]. eScience, 2024, 4(6): 100254. https://doi.org/10.1016/j.esci.2024.100254.

[4]

Wang X, Yu M H, Feng X L. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis[J]. eScience, 2023, 3(4): 100141. https://doi.org/10.1016/j.esci.2023.100141.

[5]

Li C Y, Zhang R, Ba X J, Jiang X L, Yang Y Y. Fe nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction in alkaline media[J]. J. Electrochem., 2023, 29(5): 2210241. https://doi.org/10.13208/j.electrochem.2210241.

[6]

Wang W, Jia Q Y, Mukerjee S, Chen S. Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials[J]. ACS Catal., 2019, 9(11): 10126. https://doi.org/10.1021/acscatal.9b02583.

[7]

Zhao C X, Li B Q, Liu J N, Zhang Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2021, 60(9): 4448. https://doi.org/10.1002/anie.202003917.

[8]

He Y H, Liu S W, Priest C, Shi Q R, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020, 49(11): 3484-3524. https://doi.org/10.1039/C9CS00903E.

[9]

Zheng L W, Niu M, Zeng T T, Ge X H, Wang Y R, Guo C X, Yuan W Y, Cao D P, Zhang L Y, Li C M. Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction[J]. eScience, 2024, 4(1): 100187. https://doi.org/10.1016/j.esci.2023.100187.

[10]

Han C, Zhang S Q, Zhang H M, Dong Y N, Yao P F, Du Y N, Song P, Gong X, Xu W L. Metal-support interaction in single-atom electrocatalysts: A perspective of metal oxide supports[J]. eScience, 2024, 4(5): 100269. https://doi.org/10.1016/j.esci.2024.100269.

[11]

Shen L L, Yong C, Xu Y, Wu P, Zhang G R, Mei D. Recent progress in ZIF-derived carbons for enhanced oxygen reduction reaction electrocatalysis[J]. ChemCatChem, 2024, 16(9): e202301379. https://doi.org/10.1002/cctc.202301379.

[12]

Zitolo A, Goellner V, Armel V, Sougrati M T, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater., 2015, 14: 937-942. https://doi.org/10.1038/nmat4367.

[13]

Zitolo A, Ranjbar-Sahraie N, Mineva T, Li J, Jia Q, Stamatin S, Harrington G F, Lyth S M, Krtil P, Mukerjee S. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction[J]. Nat. Commun., 2017, 8: 957. https://doi.org/10.1038/s41467-017-01100-7.

[14]

Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L, Zelenay P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017, 357(6350): 479-484. https://doi.org/10.1126/science.aan2255.

[15]

McClure J P, Borodin O, Olguin M, Chu D, Fedkiw P S. Sensitivity of density functional theory methodology for oxygen reduction reaction predictions on Fe-N4-containing graphitic clusters[J]. J. Phys. Chem. C, 2016, 120(50): 28545-28562. https://doi.org/10.1021/acs.jpcc.6b08498.

[16]

Irmawati Y, Mauludi E M, Destyorini F, Hardiansyah A, Oktaviano H S, Nugroho A, Yudianti R. One-pot synthesis of CoFe alloy supported on N-doped carbon as Pt-free oxygen reduction catalysts[J]. A.I.P, 2022, 2652(1): 040002. https://doi.org/10.1063/5.0106430.

[17]

Nugroho A, Wahyudhi A, Oktaviano H S, Yudianti R, Hardiansyah A, Destyorini F, Irmawati Y. Effect of iron loading on controlling Fe/N-C electrocatalyst structure for oxygen reduction reaction[J]. Chemistryselect, 2022, 7(45): e202202042. https://doi.org/10.1002/slct.202202042.

[18]

Kumar K, Dubau L, Jaouen F, Maillard F. Review on the degradation mechanisms of metal-N-C catalysts for the oxygen reduction reaction in acid electrolyte: Current understanding and mitigation approaches[J]. Chem. Rev., 2023, 123(15): 9265-9326. https://doi.org/10.1021/acs.chemrev.2c00685.

[19]

Gubler L, Dockheer S M, Koppenol W H. Radical (HO• H• and HOO•) formation and ionomer degradation in polymer electrolyte fuel cells[J]. JES, 2011, 158(7): B755-B769. https://doi.org/10.1149/1.3581040.

[20]

Iojoiu C, Guilminot E, Maillard F, Chatenet M, Sanchez J Y, Claude E, Rossinot E. Membrane and active layer degradation following PEMFC steady-state operation: II. Influence of on membrane properties[J]. JES, 2007, 154(11): B1115-B1120. https://doi.org/10.1149/1.2775282.

[21]

Weiss J, Zhang H, Zelenay P. Recent progress in the durability of Fe-N-C oxygen reduction electrocatalysts for polymer electrolyte fuel cells[J]. J. Electroanal. Chem., 2020, 875(15): 114696. https://doi.org/10.1016/j.jelechem.2020.114696.

[22]

Miao Z P, Li S Z, Priest C, Wang T Y, Wu G, Li Q. Effective approaches for designing stable M-Nx/C oxygen-reduction catalysts for proton-exchange-membrane fuel cells[J]. Adv. Mater., 2022, 34(52): 2200595. https://doi.org/10.1002/adma.202200595.

[23]

Shah S S A, Najam T, Bashir M S, Javed M S, Rahman A U, Luque R, Bao S J. Identification of catalytic active sites for durable proton exchange membrane fuel cell: catalytic degradation and poisoning perspectives[J]. Small, 2022, 18(18): 2106279. https://doi.org/10.1002/smll.202106279.

[24]

Liu S M, Zhou J J, Ji S J, Wen Z S. Preparation and electrocatalytic performance of FeNi-CoP/NC bifunctional catalyst[J]. J. Electrochem., 2023, 29(10): 211118. https://doi.org/10.13208/j.electrochem.211118.

[25]

Xie X H, He C, Li B Y, He Y H, Cullen D A, Wegener E C, Kropf A J, Martinez U, Cheng Y, Engelhard M H. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nat. Catal., 2020, 3: 1044-1054. https://doi.org/10.1038/s41929-020-00546-1.

[26]

Osmieri L, Monteverde Videla A H A, Ocón P, Specchia S. Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) Catalysts in acidic medium: Insights on the effect of the transition metal[J]. J. Phys. Chem. C, 2017, 121(33): 17796-17817. https://doi.org/10.1021/acs.jpcc.7b02455.

[27]

Degtyarenko I, Nieminen R. M, Rovira C. Structure and dynamics of dioxygen bound to cobalt and iron heme[J]. Biophys. J., 2006, 91(6): 2024-2034. https://doi.org/10.1529/biophysj.106.083048.

[28]

Feng X, Bai Y, Liu M Q, Li Y, Yang H, Wang X R, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy Environ. Sci., 2021, 14(4): 2036-2089. https://doi.org/10.1039/D1EE00166C.

[29]

Guo L, Hwang S, Li B, Yang F, Wang M Y, Chen M J, Yang X X, Karakalos S G, Cullen D A, Feng Z. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells[J]. ACS Nano, 2021, 15(4): 6886-6899. https://doi.org/10.1021/acsnano.0c10637.

[30]

Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J k, Matyjaszewski K, Antonietti M, Yuan J. Polymer-derived heteroatom-doped porous carbon materials[J]. Chem. Rev., 2020, 120(17): 9363-9419. https://doi.org/10.1021/acs.chemrev.0c00080.

[31]

Liu H T, Liu Y Q, Zhu D B. Chemical doping of graphene[J]. J. Mater. Chem., 2011, 21(10): 3335-3345. https://doi.org/10.1039/C0JM02922J.

[32]

Zhou Q, Zhao Z B, Chen Y S, Hu H, Qiu J S. Low temperature plasma-mediated synthesis of graphenenanosheets for supercapacitor electrodes[J]. J. Mater. Chem., 2012, 22(13): 6061-6066. https://doi.org/10.1039/C2JM15572A.

[33]

Strudwick A J, Weber N E, Schwab M G, Kettner M, Weitz R T, Wünsch J R, Müllen K, Sachdev H. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS Nano, 2015, 9(1): 31-42. https://doi.org/10.1021/nn504822m.

[34]

Li S B, Wang Z F, Jiang H N, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors[J]. Chem. Comm., 2016, 52(73): 10988-10991. https://doi.org/10.1039/C6CC04052G.

[35]

Xiao M L, Zhang H, Chen Y T, Zhu J B, Gao L Q, Jin Z, Ge J J, Jiang Z, Chen S L, Liu C P, Wei X. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site[J]. Nano Energy, 2018, 46: 396-403. https://doi.org/10.1016/j.nanoen.2018.02.025.

[36]

Malko D, Kucernak A, Lopes T. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts[J]. Nat. Commun., 2016, 7: 13285. https://doi.org/10.1038/ncomms13285.

[37]

Bai J S, Zhao T, Xu M J, Mei B B, Yang L T, Shi Z P, Zhu S Y, Wang Y, Jiang Z, Zhao J, Ge J J, Xiao M L, Liu C P, Xing W. Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification[J]. Nat. Commun., 2024, 15: 4219. https://doi.org/10.1038/s41467-024-47817-0.

[38]

Liu S W, Li C Z, Zachman M J, Zeng Y C, Yu H, Li B Y, Wang M Y, Braaten J, Liu J W, Meyer H M, Lucero M, Kropf A J, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu G. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells[J]. Nat. Energy, 2022, 7: 652-663. https://doi.org/10.1038/s41560-022-01062-1.

[39]

Guan G J, Liu Y H, Li F H, Shi X W, Liu L Y, Wang T Y, Xu X T, Zhao M, Ding J, Yang H B. Atomic cobalt metal centers with asymmetric N/B-Coordination for promoting oxygen reduction reaction[J]. Adv. Funct. Mater., 2024, 34(48): 2408111. https://doi.org/10.1002/adfm.202408111.

[40]

Xue D P, Yuan P F, Jiang S, Wei Y F, Zhou Y, Dong C L, Yan W F, Mu S C, Zhang J N. Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction[J]. Nano Energy, 2023, 105: 108020. https://doi.org/10.1016/j.nanoen.2022.108020.

[41]

Wang Z, Xu R J, Ye Q T, Jin X Y, Lu Z, Yang Z B, Wang Y, Yan T, Liu Y P, Pan Z J, Hwang S J, Fan H J. Tailoring first coordination sphere of dual-metal atom sites boosts oxygen reduction and evolution activities[J]. Adv. Funct. Mater., 2024, 34(28): 2315376. https://doi.org/10.1002/adfm.202315376.

[42]

Wang F Q, Zhang R, Zhang Y Y, Li Y, Zhang J, Yuan W, Liu H, Wang F, Xin H L. Modulating electronic structure of atomically dispersed nickel sites through boron and nitrogen dual coordination boosts oxygen reduction[J]. Adv. Funct. Mater., 2023, 33(17): 2213863. https://doi.org/10.1002/adfm.202213863.

[43]

Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nat. Catal., 2019, 2: 259-268. https://doi.org/10.1038/s41929-019-0237-3.

[44]

Han A, Sun W, Wan X, Cai D, Wang X, Li F, Shui J, Wang D. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202303185. https://doi.org/10.1002/anie.202303185.

[45]

Xu M J, Jin Z, Xiao M L, Liu C P, Xing W. Microwave-assisted synthesis of high-performance Fe-N-C electrocatalyst for proton exchange membrane fuel cells[J]. J. Phys. Chem. C, 2024, 128(25): 10568-10576. https://doi.org/10.1021/acs.jpcc.4c03034.

[46]

Yin S H, Yan Y N, Chen L, Cheng N Y, Cheng X Y, Huang R, Huang H, Zhang B W, Jiang Y X, Sun S G. FeN4 active sites electronically coupled with PtFe alloys for ultralow Pt loading hybrid electrocatalysts in proton exchange membrane fuel cells[J]. ACS Nano, 2024, 18(1): 551-559. https://doi.org/10.1021/acsnano.3c08570.

[47]

Xiao M L, Chen Y T, Zhu J B, Zhang H, Zhao X, Gao L, Wang X, Zhao J, Ge J J, Jiang Z. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering[J]. J. Am. Chem. Soc., 2019, 141(44): 17763-17770. https://doi.org/10.1021/jacs.9b08362.

[48]

Jiao L, Li J K, Richard L. L, Sun Q, Stracensky T, Liu E S, Sougrati M T, Zhao Z P, Yang F, Zhong S C, Xu H, Mukerjee S, Huang Y, Cullen D A, Park J H, Ferrandon M, Myers D J, Jaouen F, Jia Q Y. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nat. Mater., 2021, 20: 1385-1391. https://doi.org/10.1038/s41563-021-01030-2.

[49]

Zagal J H, Koper M. T M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2016, 55(47): 14510. https://doi.org/10.1002/anie.201604311.

AI Summary AI Mindmap
PDF (3979KB)

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/