Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries

Zhou Rui , Liu Rui , Li Yun-Nuo , Jiang Si-Jie , Jing Tian-Tian , Xu Yan-Song , Cao Fei-Fei

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (8) : 2515004

PDF (4159KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (8) : 2515004 DOI: 10.61558/2993-074X.3569
ARTICLE
research-article

Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries

Author information +
History +
PDF (4159KB)

Abstract

Dual-ion batteries (DIBs) usually use carbon-based materials as electrodes, showing advantages in high operating voltage, potential low cost, and environmental friendliness. Different from conventional “rocking chair” type secondary batteries, DIBs perform a unique working mechanism, which employ both cation and anion taking part in capacity contribution at an anode and a cathode, respectively, during electrochemical reactions. Graphite has been identified as a suitable cathode material for anion intercalation at high voltages (> 4.8 V) with fast reaction kinetics. However, the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+ diffusion at a high rate. Herein, we prepared phyllostachys edulis derived carbon (PEC) through microstructure regulation strategy and investigated the carbonized temperature effect, which effectively tailored the rich short-range ordered graphite microdomains and disordered amorphous regions, as well as a unique nano-pore hierarchical structure. The pore size distribution of nano-pores was concentrated in 0.5-5 nm, providing suitable channels for rapid Li+ transportation. It was found that PEC-500 (carbonized at 500 ℃) achieved a high capacity of 436 mAh·g-1 at 300 mA·g-1 and excellent rate performance (maintaining a high capacity of 231 mAh·g-1 at 3 A·g-1). The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g-1 at 10 C with 96% capacity retention after 3000 cycles and outstanding rate capability, providing 74 mAh·g-1 at 50 C.

Keywords

Dual-ion battery / Biomass hard carbon / Structural regulation / High operating voltage / High rate

Cite this article

Download citation ▾
Zhou Rui, Liu Rui, Li Yun-Nuo, Jiang Si-Jie, Jing Tian-Tian, Xu Yan-Song, Cao Fei-Fei. Structure Regulation Engineering for Biomass-Derived Carbon Anodes Enabling High-Rate Dual-Ion Batteries. Journal of Electrochemistry, 2025, 31(8): 2515004 DOI:10.61558/2993-074X.3569

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information

Additional information as noted in the text. This material is available free of charge via the internet at https://jelectrochem.xmu.edu.cn/journal.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52272208, 22309057), the Natural Science Foundation of Hubei Province (Grant No. 2023AFB355), the Fundamental Research Funds for the Central Universities of China (Grant No. 2662022LXQD001).

Conflicts of Interest

The authors declare no conflict of interest.

Data Availability

Data will be made available on request.

Author Contribution

Fei-Fei Cao: Conceptualization (Lead), Project administration (Lead), Supervision (Lead), Writing - review & editing (Lead), funded (Lead); Rui Zhou: Investigation (Equal), Methodology (Equal), Writing-original draft (Lead); Rui Liu: Investigation(Equal), Methodology (Equal); Yun-Luo Li: Methodology (Supporting); Si-Jie Jiang: Investigation (Supporting), Methodology (Supporting); Tian-Tian Jing: Methodology (Supporting); Yan-Song Xu: Conceptualization (Equal), Writing-review& editing (Equal), funded (Equal).

References

[1]

Chen S, Wu G B, Jiang H B, Wang J F, Chen T T, Han C Y, Wang W W, Yang R C, Zhao J H, Tang Z H, Gong X C, Li C F, Zhu M Y, Zhang K, Xu Y F, Wang Y, Hu Z, Chen P N, Wang B J, Zhang K, Xia Y Y, Peng H S, Gao Y. External Li supply reshapes Li deficiency and lifetime limit of batteries[J]. Nature, 2025, 638(8051): 676-683. https://doi.org/10.1038/s41586-024-08465-y.

[2]

Fan X L, Wang C S. High-voltage liquid electrolytes for Li batteries: progress and perspectives[J]. Chem. Soc. Rev., 2021, 50(18): 10486-10566. https://doi.org/10.1039/d1cs00450f.

[3]

Wan G, Pollard T P, Ma L, Schroeder M A, Chen C C, Zhu Z H, Zhang Z, Sun C J, Cai J Y, Thaman H L, Vailionis A, Li H, Kelly S, Feng Z, Franklin J, Harvey S P, Zhang Y, Du Y G, Chen Z H, Tassone C J, Steinrück H G, Xu K, Borodin O, Toney M F. Solvent-mediated oxide hydrogenation in layered cathodes[J]. Science, 2024, 385(6714): 1230-1236. https://doi.org/10.1126/science.adg4687.

[4]

Liu T C, Yu L, Liu J X, Dai A, Zhou T, Wang J, Huang W Y, Li L X, Li M, Li T Y, Huang X J, Xiao X H, Ge M Y, Ma L, Zhuo Z Q, Amine R, Chu Y S, Lee W K, Wen J G, Amine K. Ultrastable cathodes enabled by compositional and structural dual-gradient design[J]. Nat. Energy, 2024, 9(10): 1252-1263. https://doi.org/10.1038/s41560-024-01605-8.

[5]

Jin Y, Le P M L, Gao P Y, Xu Y, Xiao B W, Engelhard M H, Cao X, Vo T D, Hu J T, Zhong L R, Matthews B E, Yi R, Wang C M, Li X L, Liu J, Zhang J G. Low-solvation electrolytes for high-voltage sodium-ion batteries[J]. Nat. Energy, 2022, 7(8): 718-725. https://doi.org/10.1038/s41560-022-01055-0.

[6]

Liu W Y, Cui W J, Yi C J, Xia J L, Shang J B, Hu W F, Wang Z, Sang X H, Li Y Y, Liu J P. Understanding pillar chemistry in potassium-containing polyanion materials for long-lasting sodium-ion batteries[J]. Nat. Commun., 2024, 15(1): 9889. https://doi.org/10.1038/s41467-024-54317-8.

[7]

Park S, Wang Z L, Choudhary K, Chotard J N, Carlier D, Fauth F, Canepa P, Croguennec L, Masquelier C. Obtaining V2(PO4)3 by sodium extraction from single-phase NaxV2(PO4)3 (1<x<3) positive electrode materials[J]. Nat. Mater., 2025, 24(2): 234-242. https://doi.org/10.1038/s41563-024-02023-7.

[8]

Ma R F, Tao S Y, Sun X, Ren Y F, Sun C B, Ji G J, Xu J H, Wang X C, Zhang X, Wu Q W, Zhou G M. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions[J]. Nat. Commun., 2024, 15(1): 7641. https://doi.org/10.1038/s41467-024-52030-0.

[9]

Tan S J, Tian Y F, Zhao Y, Feng X X, Zhang J, Zhang C H, Fan M, Guo J C, Yin Y X, Wang F, Xin S, Guo Y G. Noncoordinating flame-retardant functional electrolyte solvents for rechargeable lithium-ion batteries[J]. J. Am. Chem. Soc., 2022, 144(40): 18240-18245. https://doi.org/10.1021/jacs.2c08396.

[10]

Sabaghi D, Wang Z Y, Bhauriyal P, Lu Q Q, Morag A, Mikhailovia D, Hashemi P, Li D Q, Neumann C, Liao Z Q, Dominic A M, Nia A S, Dong R H, Zschech E, Turchanin A, Heine T, Yu M H, Feng X L. Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries[J]. Nat. Commun., 2023, 14(1): 760. https://doi.org/10.1038/s41467-023-36384-5.

[11]

Huang Z D, Li X L, Chen Z, Li P, Ji X L, Zhi C Y. Anion chemistry in energy storage devices[J]. Nat. Rev. Chem., 2023, 7(9): 616-631. https://doi.org/10.1038/s41570-023-00506-w.

[12]

Liang G J, Mo F N, Ji X L, Zhi C Y. Non-metallic charge carriers for aqueous batteries[J]. Nat. Rev. Mater., 2020, 6(2): 109-123. https://doi.org/10.1038/s41578-020-00241-4.

[13]

Huang Z D, Hou Y, Wang T R, Zhao Y W, Liang G J, Li X L, Guo Y, Yang Q, Chen Z, Li Q, Ma L T, Fan J, Zhi C Y. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery[J]. Nat. Commun., 2021, 12(1): 3106. https://doi.org/10.1038/s41467-021-23369-5.

[14]

Jiang H Z, Han X Q, Du X F, Chen Z, Lu C L, Li X T, Zhang H R, Zhao J W, Han P X, Cui G L. A PF6--permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery[J]. Adv. Mater., 2022, 34(9): 2108665. https://doi.org/10.1002/adma.202108665.

[15]

Tong X Y, Ou X W, Wu N Z, Wang H Y, Li J, Tang Y B. High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery[J]. Adv. Energy Mater., 2021, 11(25): 2100151. https://doi.org/10.1002/aenm.202100151.

[16]

Su Y Q, Shang J, Liu X C, Li J, Pan Q Q, Tang Y B. Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries[J]. Angew. Chem. Int. Ed., 2024, 63(22): e202403775. https://doi.org/10.1002/anie.202403775.

[17]

Xia Y, Yu F D, Nie D, Jiang Y S, Sun M Y, Que L F, Deng L, Zhao L, Zhang Q Y, Wang Z B. Unlocking fast potassium ion kinetics: High-rate and long-life potassium dual-ion battery for operation at -60 ℃[J]. Angew. Chem. Int. Ed., 2024, 63(38): e202406765. https://doi.org/10.1002/anie.202406765.

[18]

Wei Y K, Tang B, Liang X, Zhang F, Tang Y B. An ultrahigh-mass-loading integrated free-standing functional all-carbon positive electrode prepared using an architecture tailoring strategy for high-energy-density dual-ion batteries[J]. Adv. Mater., 2023, 35(30): 2302086. https://doi.org/10.1002/adma.202302086.

[19]

Liu Y J, Qiu M, Hu X, Yuan J, Liao W L, Sheng L M, Chen Y H, Wu Y M, Zhan H B, Wen Z H. Anion defects engineering of ternary Nb-based chalcogenide anodes toward high-performance sodium-based dual-ion batteries[J]. Nano-Micro Lett., 2023, 15(1): 104. https://doi.org/10.1007/s40820-023-01070-0.

[20]

Guo Z Y, Xu Z, Xie F, Jiang J L, Zheng K T, Alabidun S, Crespo-Ribadeneyra M, Hu Y S, Au H, Titirici M M. Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries[J]. Adv. Mater., 2023, 35(42): 2304091. https://doi.org/10.1002/adma.202304091.

[21]

Nie L, Gao R H, Zhang M T, Zhu Y F, Wu X R, Lao Z J, Zhou G M. Integration of porous high-loading electrode and gel polymer electrolyte for high-performance quasi-solid-state battery[J]. Adv. Energy Mater., 2024, 14(4): 2302476. https://doi.org/10.1002/aenm.202302476.

[22]

Tang Z, Zhang R, Wang H Y, Zhou S Y, Pan Z Y, Huang Y C, Sun D, Tang Y G, Ji X B, Amine K, Shao M H. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nat. Commun., 2023, 14(1): 6024. https://doi.org/10.1038/s41467-023-39637-5.

[23]

Li Y Q, Vasileiadis A, Zhou Q, Lu Y X, Meng Q S, Li Y, Ombrini P, Zhao J B, Chen Z, Niu Y S, Qi X G, Xie F, van der Jagt R, Ganapathy S, Titirici M M, Li H, Chen L Q, Wagemaker M, Hu Y S. Origin of fast charging in hard carbon anodes[J]. Nat. Energy, 2024, 9(2): 134-142. https://doi.org/10.1038/s41560-023-01414-5.

[24]

Lian J B, Subburam G, El-Khodary S A, Zhang K, Zou B B, Wang J, Wang C, Ma J M, Wu X J. Critical role of aromatic c(sp2)-h in boosting lithium-ion storage[J]. J. Am. Chem. Soc., 2024, 146(12): 8110-8119. https://doi.org/10.1021/jacs.3c12051.

[25]

Zhang H H, Lin S Y, Shu C Y, Tang Z X, Wang X W, Wu Y P, Tang W. Advances and perspectives of hard carbon anode modulated by defect/hetero elemental engineering for sodium ion batteries[J]. Mater. Today, 2025, 8: 231-252. https://doi.org/10.1016/j.mattod.2025.02.014.

[26]

Wang J L, Huang Z J, Zhang W, Li Q H, Liang Z X, Lu J J, Lin Z Y, Wang G, Wu J X, Huang S M. Balancing graphitic nanodomains and heteroatom doping in hard carbons toward high capacity and durable potassium-ion battery anodes[J]. Adv. Funct. Mater., 2024, 34(51): 2409937. https://doi.org/10.1002/adfm.202409937.

[27]

Guo W S, Yu H F, Wang M, Wu M B, Chen L, Jiang H, Li C Z. Compositional gradient design of Ni-rich Co-poor cathodes enhanced cyclability and safety in high-voltage Li-ion batteries[J]. ACS Nano, 2025, 19(8): 8371-8380. https://doi.org/10.1021/acsnano.5c00974.

[28]

Zhang B Y, Chen L L, Zhang Z N, Li Q, Khangale P, Hildebrandt D, Liu X Y, Feng Q L, Qiao S L. Modulating the band structure of metal coordinated salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution[J]. Adv. Energy Mater., 2022, 9(22): 2105912. https://doi.org/10.1002/advs.202105912.

[29]

Zheng C, Jian B Q, Xu X C, Zhong J R, Yang H, Huang S M. Regulating microstructure of walnut shell-derived hard carbon for high rate and long cycling sodium-based dual-ion batteries[J]. Chem. Eng. J., 2023, 455: 140434. https://doi.org/10.1016/j.cej.2022.140434.

[30]

Chen C, Huang Y, Zhu Y D, Zhang Z, Guang Z X, Meng Z Y, Liu P B. Nonignorable influence of oxygen in hard carbon for sodium ion storage[J]. ACS Sustain. Chem. Eng., 2020, 8(3): 1497-1506. https://doi.org/10.1021/acssuschemeng.9b05948.

[31]

Han C J, Wang H Y, Wang Z L, Ou X W, Tang Y B. Solvation structure modulation of high-voltage electrolyte for high-performance K-based dual-graphite battery[J]. Adv. Mater., 2023, 35(24): 2300917. https://doi.org/10.1002/adma.202300917.

[32]

Xiang L, Ou X W, Wang X Y, Zhou Z M, Li X, Tang Y B. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angew. Chem. Int. Ed., 2020, 59(41): 17924-17930. https://doi.org/10.1002/anie.202006595.

[33]

Du L Y, Zhang Y M, Xiao Y Y, Yuan D, Yao M, Zhang Y. A defect-rich carbon induced built-in interfacial electric field accelerating ion-conduction towards superior-stable solid-state batteries[J]. Energy Environ. Sci., 2025, 18(6): 2949-2961. https://doi.org/10.1039/d4ee05966b.

AI Summary AI Mindmap
PDF (4159KB)

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/