High-Voltage Solid-State Lithium Batteries: A Review of Electrolyte Design, Interface Engineering, and Future Perspectives

Yang Cheng , Liang Zi-Xin , Zhang Ming-Yun , Chen Ming-Zhe , Zhang Kai , Zhou Li-Min

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (10) : 2515003

PDF (2568KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (10) : 2515003 DOI: 10.61558/2993-074X.3568
REVIEW
research-article

High-Voltage Solid-State Lithium Batteries: A Review of Electrolyte Design, Interface Engineering, and Future Perspectives

Author information +
History +
PDF (2568KB)

Abstract

Solid-state lithium batteries have become a research hotspot in the field of large-scale energy storage due to their excellent safety performance. The development of high-voltage positive electrode materials matched with lithium metal anode have advanced the energy density of solid-state lithium batteries close to or even exceeding that of lithium batteries based on a liquid electrolyte, which is expected to be commercialized in the future. However, in high voltage conditions (> 4.3 V), the decomposition of electrolyte components, structural degradation, and interface side reactions significantly reduce battery performance and hinder its further development. This review summarizes the latest research progress of inorganic electrolytes, polymer electrolytes, and composite electrolytes in high-voltage solid-state lithium batteries. At the same time, the designs of high-voltage polymer gel electrolyte and high-voltage quasi solid-state electrolyte are introduced in detail. In addition, interface engineering is crucial for improving the overall performance of high-voltage solid-state batteries. Finally, we highlight the challenges faced by high-voltage solid-state lithium batteries and put forward our own views on future research directions. This review offers instructive insights into the advancement of high-voltage solid-state lithium batteries for large-scale energy storage applications.

Keywords

Solid-state lithium batteries / High-voltage / Solid-state electrolyte / Interface engineering

Cite this article

Download citation ▾
Yang Cheng, Liang Zi-Xin, Zhang Ming-Yun, Chen Ming-Zhe, Zhang Kai, Zhou Li-Min. High-Voltage Solid-State Lithium Batteries: A Review of Electrolyte Design, Interface Engineering, and Future Perspectives. Journal of Electrochemistry, 2025, 31(10): 2515003 DOI:10.61558/2993-074X.3568

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Key R&D Program of China (2024YFA1211100), the National Natural Science Foundation of China (52301278, 22479080, 52202254, 92372001, 22393900, and 92372203), the Natural Science Foundation of Jiangsu Province (BK20230937, BK20220966), the Science and Technology Plans of Tianjin (23JCYBJC00170, 24JCJQJC00220, and 24ZXZSSS00390), and the Fundamental Research Funds for the Central Universities (020-63253167, 30922010708).

Conflicts of Interest

The authors declare no conflict of interests.

Data Availability

This review does not involve the use of primary data. All information is based on previously published studies.

Authors Contribution

Cheng Yang: Conceptualization, Writing - original draft. Zi-Xin Liang: Data curation, Formal analysis. Ming-Yun Zhang: Data curation, Visualization, Formal analysis. Ming-Zhe Chen: Validation, Writing - review & editing. Kai Zhang: Validation, Writing - review & editing. Li-Min Zhou: Conceptualization, Validation, Writing - review & editing.

References

[1]

Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei P, Hu X, Mukherjee A, Lau K C, Assary R S, Khalili-Araghi F, Klie R F, Curtiss L A, Salehi-Khojin A. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697): 502-506. https://doi.org/10.1038/nature25984.

[2]

Degen F, Winter M, Bendig D, Tübke J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nat. Energy, 2023, 8(11): 1284-1295. https://doi.org/10.1038/s41560-023-01355-z.

[3]

Liu H D, Zhu Z Y, Yan Q Z, Yu S C, He X, Chen Y, Zhang R, Ma L, Liu T C, Li M, Lin R Q, Chen Y M, Li Y J, Xing X, Choi Y, Gao L, Cho H S Y, An K, Feng J, Kostecki R, Amine K, Wu T P, Lu J, Xin H L, Ong S P, Liu P. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63-67. https://doi.org/10.1038/s41586-020-2637-6.

[4]

Wang C Y, Zhang G S, Ge S H, Xu T, Ji Y, Yang X G, Leng Y J. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. https://doi.org/10.1038/nature16502.

[5]

Kalnaus S, Dudney N J, Westover A S, Herbert E, Hackney S. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): 1300. https://doi.org/10.1126/science.abg5998.

[6]

Li C, Wang Z Y, He Z J, Li Y J, Mao J, Dai K H, Yan C, Zheng J C. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustain. Mater. Techno., 2021, 29: e00297. https://doi.org/10.1016/j.susmat.2021.e00297.

[7]

Yu R, Chen Y J, Gao X, Chao D L. Elucidating the role of multi-scale microstructures in Li7La3Zr2O12 based all-solid-state lithium batteries[J]. Energy Storage Mater., 2024, 72: 103752. https://doi.org/10.1016/j.ensm.2024.103752.

[8]

Li X, Cong L N, Ma S C, Shi S N, Li Y N, Li S J, Chen S L, Zheng C H, Sun L Q, Liu Y L, Xie H M. Low resistance and high stable solid-liquid electrolyte interphases enable high‐voltage solid‐state lithium metal batteries[J]. Adv. Funct. Mater., 2021, 31(20): 2010611. https://doi.org/10.1002/adfm.202010611.

[9]

Li L S, Duan H H, Li J, Zhang L, Deng Y F, Chen G H. Toward high performance all‐solid‐state lithium batteries with high‐voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes[J]. Adv. Energy Mater., 2021, 11(28): 2003154. https://doi.org/10.1002/aenm.202003154.

[10]

Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103. https://doi.org/10.1038/natrevmats.2016.103.

[11]

Liu J, Yuan H, Liu H, Zhao C Z, Lu Y, Cheng X B, Huang J Q, Zhang Q. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Adv. Energy Mater., 2021, 12(4): 2100748. https://doi.org/10.1002/aenm.202100748.

[12]

Nolan A M, Liu Y S, Mo Y F. Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries[J]. ACS Energy Lett., 2019, 4(10): 2444-2451. https://doi.org/10.1021/acsenergylett.9b01703.

[13]

Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J. Power Sources, 2012, 202: 332-335. https://doi.org/10.1016/j.jpowsour.2011.10.064.

[14]

Hong S B, Jang Y R, Kim H, Jung Y C, Shin G, Hah H J, Cho W, Sun Y K, Kim D W. Wet‐processable binder in composite cathode for high energy density all‐solid‐state lithium batteries[J]. Adv. Energy Mater., 2024, 14(35): 2400802. https://doi.org/10.1002/aenm.202400802.

[15]

Peng G, Yao X Y, Wan H L, Huang B X, Yin J Y, Ding F, Xu X X. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte[J]. J. Power Sources, 2016, 307: 724-730. https://doi.org/10.1016/j.jpowsour.2016.01.039.

[16]

Yu R Z, Wang C H, Duan H, Jiang M, Zhang A B, Fraser A, Zuo J X, Wu Y L, Sun Y P, Zhao Y, Liang J W, Fu J M, Deng S X, Ren Z M, Li G H, Huang H, Li R Y, Chen N, Wang J T, Li X F, Singh C V, Sun X L. Manipulating charge‐transfer kinetics of lithium‐rich layered oxide cathodes in halide all‐solid‐state batteries[J]. Adv. Mater., 2022, 35(5): 2207234. https://doi.org/10.1002/adma.202207234.

[17]

Yang L, Deng W T, Xu W, Tian Y, Wang A N, Wang B W, Zou G Q, Hou H S, Deng W N, Ji X B. Olivine LiMnxFe1-xPO4 cathode materials for lithium ion batteries: restricted factors of rate performances[J]. J. Mater. Chem. A, 2021, 9(25): 14214-14232. https://doi.org/10.1039/d1ta01526e.

[18]

Jang J, Chen Y T, Deysher G, Cheng D Y, Ham S Y, Cronk A, Ridley P, Yang H D, Sayahpour B, Han B, Li W K, Yao W L, Wu E A, Doux J M, Nguyen L H B, Oh J A S, Tan D H S, Meng Y S. Enabling a Co-free, high-voltage LiNi0.5Mn1.5O4 cathode in all-solid-state batteries with a halide electrolyte[J]. ACS Energy Lett., 2022, 7(8): 2531-2539. https://doi.org/10.1021/acsenergylett.2c01397.

[19]

Chen S M, Wen K H, Fan J T, Bando Y, Golberg D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. J. Mater. Chem. A, 2018, 6(25): 11631-11663. https://doi.org/10.1039/c8ta03358g.

[20]

Lv F, Wang Z Y, Shi L Y, Zhu J F, Edström K, Mindemark J, Yuan S A. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J. Power Sources, 2019, 441: 227175. https://doi.org/10.1016/j.jpowsour.2019.227175.

[21]

Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat. Nanotechnology, 2019, 14(7): 705-711. https://doi.org/10.1038/s41565-019-0465-3.

[22]

Chen X L, Li X J, Luo L J, He S N, Chen J, Liu Y F, Pan H G, Song Y, Hu R Z. Practical application of all‐solid‐state lithium batteries based on high‐voltage cathodes: challenges and progress[J]. Adv. Energy Mater., 2023, 13(35): 2301230. https://doi.org/10.1002/aenm.202301230.

[23]

Janek J, Zeier W G. Challenges in speeding up solid-state battery development[J]. Nat. Energy, 2023, 8(3): 230-240. https://doi.org/10.1038/s41560-023-01208-9.

[24]

Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all‐solid‐state batteries: lithium, sodium, and beyond[J]. Adv. Mater., 2020, 33(6): 2000721. https://doi.org/10.1002/adma.202000721.

[25]

Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production[J]. J. Power Sources, 2018, 382: 160-175. https://doi.org/10.1016/j.jpowsour.2018.02.062.

[26]

Thompson T, Wolfenstine J, Allen J L, Johannes M, Huq A, David I N, Sakamoto J. Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 (LLZO)[J]. J. Mater. Chem. A, 2014, 2(33): 13431-13436. https://doi.org/10.1039/c4ta02099e.

[27]

Li Y T, Zhou W D, Xin S, Li S, Zhu J L, X J, Cui Z M, Jia Q X, Zhou J S, Zhao Y S, Goodenough J B. Fluorine‐doped antiperovskite electrolyte for all‐solid‐state lithium‐ion batteries[J]. Angew. Chem. Int. Ed., 2016, 55(34): 9965-9968. https://doi.org/10.1002/anie.201604554.

[28]

Jian Z L, Hu Y S, Ji X L, Chen W. NASICON‐structured materials for energy storage[J]. Adv. Mater., 2017, 29(20): 1601925. https://doi.org/10.1002/adma.201601925.

[29]

Qin Z W, Meng X C, Xie Y M, Qian D L, Deng H K, Mao D X, Wan L, Huang Y X. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries[J]. Energy Storage Mater., 2021, 43: 190-201. https://doi.org/10.1016/j.ensm.2021.09.005.

[30]

Feng W L, Yang P, Dong X L, Xia Y Y. A low temperature soldered all ceramic lithium battery[J]. ACS Appl. Mater. Interfaces, 2021, 14(1): 1149-1156. https://doi.org/10.1021/acsami.1c21332.

[31]

Huang C Y, Tseng Y T, Lo H Y, Chang J K, Wu W W. In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growth[J]. Nano Energy, 2020, 71: 104625. https://doi.org/10.1016/j.nanoen.2020.104625.

[32]

Kim Y, Waluyo I, Hunt A, Yildiz B. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes[J]. Adv. Energy Mater., 2022, 12(13): 2102741. https://doi.org/10.1002/aenm.202102741.

[33]

Huang X, Lu Y, Song Z, Rui K, Wang Q S, Xiu T P, Badding M E, Wen Z Y. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Mater., 2019, 22: 207-217. https://doi.org/10.1016/j.ensm.2019.01.018.

[34]

Wang R L, Ping W W, Wang C W, Liu Y S, Gao J L, Dong Q, Wang X Z, Mo Y F, Hu L B. Computation‐guided synthesis of new garnet‐type solid‐state electrolytes via an ultrafast sintering technique[J]. Adv. Mater., 2020, 32(46): 2005059. https://doi.org/10.1002/adma.202005059.

[35]

Gao Y, Sun S Y, Zhang X, Liu Y F, Hu J J, Huang Z G, Gao M X, Pan H G. Amorphous dual‐layer coating: enabling high Li‐ion conductivity of non‐sintered garnet‐type solid electrolyte[J]. Adv. Funct. Mater., 2021, 31(15): 2009692. https://doi.org/10.1002/adfm.202009692.

[36]

Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P, Wilkening M, Geiger C A, Amthauer G. DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet[J]. Chem. Mater., 2014, 26(8): 2617-2623. https://doi.org/10.1021/cm5000999.

[37]

Harada M, Takeda H, Suzuki S, Nakano K, Tanibata N, Nakayama M, Karasuyama M, Takeuchi I. Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries[J]. J. Mater. Chem. A, 2020, 8(30): 15103-15109. https://doi.org/10.1039/d0ta04441e.

[38]

Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M. Solid‐state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv. Energy Mater., 2020, 11(1): 2002689. https://doi.org/10.1002/aenm.202002689.

[39]

Zhu G L, Zhao C Z, Yuan H, Zhao B C, Hou L P, Cheng X B, Nan H X, Lu Y, Zhang J, Huang J Q, Liu Q B, He C X, Zhang Q. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2020, 31: 267-273. https://doi.org/10.1016/j.ensm.2020.05.017.

[40]

Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J, Zeier W G. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. J. Am. Chem. Soc., 2018, 140(47): 16330-16339. https://doi.org/10.1021/jacs.8b10282.

[41]

Xu H J, Yu Y R, Wang Z, Shao G S. A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides[J]. J. Mater. Chem. A, 2019, 7(10): 5239-5247. https://doi.org/10.1039/c8ta11151k.

[42]

Zhang Z X, Zhang L, Yan X L, Wang H Q, Liu Y Y, Yu C, Cao X T, van Eijck L, Wen B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. J. Power Sources, 2019, 410: 162-170. https://doi.org/10.1016/j.jpowsour.2018.11.016.

[43]

Gil-González E, Ye L, Wang Y, Shadike Z, Xu Z, Hu E, Li X. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Mater., 2022, 45: 484-493. https://doi.org/10.1016/j.ensm.2021.12.008.

[44]

Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nat. Commun., 2018, 9(1): 4037. https://doi.org/10.1038/s41467-018-06123-2.

[45]

Wang Z Y, Zhao C Z, Sun S, Liu Y K, Wang Z X, Li S, Zhang R, Yuan H, Huang J Q. Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes[J]. Matter, 2023, 6(4): 1096-1124. https://doi.org/10.1016/j.matt.2023.02.012.

[46]

Gao Y J, Fu J M, Hu Y, Zhao F P, Li W H, Deng S X, Sun Y P, Hao X G, Ma J J, Lin X T, Wang C H, Li R Y, Sun X L. Reviving cost‐effective organic cathodes in halide‐based all‐solid‐state lithium batteries[J]. Angew. Chem. Int. Ed., 2024, 63(30): e202403331. https://doi.org/10.1002/anie.202403331.

[47]

Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium‐ion conductivity for application in 4 V class bulk‐type all‐solid‐state batteries[J]. Adv. Mater., 2018, 30(44): 1803075. https://doi.org/10.1002/adma.201803075.

[48]

Park K-H, Kaup K, Assoud A, Zhang Q, Wu X H, Nazar L F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett., 2020, 5(2): 533-539. https://doi.org/10.1021/acsenergylett.9b02599.

[49]

Kim K, Park D, Jung H-G, Chung K Y, Shim J H, Wood B C, Yu S. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries[J]. Chem. Mater., 2021, 33(10): 3669-3677. https://doi.org/10.1021/acs.chemmater.1c00555.

[50]

Zhou L, Zuo T T, Kwok C Y, Kim S Y, Assoud A, Zhang Q, Janek J, Nazar L F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat. Energy, 2022, 7(1): 83-93. https://doi.org/10.1038/s41560-021-00952-0.

[51]

Kim S, Lee Y, Kim K, Wood B C, Han S S, Yu S. Fluorine-substituted lithium chloride solid electrolytes for high-voltage all-solid-state lithium-ion batteries[J]. ACS Energy Lett., 2023, 9(1): 38-47. https://doi.org/10.1021/acsenergylett.3c02307.

[52]

Li D Y, Yu D F, Zhang G W, Du A, Ye Z L, Jia Y R, Hou W Q, Xu T Z, Li F B, Chi S J, Zhu Y Z, Yang C P. High configuration entropy promises electrochemical stability of chloride electrolytes for high‐energy, long‐life all‐solid‐state batteries[J]. Angew. Chem. Int. Ed., 2024, e202419735. https://doi.org/10.1002/anie.202419735.

[53]

Song Z Y, Wang T R, Yang H, Kan W H, Chen Y W, Yu Q, Wang L K, Zhang Y N, Dai Y M, Chen H C, Yin W, Honda T, Avdeev M, Xu H H, Ma J W, Huang Y H, Luo W. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1481. https://doi.org/10.1038/s41467-024-45864-1.

[54]

Wang X E, Kerr R, Chen F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C. Toward high‐energy‐density lithium metal batteries: opportunities and challenges for solid organic electrolytes[J]. Adv. Mater., 2020, 32(18): 1905219. https://doi.org/10.1002/adma.201905219.

[55]

Yang L Y, Wei D X, Xu M, Yao Y F, Chen Q. Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design[J]. Angew. Chem. Int. Ed., 2014, 53(14): 3631-3635. https://doi.org/10.1002/anie.201307423.

[56]

Pan Q, Smith D M, Qi H, Wang S, Li C Y. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Adv. Mater., 2015, 27(39): 5995-6001. https://doi.org/10.1002/adma.201502059.

[57]

Li C H, Zhou S, Dai L J, Zhou X Y, Zhang B A, Chen L W, Zeng T, Liu Y T, Tang Y F, Jiang J, Huang J Y. Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries[J]. J. Mater. Chem. A, 2021, 9(43): 24661-24669. https://doi.org/10.1039/d1ta04599g.

[58]

Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S L, Lu Q W, Li R Y, Singh C V, Sun X L. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group[J]. Energ. Environ. Sci., 2020, 13(5): 1318-1325. https://doi.org/10.1039/d0ee00342e.

[59]

Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nat. Energy, 2018, 3(9): 739-746. https://doi.org/10.1038/s41560-018-0199-8.

[60]

Orue A, Arrese-Igor M, Gonzalez U, Gómez N, Cid R, López-Aranguren P. Enhancing high-voltage solid-state lithium-metal battery performance through a stable solid-electrolyte interphase[J]. J. Mater. Chem. A, 2024, 12(34): 22775-22784. https://doi.org/10.1039/d4ta02701a.

[61]

Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high‐voltage solid‐state lithium metal battery[J]. Adv. Sci., 2019, 6(22): 1901036. https://doi.org/10.1002/advs.201901036.

[62]

Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. J. Am. Chem. Soc., 2016, 138(49): 15825-15828. https://doi.org/10.1021/jacs.6b10088.

[63]

Nie L, Chen S J, Zhang M T, Gao T Y, Zhang Y Y, Wei R, Zhang Y N, Liu W. An in-situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries[J]. Nano Res., 2023, 17(4): 2687-2692. https://doi.org/10.1007/s12274-023-6096-x.

[64]

Zhao L Y, Dong Q Y, Wang Y Q, Xue G Y, Wang X C, Li Z Y, Shao H, Chen H W, Shen Y B, Chen L W. Anion modulation: enabling highly conductive stable polymer electrolytes for solid‐state Li‐metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(52): e202412280. DOI: https://doi.org/10.1002/anie.202412280.

[65]

Bai Y Z, Ma W Q, Dong W J, Wu Y K, Wang X, Huang F Q. In-situ-polymerized 1,3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(22): 26834-26842. https://doi.org/10.1021/acsami.3c04234.

[66]

Zhao C Z, Zhao Q, Liu X T, Zheng J X, Stalin S, Zhang Q, Archer L A. Rechargeable lithium metal batteries with an in‐built solid‐state polymer electrolyte and a high voltage/loading Ni‐rich layered cathode[J]. Adv. Mater., 2020, 32(12): 1905629. https://doi.org/10.1002/adma.201905629.

[67]

Wang Q L, Cui Z L, Zhou Q, Shangguan X H, Du X F, Dong S M, Qiao L X, Huang S Q, Liu X C, Tang K, Zhou X H, Cui G L. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Mater., 2020, 25: 756-763. https://doi.org/10.1016/j.ensm.2019.09.010.

[68]

Li S, Chen Y M, Liang W F, Shao Y F, Liu K W, Nikolov Z, Zhu Y. A superionic conductive, electrochemically stable dual-salt polymer electrolyte[J]. Joule, 2018, 2(9): 1838-1856. https://doi.org/10.1016/j.joule.2018.06.008.

[69]

Liang W F, Shao Y F, Chen Y M, Zhu Y. A 4 V cathode compatible, superionic conductive solid polymer electrolyte for solid lithium metal batteries with long cycle life[J]. ACS Appl. Energy Mater., 2018, 1(11): 6064-6071. https://doi.org/10.1021/acsaem.8b01138.

[70]

Li H, Du Y F, Wu X M, Xie J Y, Lian F. Developing “polymer‐in‐salt” high voltage electrolyte based on composite lithium salts for solid‐state Li metal batteries[J]. Adv. Funct. Mater., 2021, 31(41): 2103049. https://doi.org/10.1002/adfm.202103049.

[71]

Chai J C, Liu Z H, Ma J, Wang J, Liu X C, Liu H S, Zhang J J, Cui G L, Chen L Q. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv. Sci., 2016, 4(2): 1600377. https://doi.org/10.1002/advs.201600377.

[72]

Wei Z Y, Zhang Z H, Chen S J, Wang Z H, Yao X Y, Deng Y H, Xu X X. UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature[J]. Energy Storage Mater., 2019, 22: 337-345. https://doi.org/10.1016/j.ensm.2019.02.004.

[73]

Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Double‐layer polymer electrolyte for high‐voltage all‐solid‐state rechargeable batteries[J]. Adv. Mater., 2018, 31(4): 1805574. https://doi.org/10.1002/adma.201805574.

[74]

Arrese-Igor M, Martinez-Ibañez M, Pavlenko E, Forsyth M, Zhu H, Armand M, Aguesse F, López-Aranguren P. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes[J]. ACS Energy Lett., 2022, 7(4): 1473-1480. https://doi.org/10.1021/acsenergylett.2c00488.

[75]

Yu J M, Wang C, Li S H, Liu N, Zhu J, Lu Z D. Li+‐containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte[J]. Small, 2019, 15(44): 1902729. https://doi.org/10.1002/smll.201902729.

[76]

Luo B, Wang W G, Wang Q, Ji W J, Yu G H, Liu Z H, Zhao Z W, Wang X W, Wang S B, Zhang J F. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes[J]. Chem. Eng. J., 2023, 460: 141329. https://doi.org/10.1016/j.cej.2023.141329.

[77]

Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Lett., 2018, 18(6): 3829-3838. https://doi.org/10.1021/acs.nanolett.8b01111.

[78]

Jiang H, Wu Y Y, Ma J, Liu Y C, Wang L L, Yao X, Xiang H F. Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries[J]. J. Membrane Sci., 2021, 640: 119840. https://doi.org/10.1016/j.memsci.2021.119840.

[79]

Zhang D C, Xu X J, Huang X Y, Shi Z C, Wang Z S, Liu Z B, Hu R Z, Liu J, Zhu M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries[J]. J. Mater. Chem. A, 2020, 8(35): 18043-18054. https://doi.org/10.1039/d0ta06697d.

[80]

Zhang S S, Li Z, Guo Y, Cai L R, Manikandan P, Zhao K J, Li Y, Pol V G. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study[J]. Chem. Eng. J., 2020, 400: 125996. https://doi.org/10.1016/j.cej.2020.125996.

[81]

Meda L, Masafwa K, Crockem A N, Williams J A, Beamon N A, Adams J I, Tunis J V, Yang L, Schaefer J L, Wu J J. Cross-linked composite solid polymer electrolyte doped with Li6.4La3Zr1.4Ta0.6O12 for high voltage lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(34): 44791-44801. https://doi.org/10.1021/acsami.4c08181.

[82]

Li X L, Yang L, Shao D S, Luo K L, Liu L, Wu Z Y, Luo Z G, Wang X Y. Preparation and application of poly(ethylene oxide)‐based all solid‐state electrolyte with a walnut‐like SiO2 as nano‐fillers[J]. J. Appl. Polym. Sci., 2019, 137(24): 48810. https://doi.org/10.1002/app.48810.

[83]

Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Lett., 2015, 16(1): 459-465. https://doi.org/10.1021/acs.nanolett.5b04117.

[84]

Sun J Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires[J]. Chem. Eng. J., 2019, 375: 121922. https://doi.org/10.1016/j.cej.2019.121922.

[85]

Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett., 2015, 15(4): 2740-2745. https://doi.org/10.1021/acs.nanolett.5b00600.

[86]

Hu S, Du L L, Zhang G, Zou W Y, Zhu Z, Xu L, Mai L Q. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13183-13190. https://doi.org/10.1021/acsami.0c22635.

[87]

Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Mater., 2020, 26: 283-289. https://doi.org/10.1016/j.ensm.2020.01.006.

[88]

Wang L, Xu S G, Wang Z, Yang E E, Jiang W Y, Zhang S H, Jian X G, Hu F Y. A nano fiber-gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries[J]. eScience, 2023, 3(2): 100090. https://doi.org/10.1016/j.esci.2022.100090.

[89]

Chai S M, Zhang Y P, Wang Y J, He Q, Zhou S, Pan A Q. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery[J]. eScience, 2022, 2(5): 494-508. https://doi.org/10.1016/j.esci.2022.04.007.

[90]

Chen F, Guo C X, Zhou H H, Shahzad M W, Liu T X, Oleksandr S, Sun J N, Dai S, Xu B B. Supramolecular network structured gel polymer electrolyte with high ionic conductivity for lithium metal batteries[J]. Small, 2022, 18(43): 2106352. https://doi.org/10.1002/smll.202106352.

[91]

Zhu J, Zhang J P, Zhao R Q, Zhao Y, Liu J, Xu N, Wan X J, Li C X, Ma Y F, Zhang H T, Chen Y S. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries[J]. Energy Storage Mater., 2023, 57: 92-101. https://doi.org/10.1016/j.ensm.2023.02.012.

[92]

Zhu J, Zhao R Q, Zhang J P, Song X C, Liu J, Xu N, Zhang H T, Wan X J, Ji X Y, Ma Y F, Li C X, Chen Y S. Long‐cycling and high‐voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes[J]. Angew. Chem. Int. Ed., 2024, 63(17): e202400303. https://doi.org/10.1002/anie.202400303.

[93]

Kim S H, Park N, Bo Lee W, Park J H. Functional sulfate additive‐derived interfacial layer for enhanced electrochemical stability of PEO‐based polymer electrolytes[J]. Small, 2023, 20(23): 2309160. https://doi.org/10.1002/smll.202309160.

[94]

Feng Y, Fan Y P, Zhao L F, Yu J T, Liao Y Q, Zhang T R, Zhang R C, Zhu H T, Sun X W, Hu Z, Zhang K, Chen J. Enhancing microdomain consistency in polymer electrolytes towards sustainable lithium batteries[J]. Angew. Chem. Int. Ed., 2025, 64(5): e202417105. https://doi.org/10.1002/anie.202417105.

[95]

Zhou G D, Yu J, Ciucci F. In situ prepared all-fluorinated polymer electrolyte for energy-dense high-voltage lithium-metal batteries[J]. Energy Storage Mater., 2023, 55: 642-651. https://doi.org/10.1016/j.ensm.2022.12.020.

[96]

Chen Y, Huo F, Chen S M, Cai W B, Zhang S J. In‐built quasi‐solid‐state poly‐ether electrolytes enabling stable cycling of high‐voltage and wide‐temperature Li metal batteries[J]. Adv. Funct. Mater., 2021, 31(36): 2102347. https://doi.org/10.1002/adfm.202102347.

[97]

Qiu B, Xu F, Qiu J M, Yang M, Zhang G Q, He C X, Zhang P X, Mi H W, Ma J M. Electrode-electrolyte interface mediation via molecular anchoring for 4.7 V quasi-solid-state lithium metal batteries[J]. Energy Storage Mater., 2023, 60: 102832. https://doi.org/10.1016/j.ensm.2023.102832.

[98]

Wang Y C, Ye L H, Fitzhugh W, Chen X, Li X. Interface coating design for dynamic voltage stability of solid‐state batteries[J]. Adv. Energy Mater., 2023, 13(41): 2302288. https://doi.org/10.1002/aenm.202302288.

[99]

Feng W L, Zhao Y F, Xia Y Y. Solid interfaces for the garnet electrolytes[J]. Adv. Mater., 2024, 36(15): 2306111. https://doi.org/10.1002/adma.202306111.

[100]

Su S M, Ma J B, Zhao L, Lin K, Li Q D, Lv S S, Kang F Y, He Y B. Progress and perspective of the cathode/electrolyte interface construction in all‐solid‐state lithium batteries[J]. Carbon Energy, 2021, 3(6): 866-894. https://doi.org/10.1002/cey2.129.

[101]

Song Y L, Yang L Y, Zhao W G, Wang Z J, Zhao Y, Wang Z Q, Zhao Q H, Liu H, Pan F. Revealing the short‐circuiting mechanism of garnet‐based solid‐state electrolyte[J]. Adv. Energy Mater., 2019, 9(21): 1900671. https://doi.org/10.1002/aenm.201900671.

[102]

Mahajani V, Bhimani K, Lakhnot A S, Panchal R, Anjan A, Manoj R M, Koratkar N. Facile magnetite coating for stable high‐voltage cycling of nickel‐rich cathodes in conventional liquid and all‐solid‐state lithium‐ion batteries[J]. Small, 2024, 20(33): 2402126. https://doi.org/10.1002/smll.202402126.

[103]

Qiu J L, Liu X Y, Chen R S, Li Q H, Wang Y, Chen P H, Gan L Y, Lee S J, Nordlund D, Liu Y J, Yu X Q, Bai X D, Li H, Chen L Q. Enabling stable cycling of 4.2 V high‐voltage all‐solid‐state batteries with PEO‐based solid electrolyte[J]. Adv. Funct. Mater., 2020, 30(22): 1909392. https://doi.org/10.1002/adfm.201909392.

[104]

Liang Y H, Liu H, Wang G X, Wang C, Li D B, Ni Y, Fan L Z. Heuristic design of cathode hybrid coating for power‐limited sulfide‐based all‐solid‐state lithium batteries[J]. Adv. Energy Mater., 2022, 12(33): 2201555. https://doi.org/10.1002/aenm.202201555.

[105]

Liang J N, Hwang S, Li S, Luo J, Sun Y P, Zhao Y, Sun Q, Li W H, Li M S, Banis M N, Li X, Li R Y, Zhang L, Zhao S Q, Lu S G, Huang H, Su D, Sun X L. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries[J]. Nano Energy, 2020, 78: 105107. https://doi.org/10.1016/j.nanoen.2020.105107.

[106]

Wang X, Huang S, Wei B B, Liu M, Yang B, Liu R Q, Jin H Y. Sacrificial additive C60-assisted catholyte buffer layer for Li1+xAlxTi2-x(PO4)3-based all-solid-state high-voltage batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(34): 44912-44920. https://doi.org/10.1021/acsami.4c09646.

AI Summary AI Mindmap
PDF (2568KB)

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/