Local Electric Fields Coupled with Cl Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance

Yu-Rong Liu , Miao Zhang , Yan-Hui Yu , Ya-Lin Liu , Jing Li , Xiao-Dong Shi , Zhen-Ye Kang , Dao-Xiong Wu , Peng Rao , Ying Liang , Xin-Long Tian

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2504132

PDF (859KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (9) : 2504132 DOI: 10.61558/2993-074X.3566
ARTICLE
research-article

Local Electric Fields Coupled with Cl Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance

Author information +
History +
PDF (859KB)

Abstract

Development of robust electrocatalyst for oxygen reduction reaction (ORR) in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries (SZABs). Herein, constructing a local electric field coupled with chloride ions (Cl) fixation strategy in dual single-atom catalysts (DSACs) was proposed, and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte, with a high half-wave potential (E1/2) of 0.868 V and a good maximum power density (Pmax) of 182 mW·cm−2 in the assembled SZABs, much higher than those of the Pt/C catalyst (E1/2: 0.846 V; Pmax: 150 mW·cm−2). The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl adsorption affinity than the Co sites, and preferentially adsorbs Cl in a seawater electrolyte during the ORR process, and thus constructs a low-concentration Cl local microenvironment through the common-ion exclusion effect, which prevents Cl adsorption and corrosion in the Co active centers, achieving impressive catalytic stability. In addition, the directional charge movement between Fe and Co atomic pairs establishes a local electric field, optimizing the adsorption energy of Co sites for oxygen-containing intermediates, and further improving the ORR activity.

Keywords

Seawater zinc-air battery / Oxygen reduction reaction / Local electric field / Chloride ion fixation strategy / Single-atom catalyst

Cite this article

Download citation ▾
Yu-Rong Liu, Miao Zhang, Yan-Hui Yu, Ya-Lin Liu, Jing Li, Xiao-Dong Shi, Zhen-Ye Kang, Dao-Xiong Wu, Peng Rao, Ying Liang, Xin-Long Tian. Local Electric Fields Coupled with Cl Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance. Journal of Electrochemistry, 2025, 31(9): 2504132 DOI:10.61558/2993-074X.3566

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information

Additional information as noted in the text. This material is available free of charge via the internet at https://jelectrochem.xmu.edu.cn/journal.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52164028, 52274297), the Start-up Research Foundation of Hainan University (KYQD(ZR)20008, KYQD(ZR)21125, KYQD(ZR)23169)), Collaborative Innovation Center of Marine Science and Technology of Hainan University (XTCX2022HYC14), and Innovative Research Project for Postgraduate Students in Hainan Province (Qhyb2024-95). The numerical computations are performed at the Hefei Advanced Computing Center. The authors acknowledge the support for comprehensive characterizations by Pico Electron Microscopy Center of Hainan University.

Conflicts of Interest

The authors declare no competing financial interest.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Author Contributions

Peng Rao and Xin-Long Tian designed the experiments. Yu-Rong Liu, Yan-Hui Yu and Ya-Lan Liu performed most of the experiments and performed the data analysis. Miao Zhang, Ying Liang and Dao-Xiong Wu performed the DFT calculations and data analysis. Jing Li, Xiao-Dong Shi, and Zhen-Ye Kang performed the data analysis. Yu-Rong Liu, Peng Rao, and Xin-Long Tian wrote the paper. Xin-Long Tian supervised the research.

References

[1]

Wang H Y, Wang L, Ren J T, Tian W, Sun M, Feng Y, Yuan Z Y. Taking advantage of potential coincidence region: advanced self-activated/propelled hydrazine-assisted alkaline seawater electrolysis and Zn-hydrazine battery[J]. ACS Nano, 2023, 17(11): 10965-10975. https://doi.org/10.1021/acsnano.3c03095.

[2]

Tang Q J, Bai L, Zhang C, Meng R W, Wang L, Geng C N, Guo Y, Wang F F, Liu Y X, Song G S, Ling G W, Sun H T, Weng Z, Yang Q H. Molecular catalysts with electronic axial stretching for high-performance lean-oxygen seawater batteries[J]. Sci. Bull., 2023, 68(24): 3172-3180. https://doi.org/10.1016/j.scib.2023.09.049.

[3]

Zhan Y, Ding Z B, He F Lv X, Wu W F, Lei B, Liu Y, Yan X. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte[J]. Chem. Eng. J., 2022, 443: 136456. https://doi.org/10.1016/j.cej.2022.136456.

[4]

Rao P, Liu Y R, Shi X D, Yu Y H, Zhou Y, Li R S, Liang Y, Wu D X, Li J, Tian X L, Miao Z P. Protection of fe single-atoms by fe clusters for chlorine-resistant oxygen reduction reaction[J]. Adv. Funct. Mater., 2024, 34: 2407121. https://doi.org/10.1002/adfm.202407121.

[5]

Chen X Q, Zheng X R, Yin Z X, Lu J D, Wang Y, Guo Y Y, Zhang J F, Wang H Z, Zhao Z W, Wu Y Q, Deng Y D. Pre-adsorption of chlorine enhances the oxyphilic property and oxygen reduction activity of Fe/Se-NC electrocatalyst in seawater electrolyte[J]. Chem. Eng. J., 2024, 482: 148856. https://doi.org/10.1016/j.cej.2024.148856.

[6]

Wu S Q, Liu X B, Mao H M, Cui T, Li B, Zhou G Z, Wang L. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich hierarchical heterogeneous assemblies[J]. Appl. Catal. B: Environ., 2023, 330: 122634. https://doi.org/10.1016/j.apcatb.2023.122634.

[7]

Wang J Q, Tran D T, Chang K, Prabhakaran S, Zhao J, Kim D H, Kim N H, Lee J H. Hierarchical Ni@CNTs-bridged MoxC/Ni2P heterostructure micro-pillars for enhanced seawater splitting and Mg/seawater battery[J]. Nano Energy, 2023, 111: 108440. https://doi.org/10.1016/j.nanoen.2023.108440.

[8]

Wu S Q, Liu X B, Mao H M, Zhu J W, Zhou G Z, Chi J Q, Wu Z X, Wang L. Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater[J]. Adv. Energy Mater., 2024, 14 (24): 2400183. https://doi.org/10.1002/aenm.202400183.

[9]

Lu J D, Lu Q, Guo Y, Chen X Q, Yin Z X, Cao Y H, Guo Y Y, Zhang J F, Wang H Z, Wang Y, Zheng X R, Ozoemena K I, Deng Y D. Cobalt atom-cluster interactions synergistically enhance the activity of oxygen reduction reaction in seawater[J]. Energy Storage Mater., 2024, 65: 103093. https://doi.org/10.1016/j.ensm.2023.103093.

[10]

Wang A S, Gao S, Yan J G, Zhao C N, Yu M, Wang W C. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery[J]. J. Energy Chem., 2023, 81: 533-542. https://doi.org/10.1016/j.jechem.2023.02.029.

[11]

Zeng Y C, Li C Z, Li B Y, Liang J S, Zachman M J, Cullen D A, Hermann R P, Alp E E, Lavina B, Karakalos S, Lucero M, Zhang B Z, Wang M Y, Feng Z X, Wang G F, Xie J, Myers D J, Dodelet J P, Wu G. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe-N-C oxygen reduction fuel cell catalysts[J]. Nat. Catal., 2023, 6: 1215-1227. https://doi.org/10.1038/s41929-023-01062-8.

[12]

Xie F X, Cui X L, Zhi X, Yao D Z, Johannessen B, Lin T, Tang J N, Woodfield T B F, Gu L, Qiao S Z. A general approach to 3D-printed single-atom catalysts[J]. Nature Synth., 2023, 2: 129-139. https://doi.org/10.1038/s44160-022-00193-3.

[13]

Tian H, Song A L, Zhang P, Sun K A, Wang J J, Sun B, Fan Q H, Shao G J, Chen C, Liu H, Li Y D, Wang G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023, 35: e2210714. https://doi.org/10.1002/adma.202210714.

[14]

Wei X Q, Song S J, Cai W W, Luo X, Jiao L, Fang Q, Wang X S, Wu N N, Luo Z, Wang H J, Zhu Z H, Li J, Zheng L R, Gu W L, Song W Y, Guo S J, Zhu C Z. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway[J]. Chem, 2023, 9(1):181-197. https://doi.org/10.1016/j.chempr.2022.10.001.

[15]

Liu S G, Li Z J, Chang Y X, Kim M G, Jang H, Cho J, Hou L Q, Liu X. Substantial impact of built-in electric field and electrode potential on the alkaline hydrogen evolution reaction of Ru-CoP urchin arrays[J]. Angew. Chem. Int. Ed., 2024, 63(12): e202400069. https://doi.org/10.1002/anie.202400069.

[16]

Xu Y M, Mao Z X, Zhang J F, Ji J P, Zou Y, Dong M Y, Fu B, Hu M Q, Zhang K D, Chen Z Y, Chen S, Yin H J, Liu P R, Zhao H J. Strain-modulated Ru-O covalency in Ru-Sn oxide enabling efficient and stable water oxidation in acidic solution[J]. Angew. Chem., Int. Ed., 2024, 63(8): e202316029. https://doi.org/10.1002/ange.202316029.

[17]

Zhao X, Feng Q G, Liu M J, Wang Y C, Liu W, Deng D N, Jiang J B, Zheng X R, Zhan L S, Wang J X, Zheng H R, Bai Y, Chen Y B, Xiong X, Lei Y P. Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window[J]. ACS Nano, 2024, 18(13): 9678-9687. https://doi.org/10.1021/acsnano.4c01190.

[18]

Tong K C, Xu L L, Yao H X, Wang X K, Zhang C H, Yang F, Chu L, Lee J, Jiang H Q, Huang M H. Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density[J]. Nano Res., 2024, 17(6): 5050-5060. https://doi.org/10.1007/s12274-024-6520-x.

[19]

Chen W X, Wei W, Li F, Wang Y J, Liu M, Dong S, Cui J H, Zhang Y Y, Wang R, Ostrikov K, Zang S Q. Tunable built-in electric field in Ru nanoclusters-based electrocatalyst boosts water splitting and simulated seawater electrolysis[J]. Adv. Funct. Mater., 2024, 34(7): 310690. https://doi.org/10.1002/adfm.202310690.

[20]

Yang H Q, Wang B D, Kou S Q, Lu G L, Liu Z N. Mott-Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery[J]. Chem. Eng. J., 2021, 425: 131589. https://doi.org/10.1016/j.cej.2021.131589.

[21]

Lin Y Y, Liu K, Chen K J, Xu Y, Li H M, Hu J H, Lu Y R, Chan T S, Qiu X Q, Fu J W, Liu M. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction[J]. ACS Catal., 2021, 11(10): 6304-6315. https://doi.org/10.1021/acscatal.0c04966.

[22]

Rao P, Han X Q, Sun H C, Wang F Y, Liang Y, Li J, Wu D X, Shi X D, Kang Z Y, Miao Z P, Deng P L, Tian X L. Precise synthesis of dual-single-atom electrocatalysts through pre-coordination-directed in situ confinement for CO2 reduction[J]. Angew. Chem. Int. Ed., 2025, 64(3): e202415223. https://doi.org/10.1002/ange.202415223.

[23]

Zhang Y X, Zhang S B, Huang H L, Liu X L, Li B B, Lee Y Y, Wang X D, Bai Y, Sun M Z, Wu Y F, Gong S Y, Liu X W, Zhuang Z B, Tan T, Niu Z Q. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach[J]. J. Am. Chem. Soc., 2023, 145(8): 4819-4827. https://doi.org/10.1021/jacs.2c13886.

[24]

Zhu P, Xiong X, Wang D S, Li Y D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis[J]. Adv. Energy Mater., 2023, 13(39): 2300884. https://doi.org/10.1002/aenm.202300884.

[25]

Rao P, Deng Y J, Fan W J, Luo J M, Deng P L, Li J, Shen Y J, Tian X L. Movable type printing method to synthesize high-entropy single-atom catalysts[J]. Nat. Commun., 2022, 13: 5071. https://doi.org/10.1038/s41467-022-32850-8.

[26]

Rao P, Wu D X, Wang T J, Li J, Deng P L, Chen Q, Shen Y J, Chen Y, Tian X L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2(4): 399-404. https://doi.org/10.1016/j.esci.2022.05.004.

[27]

Zhang H, Chen H C, Feizpoor S, Li L, Zhang X Y, Xu X M, Zhuang Z B, Li Z, Hu W L, Snyders R, Wang D, Wang C. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries[J]. Adv. Mater., 2024, 36(25): 2400523. https://doi.org/10.1002/adma.202400523.

[28]

Yu Y H, Rao P, Feng S Y, Chen M, Deng P L, Li J, Miao Z P, Kang Z Y, Shen Y J, Tian X L. Atomic coclusters for efficient oxygen reduction reaction[J]. Acta Phys. Chim. Sin., 2023, 39(8): 2210039. https://doi.org/10.3866/PKU.WHXB202210039.

[29]

Zhao X, Liu M J, Wang Y C, Xiong Y, Yang P Y, Qin J Q, Xiong X, Lei Y P. Designing a built-in electric field for efficient energy electrocatalysis[J]. ACS Nano, 2022, 16(12): 19959-19979. https://doi.org/10.1021/acsnano.2c09888.

[30]

Chen D, Lu R H, Yu R H, Dai Y H, Zhao H Y, Wu D L, Wang P Y, Zhu J W, Pu Z H, Chen L, Yu J, Mu S C. Work-function-induced interfacial built-in electric fields in os-osse2 heterostructures for active acidic and alkaline hydrogen evolution[J]. Angew. Chem. Int. Ed., 2022, 61(36): e202208642. https://doi.org/10.1002/anie.202208642.

[31]

Liu Y R, Feng S Y, Shan L T, Zhu Y S, Zhou C C, Li J, Shi X D, Kang Z Y, Tian X L, Rao P. Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries[J]. Adv. Funct. Mater., 2025, 35(26): 202422874. https://doi.org/10.1002/adfm.202422874.

AI Summary AI Mindmap
PDF (859KB)

371

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/