Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells: Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway

Qin Kai-Chi , Huo Meng-Tian , Liang Yu , Zhu Si-Yuan , Xing Zi-Hao , Chang Jin-Fa

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (8) : 2515002

PDF (12678KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (8) : 2515002 DOI: 10.61558/2993-074X.3565
REVIEW
research-article

Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells: Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway

Author information +
History +
PDF (12678KB)

Abstract

Direct ethanol fuel cells (DEFCs) are a promising alternative to conventional energy sources, offering high energy density, environmental sustainability, and operational safety. Compared to methanol fuel cells, DEFCs exhibit lower toxicity and a more mature preparation process. Unlike hydrogen fuel cells, DEFCs provide superior storage and transport feasibility, as well as cost-effectiveness, significantly enhancing their commercial viability. However, the stable C-C bond in ethanol creates a high activation energy barrier, often resulting in incomplete electrooxidation. Current commercial platinum (Pt)- and palladium (Pd)-based catalysts demonstrate low C-C bond cleavage efficiency (<7.5%), severely limiting DEFC energy output and power density. Furthermore, high catalyst costs and insufficient activity impede large-scale commercialization. Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms. This review systematically examines developments in ethanol electrooxidation catalysts over the past five years, highlighting strategies to improve C1 pathway selectivity and C-C bond activation. Key approaches, such as alloying, nanostructure engineering, and interfacial synergy effects, are discussed alongside their mechanistic implications. Finally, we outline current challenges and future prospects for DEFC commercialization.

Keywords

direct ethanol fuel cells / ethanol electrooxidation / C-C bond cleavage / electrocatalysis / anode catalyst

Cite this article

Download citation ▾
Qin Kai-Chi, Huo Meng-Tian, Liang Yu, Zhu Si-Yuan, Xing Zi-Hao, Chang Jin-Fa. Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells: Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway. Journal of Electrochemistry, 2025, 31(8): 2515002 DOI:10.61558/2993-074X.3565

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22472023, 22202037), the Jilin Province Science and Technology Development Program (20250102077JC), and the Fundamental Research Funds for the Central Universities (2412024QD014, 2412023QD019).

Conflicts of Interest

The authors declare no competing interest.

Author Contributions

Chang J F led the project. Qin K C wrote the draft; Huo M T and Liang Y assisted in searching and summarizing the references. Chang J F and Xing Z H provided funding support. Chang J F and Zhu S Y reviewed and polished the manuscript. All authors discussed and agreed on the final version of the paper.

Data Availability

Data will be made available on reasonable request.

References

[1]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. http://doi.org/10.1038/nature11475

[2]

De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364: 6438. http://doi.org/10.1126/science.aav3506

[3]

Ifan Erfyl Lester Stephens J R, Ib Chorkendorf. Toward sustainable fuel cell[J]. Science, 2016, 354(6318): 1378-1379. https://www.science.org/doi/10.1126/science.aal3303

[4]

Chen F D, Xie Z Y, Li M T, Chen S G, Ding W, Li L, Li J, We Z D. Series reports from professor wei's group of chongqing university: Advancements in electrochemical energy conversions (1/4): Report 1: High-performance oxygen reduction catalystsfor fuel cells[J]. J. Electrochem., 2024, 30(7): 2314007. https://jelectrochem.xmu.edu.cn/online_first/70/

[5]

Song S Q, Chen L K, Liu J G, Liu Z B, Xin Q. Preliminary Study on Direct Ethanol Fuel Cell[J]. J Electrochem, 2002, 8(1): 105-110. https://doi.org/10.61558/2993-074X.3284

[6]

Rao L, Jiang Y X, Zhang B W, You Y X, Li Z H, Sun S G. Electrocatalytic oxidation of ethanol[J]. Prog. Chem., 2014, 26(05): 727-736. https://manu56.magtech.com.cn/progchem/CN/10.7536/PC131015

[7]

Wang L, Lavacchi A, Bevilacqua M, Bellini M, Fornasiero P, Filippi J, Innocenti M, Marchionni A, Miller H A, Vizza F. Energy efficiency of alkaline direct ethanol fuel cells employing nanostructured palladium electrocatalysts[J]. ChemCatChem, 2015, 7: 2214-2221. http://doi.org/10.1002/cctc.201500189

[8]

Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. http://doi.org/10.1038/s41586-021-03482-7

[9]

Bai J, Liu D, Yang J, Chen Y. Nanocatalysts for electrocatalytic oxidation of ethanol[J]. ChemSusChem, 2019, 12(10): 2117-2132. http://doi.org/10.1002/cssc.201803063

[10]

Zheng Y, Wan X J, Cheng X, Cheng K, Dai Z F, Liu Z H. advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells[J]. Catalysts, 2020, 10(2): 166. http://doi.org/10.3390/catal10020166

[11]

Chen H M, Zhu S Q, Huang J L, Shao M H. Palladium adatoms on gold nanoparticles as electrocatalysts forethanol electro-0xidation in alkaline solutions[J]. J. Electrochem., 2018, 24(6): 740-747. https://doi.org/10.13208/j.electrochem.180841

[12]

Li Q X, Yang Y C, Liu M S, Mao H M, Xu Q J. Preparation of Pd/TiO2/C catalyst and its electrocatalytic performance in basic solution for ethanol oxidation[J]. J. Electrochem., 2014, 20(1): 85-88. http://doi.org/10.13208/j.electrochem.120929

[13]

Rao L, Zhang B W, Li Y Y, Jiang Y X, Sun S G. Electrochemical and spectroscopic studies of ethanol oxidation on nano-cubic Pt modified by tin adatoms[J]. J. Electrochem., 2014, 20(5): 395-400. https://doi.org/10.13208/j.electrochem.131177

[14]

Yu Z Y, Huang R, Liu J, Li G, Song Q T, Sun S G. Preparation of PdCoIr tetrahedron nanocatalysts and its performance toward ethanol oxidation reaction[J]. J. Electrochem., 2021, 27(1): 63-75. http://doi.org/10.13208/j.electrochem.200515

[15]

Zhu J, Su Y, Ma H, Cheng F Y, Tao Z L, Liang J, Chen J. Electroless-deposition synthesis of highly active PtRuC and PtRuSnC as anode catalysts for DEFC[J]. J. Electrochem., 2008, 14(2): 150-154. https://doi.org/10.61558/2993-074X.1881

[16]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. http://doi.org/10.1038/nature11115

[17]

An L, Zhao T S, Li Y S. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells[J]. Renew. Sust. Energy Rev., 2015, 50: 1462-1468. http://doi.org/10.1016/j.rser.2015.05.074

[18]

Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst[J]. J. Am. Chem. Soc., 2019, 141(24): 9629-9636. http://doi.org/10.1021/jacs.9b03474

[19]

Lv H, Sun L Z, Wang Y Z, Liu S H, Liu B. Highly curved, quasi‐single‐crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis[J]. Adv. Mater., 2022, 34(30): 2203612. http://doi.org/10.1002/adma.202203612

[20]

Chang Q, Kattel S, Li X, Liang Z, Tackett B M, Denny S R, Zhang P, Su D, Chen J G, Chen Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catal., 2019, 9(9): 7618-7625. http://doi.org/10.1021/acscatal.9b02039

[21]

Zhang W, Zhao Y X, Li J Y, Miao Y, He P, Wu Z X, Zhang Y, Xu G R, Wang L. C-C bond cleavage driven by lattice oxygen during ethanol oxidation process[J]. Adv. Funct. Mater., 2025. 2421763. http://doi.org/10.1002/adfm.202421763

[22]

Zhang W Y, Yang Y, Huang B L, Lv F, Wang K, Li N, Luo M C, Chao Y G, Li Y J, Sun Y J, Xu Z K, Qin Y G, Yang W X, Zhou J H, Du Y P, Su D, Guo S J. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials[J]. Adv. Mater., 2019, 31(15): 1805833. http://doi.org/10.1002/adma.201805833

[23]

Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat. Nanotech., 2021, 16(2): 140-147. http://doi.org/10.1038/s41565-020-00824-w

[24]

Chen A, Ostrom C. Palladium-based nanomaterials: Synthesis and electrochemical applications[J]. Chem. Rev., 2015, 115(21): 11999-12044. http://doi.org/10.1021/acs.chemrev.5b00324

[25]

Wu H X, Li H J, Zhai Y J, Xu X L, Jin Y D. Facile synthesis of free‐standing Pd‐based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation[J]. Adv. Mater., 2012, 24(12): 1594-1597. http://doi.org/10.1002/adma.201104356

[26]

Wang Y, Zheng M, Li Y R, Zhu L D, Li H R, Wang Q S, Zhao H, Zhang J W, Dong Y M, Zhu Y F. Atomically dispersed NiO cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites[J]. Adv. Powder Mater., 2024, 3(6): 100244. http://doi.org/10.1016/j.apmate.2024.100244

[27]

Wang Y, Zheng M, Li Y R, Chen J Y, Ye J Y, Ye C L, Li S, Wang J, Zhu Y F, Sun S G, Wang D S. Oxygen-bridged long-range dual sites boost ethanol electrooxidation by facilitating C-C bond cleavage[J]. Nano Lett., 2023, 23(17): 8194-8202. http://doi.org/10.1021/acs.nanolett.3c02319

[28]

Zhang G L, Cao D J, Guo S Y, Fang Y, Wang Q, Cheng S, Zuo W S, Yang Z Z, Cui P. Tuning the selective ethanol oxidation on tensile‐trained Pt(110) surface by Ir single atoms[J]. Small, 2022, 18(33): 2202587. http://doi.org/10.1002/smll.202202587

[29]

Han C, Lyu Y, Wang S, Liu B, Zhang Y, Weigand J J, Du H, Lu J. Highly utilized active sites on Pt@Cu/C for ethanol electrocatalytic oxidation in alkali metal hydroxide solutions[J]. Adv. Funct. Mater., 2023, 33(46): 2305436. http://doi.org/10.1002/adfm.202305436

[30]

Chang J, Ko T J, Je M, Chung H S, Han S S, Shawkat M S, Wang M, Park S J, Yu S M, Bae T S, Moon M-W, Oh K H, Choi H, Yang Y, Jung Y. Layer orientation-engineered two-dimensional platinum ditelluride for high-performance direct alcohol fuel cells[J]. ACS Energy Lett, 2021, 6: 3481-3487. http://doi.org/10.1021/acsenergylett.1c01776

[31]

Wang S L, Chang J F, Xue H G, Xing W, Feng L G. Catalytic stability study of a Pd-Ni2P/C catalyst for formic acid electrooxidation[J]. ChemElectroChem, 2017, 4(5): 1243-1249. http://doi.org/10.1002/celc.201700051

[32]

Li G Q, Feng L G, Chang J F, Wickman B, Gronbeck H, Liu C, Xing W. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2P in direct ethanol fuel cells[J]. ChemSusChem, 2014, 7(12): 3374-3381. http://doi.org/10.1002/cssc.201402705

[33]

Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catal., 2014, 4(3): 798-803. http://doi.org/10.1021/cs401198t

[34]

Liu C, Shen Y, Zhang J F, Li G, Zheng X R, Han X P, Xu L Y, Zhu S Z, Chen Y N, Deng Y D, Hu W B. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction[J]. Adv. Energy Mater., 2022, 12(8): 2103505. http://doi.org/10.1002/aenm.202103505

[35]

Yan L, Yao S K, Chang J F, Liu C P, Xing W. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation[J]. J. Power Sources, 2014, 250: 128-133. http://doi.org/10.1016/j.jpowsour.2013.10.085

[36]

Yao H, Zheng Y N, Yu X, Hu S J, Su B, Guo X H. Rational modulation of electronic structure in PtAuCuNi alloys boosts efficient electrocatalytic ethanol oxidation assisted with energy-saving hydrogen evolution[J]. J. Energy Chem., 2024, 93: 557-567. http://doi.org/10.1016/j.jechem.2024.02.037

[37]

Chandran A P, Mondal S, Goud D, Bagchi D, Singh A K, Riyaz M, Dutta N, Peter S C. In situ metal vacancy filling in stable Pd‐Sn intermetallic catalyst for enhanced C-C bond cleavage in ethanol oxidation[J]. Adv Mater, 2024., 37(6): 2415362. http://doi.org/10.1002/adma.202415362

[38]

Wang G, Aubin M, Mehta A, Tian H, Chang J, Kushima A, Sohn Y, Yang Y. Stabilization of Sn anode through structural reconstruction of a Cu-Sn intermetallic coating layer[J]. Adv. Mater., 2020, 32(42): 2003684. http://doi.org/10.1002/adma.202003684.

[39]

Wang H J, Zheng H L, Ling L, Fang Q, Jiao L, Zheng L R, Qin Y, Luo Z, Gu W L, Song W Y, Zhu C Z. Pd metallene aerogels with single-atom W doping for selective ethanol oxidation[J]. ACS Nano, 2022, 16(12): 21266-21274. http://doi.org/10.1021/acsnano.2c09270

[40]

Ye S H, Feng J X, Li G R. Pd Nanoparticle/CoP nanosheet hybrids: highly electroactive and durable catalysts for ethanol electrooxidation[J]. ACS Catal., 2016, 6(11): 7962-7969. http://doi.org/10.1021/acscatal.6b02263

[41]

Chang J F, Feng L G, Liu C P, Xing W, Hu X L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angew. Chem. Int. Ed., 2014, 53(1): 122-126. http://doi.org/10.1002/anie.201308620

[42]

Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628-1632. http://doi.org/10.1039/c4ee00100a

[43]

Ao W D, Ren H J, Cheng C G, Fan Z S, Yin P Q, Qin Q, Zhang Q, Dai L. Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202305158. http://doi.org/10.1002/anie.202305158

[44]

Zhang Y, Liu X Z, Liu T Y, Ma X Y, Feng Y G, Xu B Y, Cai W B, Li Y F, Su D, Shao Q, Huang X Q. Rhombohedral Pd-Sb nanoplates with Pd‐terminated surface: An efficient bifunctional fuel-cell catalyst[J]. Adv. Mater., 2022, 34(31): 2202333. http://doi.org/10.1002/adma.202202333

[45]

Wang G, Chang J, Koul S, Kushima A, Yang Y. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery[J]. J. Am. Chem. Soc., 2021, 143(30): 11595-11601. http://doi.org/10.1021/jacs.1c04339

[46]

Zhang L L, Chang Q W, Chen H M, Shao M H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction[J]. Nano Energy, 2016, 29: 198-219. http://doi.org/10.1016/j.nanoen.2016.02.044

[47]

Qiu Y J, Zhang J, Jin J, Sun J Q, Tang H L, Chen Q Q, Zhang Z D, Sun W M, Meng G, Xu Q, Zhu Y Q, Han A, Gu L, Wang D, Li Y. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction[J]. Nat. Commun., 2021, 12(1): 5273. http://doi.org/10.1038/s41467-021-25600-9

[48]

Zheng J H, Li G, Zhang J M, Cheng N, Ji L F, Yang J, Zhang J, Zhang B W, Jiang Y X, Sun S G. General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts[J]. Sci. China Chem., 2022, 66(1): 279-288. http://doi.org/10.1007/s11426-022-1420-2

[49]

Yan W, Li G, Cui S S, Park G S, Oh R, Chen W X, Cheng X Y, Zhang J M, Li W, Ji L F, Akdim O, Huang X, Lin H, Yang J, Jiang Y X, Sun S G. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate[J]. J. Am. Chem. Soc., 2023, 145(31): 17220-17231. http://doi.org/10.1021/jacs.3c04320

[50]

Huang W J, Kang X L, Xu C, Zhou J H, Deng J, Li Y G, Cheng S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation[J]. Adv. Mater., 2018, 30(11): 1706962. http://doi.org/10.1002/adma.201706962

[51]

Liu Y M, Sheng S X, Wu M, Wang S, Wang Y X, Yang H Y, Chen J H, Hao X Y, Zhi C, Wang Y Z, Xie H J. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol Electrooxidation[J]. ACS Appl. Mater. Interfaces, 2023, 15(3): 3934-3940. http://doi.org/10.1021/acsami.2c17883

[52]

Li Q Q, Sun C, Sun X L, Yin Z J, Du Y P, Liu J C, Luo F. Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells[J]. Nano Res., 2024, 17(11): 9525-9531. http://doi.org/10.1007/s12274-024-6933-6

[53]

Qin Y N, Huang H, Yu W H, Zhang H N, Li Z J, Wang Z C, Lai J P, Wang L, Feng S H. Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction[J]. Adv. Sci., 2021, 9(5): 2103722. http://doi.org/10.1002/advs.202103722

[54]

Gan T J, Wu J P, Liu S, Ou W J, Bin Ling, Kang X W. Low crystallinity and heterostructured AuPt Ru@CNTs as highly efficient multifunctional electrocatalyst[J]. J. Electrochem., 2022, 28(8): 2201241. http://doi.org/10.13208/j.electrochem.220124

[55]

Ding Q Q, Zhang Y, Chen X, Fu X Q, Chen D K, Chen S J, Gu L, Wei F, Bei H B, Gao Y F, Wen M E, Li J X, Zhang Z, Zhu T, Ritchie R O, Yu Q. Tuning element distribution, structure and properties by composition in high-entropy alloys[J] Nature, 2019, 574(7777): 223-227. http://doi.org/10.1038/s41586-019-1617-1

[56]

Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G, Anapolsky A, Hu L. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103. http://doi.org/10.1126/science.abn3103

[57]

Wu D, Kusada K, Nanba Y, Koyama M, Yamamoto T, Toriyama T, Matsumura S, Seo O, Gueye I, Kim J, Rosantha Kumara L S, Sakata O, Kawaguchi S, Kubota Y, Kitagawa H. Noble-metal high-entropy-alloy nanoparticles: atomic-level insight into the electronic structure[J]. J. Am. Chem. Soc., 2022, 144(8): 3365-3369. http://doi.org/10.1021/jacs.1c13616

[58]

Wang Y Y, Zhang Z W, Hu T Y, Yang J, Li Y. High-entropy PtCuSnWNb nanoalloys as efficient and stable catalysts for ethanol oxidation electrocatalysis[J]. Chem. Commun., 2024, 60(30): 4072-4075.http://doi.org/10.1039/d4cc00170b

[59]

George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019, 4(8): 515-534. http://doi.org/10.1038/s41578-019-0121-4

[60]

Batchelor T A A, Pedersen J K, Winther S H, Castelli I E, Jacobsen K W, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845. http://doi.org/10.1016/j.joule.2018.12.015

[61]

Lao X Z, Liao X J, Chen C, Wang J S, Yang L S, Li Z, Ma J W, Fu A, Gao H T, Guo P. Pd‐enriched‐core/Pt‐enriched-shell high-entropy alloy with face-centred cubic structure for C1 and C2 alcohol oxidation[J]. Angew. Chem. Int. Ed., 2023, 62(31): e202304510. http://doi.org/10.1002/anie.202304510

[62]

Chang J F, Wang G Z, Li C, He Y Q, Zhu Y M, Zhang W, Sajid M, Kara A, Gu M, Yang Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells[J]. Joule, 2023, 7(3): 587-602. http://doi.org/10.1016/j.joule.2023.02.011

[63]

Tan X H, Wang C H, Wang J R, Wang P, Xiao Y H, Guo Y Y, Chen J P, He W D, Li Y, Cui H, Wang C X. High-entropy PdRhFeCoMo metallene with high C1 Selectivity and anti‐poisoning ability for ethanol electrooxidation[J]. Adv. Sci., 2024, 11(48): 2409109. http://doi.org/10.1002/advs.202409109

[64]

Peng W, Lu Y R, Lin H, Peng M, Chan T S, Pan A, Tan Y. Sulfur-stabilizing ultrafine high-entropy alloy nanoparticles on MXene for highly efficient ethanol electrooxidation[J]. ACS Nano, 2023, 17(22): 22691-22700. http://doi.org/10.1021/acsnano.3c07110

[65]

Chen W, Luo S P, Sun M Z, Wu X Y, Zhou Y S, Liao Y J, Tang M, Fan X K, Huang B L, Quan Z W. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis[J]. Adv. Mater., 2022, 34(43): 2206276. http://doi.org/10.1002/adma.202206276

[66]

Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation[J]. Angew. Chem. Int. Ed., 2015, 54(12): 3669-3673. http://doi.org/10.1002/anie.201410792

[67]

Wang Y, Zheng M, Li Y R, Ye C L, Chen J, Ye J Y, Zhang Q H, Li J, Zhou Z Y, Fu X Z, Wang J, Sun S G, Wang D. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202115735. http://doi.org/10.1002/anie.202115735

[68]

Huang W J, Ma X Y, Wang H, Feng R F, Zhou J G, Duchesne P N, Zhang P, Chen F P, Han N, Zhao F, Zhou J H, Cai W B, Li Y. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Adv. Mater., 2017, 29(37): 1703057. http://doi.org/10.1002/adma.201703057

[69]

Hou X X, Liang C J, Zhao R Y, Wang L W, Chen T, Yang J, Guo X K, Xue N H, Wang T, Peng L M, Zhao X M, Ding W P. Integrated catalyst ZnNC⊂PtZn for high-performance ethanol electrooxidation and DEFC[J]. Angew. Chem. Int. Ed., 2024: e202417406. http://doi.org/10.1002/anie.202417406

[70]

Wang L, Wu W, Lei Z, Zeng T, Tan Y Y, Cheng N C, Sun X L. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles[J]. J. Mater. Chem. A, 2020, 8(2): 592-598. http://doi.org/10.1039/c9ta10886f

[71]

Chang J F, Wang G Z, Chang X X, Yang Z Z, Wang H, Li B Y, Zhang W, Kovarik L, Du Y, Orlovskaya N, Xu B, Wang G F, Yang Y. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells[J]. Nat. Commun., 2023, 14(1): 1346. http://doi.org/10.1038/s41467-023-37011-z

[72]

Ye N, Sheng W C, Zhang R G, Yan B H, Jiang Z, Fang T. Interfacial electron engineering of PdSn‐NbN/C for highly efficient cleavage of the C-C bonds in alkaline ethanol electrooxidation[J]. Small, 2023, 20(3): 2304990. http://doi.org/10.1002/smll.202304990

[73]

Lv F, Zhang W Y, Sun M Z, Lin F X, Wu T, Zhou P, Yang W X, Gao P, Huang B L, Guo S J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: amorphous/crystalline interface matters[J]. Adv. Energy Mater., 2021, 11(19): 2100187. http://doi.org/10.1002/aenm.202100187

[74]

Wang Y Y, Guo Y G, Zhang Z W, Wu Z R, Maouche C, Shen S Y, Li Y, Zhang J L, Yang J. PtCu-a-SnO2 interface engineering on PtCu-SnO2 aerogels for ethanol oxidation electrocatalysis[J]. Chem. Eng. J., 2024, 499: 156321. http://doi.org/10.1016/j.cej.2024.156321

[75]

Liu J F, Luo Z S, Li J S, Yu X T, Llorca J, Nasiou D, Arbiol J, Meyns M, Cabot A. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation[J]. Appl. Catal. B: Environ., 2019, 242: 258-266. http://doi.org/10.1016/j.apcatb.2018.09.105

[76]

Ju Q L, Chen T, Xie Q H, Wang M L, Zhao K G, Liu T, Fu L, Wang H Z, Chen Z L, Li C J, Deng Y D. Ultrafine IrMnOx nanocluster decorated amorphous PdS nanowires as efficient electrocatalysts for high C1 selectivity in the alkaline ethanol oxidation reaction[J]. ACS Appl. Mater. Interfaces, 2024, 16(26): 33416-33427. http://doi.org/10.1021/acsami.4c04578

[77]

Logeshwaran N, Panneerselvam I R, Ramakrishnan S, Kumar R S, Kim A R, Wang Y, Yoo D J. Quasihexagonal platinum nanodendrites decorated over CoS2‐N‐doped reduced graphene oxide for electro‐oxidation of C1‐, C2‐, and C3‐type alcohols[J]. Adv. Sci., 2022, 9(8): 2105344. http://doi.org/10.1002/advs.202105344

[78]

Xing W, Shan Y B, Guo D, Lu T H, Xi S. The inhibition of amphipathic S and N-containing compounds on carbon steel corrosion[J]. J. Electrochem., 1996, 2(1): 24-31.

[79]

Chang J F, Li K, Wu Z J, Ge J J, Liu C P, Xing W. Sulfur-doped nickel phosphide nanoplates arrays: A monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Appl.Mater. Interfaces, 2018, 10(31): 26303-26311. http://doi.org/10.1021/acsami.8b08068

[80]

Huo M T, Liang Y, Liu W, Zhang X Y, Qin K C, Ma Y, Xing Z H, Chang J F, Zhu G S. Synergistically promoting oxygen electrocatalysis through the precise integration of atomically‐dispersed Fe sites and Co nanoparticles[J]. Adv. Energy Mater., 2024: 2405155. http://doi.org/10.1002/aenm.202405155

[81]

Chang J F, Wang G Z, Yang Z Z, Li B Y, Wang Q, Kuliiev R, Orlovskaya N, Gu M, Du Y G, Wang G F, Yang Y. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Adv. Mater., 2021, 33(33): 2101425. http://doi.org/10.1002/adma.202101425

[82]

Chang J F, Ouyang Y, Ge J J, Wang J L, Liu C P, Xing W. Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(26): 12353-12360. http://doi.org/10.1039/c8ta03951h

[83]

Jiang R Z, Tran D T, McClure J P, Chu D. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media[J]. ACS Catal., 2014, 4(8): 2577-2586. http://doi.org/10.1021/cs500462z

[84]

Chen L, Lu L, Zhu H L, Chen Y G, Huang Y, Li Y D, Wang L Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts[J]. Nat. Commun., 2017, 8(1): 14136. http://doi.org/10.1038/ncomms14136

[85]

Yu X T, Liu J F, Li J S, Luo Z S, Zuo Y, Xing C C, Llorca J, Nasiou D, Arbiol J, Pan K, Kleinhanns T, Xie Y, Cabot A. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation[J]. Nano Energy, 2020, 77: 105116. http://doi.org/10.1016/j.nanoen.2020.105116

[86]

Liu J F, Liu H T, Wang Q X, Li T, Yang T T, Zhang W J, Xu H, Li H M, Qi X Q, Wang Y, Cabot A. Phosphorus doped PdMo bimetallene as a superior bifunctional fuel cell electrocatalyst[J]. Chem. Eng. J., 2024, 486: 150258. http://doi.org/10.1016/j.cej.2024.150258

[87]

Chen Z X, Jing F, Luo M H, Wu X H, Fu H C, Xiao S W, Yu B B, Chen D, Xiong X, Jin Y Q. Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation[J]. Carbon Energy, 2024, 6(8): e443. http://doi.org/10.1002/cey2.443

[88]

Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies[J]. Nat. Nanotech., 2020, 16(2): 129-139. http://doi.org/10.1038/s41565-020-00799-8

[89]

Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020, 49(10): 3072-3106. http://doi.org/10.1039/d0cs00013b

[90]

Xu B Y, Liu T Y, Liang X C, Dou W J, Geng H B, Yu Z Y, Li Y F, Zhang Y, Shao Q, Fan J M, Huang X. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst[J]. Adv. Mater., 2022, 34(50): 2206528. http://doi.org/10.1002/adma.202206528

[91]

Su D M, Lam Z, Wang Y W, Han F, Zhang M M, Liu B, Chen H Y. Ultralong durability of ethanol oxidation reaction via morphological design[J]. Joule, 2023, 7(11): 2568-2582. http://doi.org/10.1016/j.joule.2023.09.008

[92]

Li C, Chen X B, Zhang L H, Yan S H, Sharma A, Zhao B, Kumbhar A, Zhou G, Fang J. Synthesis of core@shell Cu‐Ni@Pt‐Cu nano-octahedra and their improved MOR Activity[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7675-7680. http://doi.org/10.1002/anie.202014144

[93]

Fu H C, Chen Z X, Chen X H, Jing F, Yu H, Chen D, Yu B B, Hu Y H, Jin Y X. Modification strategies for development of 2D material-based electrocatalysts for alcohol oxidation reaction[J]. Adv. Sci., 2023, 11(37): 2306132. http://doi.org/10.1002/advs.202306132

[94]

Huang X, Feng J, Hu S N, Xu B Y, Hao M S, Liu X Z, Wen Y, Su D, Ji Y J, Li Y Y, Li Y S, Huang Y C, Chan T S, Hu Z, Tian N, Shao Q, Huang X. Regioselective epitaxial growth of metallic heterostructures[J]. Nat. Nanotech., 2024, 19(9): 1306-1315. http://doi.org/10.1038/s41565-024-01696-0

[95]

Zhou M, Liu J W, Ling C Y, Ge Y Y, Chen B, Tan C L, Fan Z X, Huang J T, Chen J Z, Liu Z Q, Huang Z Q, Ge J J, Cheng H F, Chen Y, Dai L, Yin P F, Zhang X, Yun Q B, Wang J L, Zhang H. Synthesis of Pd3Sn and PdCuSn nanorods with L12 phase for highly efficient electrocatalytic ethanol oxidation[J]. Adv. Mater., 2021, 34(1): 2106115. http://doi.org/10.1002/adma.202106115

[96]

Li J, Hu M Y, Liang W Y, Zhang Y F, Tang M H, Wu Z Y, Du Y K. 3D hollow superstructures endow PdAg electrocatalyst with selective ethanol electrooxidation[J]. Chem. Eng. J., 2024, 493: 152536. http://doi.org/10.1016/j.cej.2024.152536

[97]

Wang W C, Shi X T, He T N, Zhang Z R, Yang X L, Guo Y J, Chong B, Zhang W M, Jin M. Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation[J]. Nano Lett., 2022, 22(17): 7028-7033. http://doi.org/10.1021/acs.nanolett.2c01870

[98]

Fan D P, Yao H Q, Sun L Z, Lv H, Liu B. 2D PtRhPb mesoporous nanosheets with surface-clean active sites for complete ethanol oxidation electrocatalysis[J]. Adv. Mater., 2024, 36(35): 2407940. http://doi.org/10.1002/adma.202407940

[99]

Guo Q Q, Dou J J, Yang X X, Jiang Z T, Wang H, Liu Y M, Xie H J, Li X. Construction of multiphase concave tetrahedral PdInMo nanocatalyst for enhanced alcohol oxidation[J]. Adv. Funct. Mater., 2024, 35(3): 2413937. http://doi.org/10.1002/adfm.202413937

[100]

Chang J F, Wang G Z, Wang M Y, Wang Q, Li B Y, Zhou H, Zhu Y M, Zhang W, Omer M, Orlovskaya N, Ma Q, Gu M, Feng Z X, Wang G F, Yang Y. Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment[J]. Nat. Energy, 2021, 6(12): 1144-1153. http://doi.org/10.1038/s41560-021-00940-4

[101]

Chen T, Xu S, Zhao T T, Zhou X H, Hu J Q, Xu X, Liang C J, Liu M, Ding W P. Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C-C bond splitting[J]. Angew. Chem. Int. Ed., 2023, 62(38): e202308057. http://doi.org/10.1002/anie.202308057

[102]

Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009, 8(4): 325-330. http://doi.org/10.1038/nmat2359

[103]

Zhang J W, Ye J Y, Fan Q Y, Jiang Y T, Zhu Y F, Li H Q, Cao Z M, Kuang Q, Cheng J, Zheng J, Xie Z. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation[J]. J. Am. Chem. Soc., 2018, 140(36): 11232-11240. http://doi.org/10.1021/jacs.8b03080

[104]

Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin‐Borkowski R E, Strasser P. The Effect of Surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles[J]. Angew. Chem. Int. Ed., 2017, 56(23): 6533-6538. http://doi.org/10.1002/anie.201702332

[105]

Zhu Y M, Bu L Z, Shao Q, Huang X Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C-C bond cleavage for ethanol oxidation electrocatalysis[J]. ACS Catal., 2019, 9(8): 6607-6612. http://doi.org/10.1021/acscatal.9b01375

[106]

Kim K-H, Hobold G M, Steinberg K J, Gallant B M. Confinement effects of hollow structured Pt-Rh electrocatalysts toward complete ethanol electrooxidation[J]. ACS Nano, 2023, 17(14): 14176-14188. http://doi.org/10.1021/acsnano.3c05334

[107]

Liu H M, Li J H, Wang L J, Tang Y W, Xia B Y, Chen Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation[J]. Nano Res., 2017, 10(10): 3324-3332. http://doi.org/10.1007/s12274-017-1545-z

[108]

Han S H, Liu H M, Chen P, Jiang J X, Chen Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv. Energy Mater., 2018, 8(24): 1801326. http://doi.org/10.1002/aenm.201801326

[109]

Liu D, Zhu Z J, Li J, Chen L W, Huang H Z, Jing X T, Yin A X. Rh-Cu alloy nano-dendrites with enhanced electrocatalytic ethanol oxidation activity[J]. J. Energy Chem., 2023, 82: 343-349. http://doi.org/10.1016/j.jechem.2023.03.038

[110]

Miao B Q, Sun B, Wang T J, Shi F, Chen P, Jin P J, Li D S, Li F M, Chen Y. Efficient promotion of ethanol complete electrooxidation by anti-poisoning rhodium-bismuth alloy nanodendrites[J]. Appl. Catal. B: Environ., 2023, 337: 122967. http://doi.org/10.1016/j.apcatb.2023.122967

[111]

Liu Y, Lan B, Yang Y Y. Boosting ethanol electrooxidation at RhBi alloy and Bi2O3 composite surfaces in alkaline media[J]. J. Mater. Chem. A, 2022, 10(39): 20946-20952. http://doi.org/10.1039/d2ta06062k

[112]

Zhang Z Q, Liu J P, Wang J, Wang Q, Wang Y H, Wang K, Wang Z, Gu M, Tang Z H, Lim J, Zhao T S, Ciucci F. Single-atom catalyst for high-performance methanol oxidation[J]. Nat. Commun., 2021, 12(1): 5235. http://doi.org/10.1038/s41467-021-25562-y

[113]

Tang J X, Tian N, Zhou Z Y, Sun S G. Shape-controlled synthesis of Pd and PdPt alloy nanostructures by electrodeposition for electrocatalytic ethanol oxidation[J]. ACS Appl. Nano Mater., 2025, 8(2): 1225-1232. http://doi.org/10.1021/acsanm.4c06207

[114]

Tang M, Sun M Z, Chen W, Ding Y T, Fan X K, Wu X Y, Fu X Z, Huang B L, Luo S P, Luo J L. Atomic diffusion engineered PtSnCu nanoframes with high‐index facets boost ethanol oxidation[J]. Adv. Mater., 2024, 36(21): 2311731. http://doi.org/10.1002/adma.202311731

[115]

Zhang G L, Hui C Y, Yang Z Z, Wang Q, Cheng S, Zhang D, Cui P, Shui J L. Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol[J]. Appl. Catal. B: Environ., 2024, 342: 123377. http://doi.org/10.1016/j.apcatb.2023.123377

[116]

Luo S P, Zhang L, Liao Y, Li L X, Yang Q, Wu X T, Wu X Y, He D S, He C Y, Chen W, Wu Q L, Li M R, Hensen E J M, Quan Z. A Tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation[J]. Adv. Mater., 2021, 33(17): 2008508. http://doi.org/10.1002/adma.202008508

[117]

Sun B, Zhong W, Ai X, Zhang C, Li F M, Chen Y. Engineering low-coordination atoms on RhPt bimetallene for 12-electron ethanol electrooxidation[J]. Energy Environ. Sci., 2024, 17(6): 2219-2227. http://doi.org/10.1039/d3ee04023b

[118]

Li F M, Xia C, Fang W, Chen Y, Xia B Y. RhCuBi trimetallenes with composition segregation coupled crystalline-amorphous heterostructure toward ethanol electrooxidation[J]. Adv. Energy Mater., 2024, 14(21): 2400112. http://doi.org/10.1002/aenm.202400112

[119]

Chang Q W, Hong Y M, Lee H J, Lee, J H, Ologunagba D, Liang Z X, Kim J, Kim M J, Hong J W, Song L, Kattel S, Chen Z, Chen J G, Choi S I. Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes[J] Proc. Natl. Acad. Sci. USA, 2022, 119 (11): e2112109119. https://www.pnas.org/doi/10.1073/pnas.2112109119

[120]

Bai S X, Xu Y, Cao K L, Huang X Q. Selective ethanol oxidation reaction at the Rh-SnO2 interface[J]. Adv. Mater., 2020, 33(5): 2005767. http://doi.org/10.1002/adma.202005767

[121]

Li L, Chu M Y, Song R R, Liu S H, Ren G M, Xu Y, Wang L, Xu Q F, Shao Q, Lu J M, Huang X Q. CO spillover on ultrathin bimetallic Rh/Rh-M nanosheets[J]. Chem Catal., 2022, 2(7): 1709-1719. http://doi.org/10.1016/j.checat.2022.04.013

AI Summary AI Mindmap
PDF (12678KB)

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/