Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis

Hao Deng , Jia Liu , Zhong-Jun Hou

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2514001

PDF (4423KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2514001 DOI: 10.61558/2993-074X.3546
ARTICLE
research-article

Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis

Author information +
History +
PDF (4423KB)

Abstract

Mesoporous carbon supports mitigate Pt sulfonic poisoning through nanopore-confined Pt deposition, yet their morphological impacts on oxygen transport remain unclear. This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution, Pt utilization, and oxygen transport in catalyst layers. Results demonstrate dominant local mass transport resistance governed by three factors: (1) active site density dictating oxygen flux; (2) ionomer film thickness defining shortest transport path; (3) ionomer-to-Pt surface area ratio modulating practical pathway length. At low ionomer-to-carbon (I/C) ratios, limited active sites elevate resistance (Factor 1 dominant). Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films, degrading transport (Factors 2-3 dominant). The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness. As the proportion of Pt situated in nanopores or the Pt mass fraction increases, elevated Pt density inside the nanopores exacerbates pore blockage. This leads to the increased transport resistance by reducing active sites and increasing ionomer thickness and surface area. Lower Pt loading linearly intensifies oxygen flux resistance. The model underscores the necessity to optimize support morphology, Pt distribution, and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency. These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.

Keywords

mesoporous carbon support / electrochemical active surface area / Pt coverage / oxygen transport resistance / pore volume distribution

Cite this article

Download citation ▾
Hao Deng, Jia Liu, Zhong-Jun Hou. Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis. Journal of Electrochemistry, 2025, 31(5): 2514001 DOI:10.61558/2993-074X.3546

登录浏览全文

4963

注册一个新账户 忘记密码

List of symbols

A CCL: Active area (m2)

A ion,in total: Total geometric area of ionomer inside nanopores (m2)

A ion,out total: Total geometric area of ionomer on the support surface (m2)

A Pt,in: Total area of Pt particles inside nanopores (m2)

A Pt,out: Total area of Pt particles on the support surface (m2)

A Pt,in,covered: Total area of Pt covered by ionomer inside nanopores (m2)

A Pt,out,covered: Total area of Pt covered by ionomer on the support surface (m2)

A C,in ': Specific surface area of carbon inside nanopores per unit mass of carbon ( m 2  g C 1)

A C,out ': Specific surface area of carbon on the support surface per unit mass of carbon ( m 2  g C 1)

C O 2 ,g: Oxygen concentration in the gas phase (mol·m-3)

C O 2 ,Pt: Oxygen concentration on the Pt surface (mol·m-3)

D O 2 ,ion: Oxygen diffusivity in ionomer (m2·s-1)

d C: Diameter of Carbon support particle (m)

d CCL: CCL thickness (m)

d p: Nanopore diameter (m)

d p,depth: Nanopore depth (m)

d p,sec: Diameter of secondary pore (m)

d p,threshold: Threshold pore diameter of ionomer immersed into pores (m)

d Pt: Pt diameter (m)

d Pt,in: Pt diameter inside nanopores (m)

d Pt,out: Pt diameter on the support surface (m)

I: Output current density (A·m-2)

k 1: Interfacial resistance coefficient

k 2: Interfacial resistance coefficient

l p,blocked: Length from pore entrance (m)

L Pt: Pt loading (kg·m-2)

m C total: Total carbon mass of CCL (kg)

m ion total: Total ionomer mass of CCL (kg)

M N 2: Molar mass of nitrogen (g·mol-1)

M O 2: Molar mass of oxygen (g·mol-1)

m Pt total: Total Pt mass of CCL (kg)

N C: Total number of carbon support particles

N O 2 ': Oxygen flux around a catalyst particle (mol·m-2·s-1)

n in: Total number of Pt diameter class inside nanopores

n out: Total number of Pt diameter class on the support surface

n p: Total number of pore size class

n Pt,in: Number distribution of Pt inside nanopores

n Pt,in,p: Number distribution of Pt inside nanopores of a certain pore size

n Pt,out: Number distribution of Pt on the support surface

n p,C ': Pore number distribution of carbon normalized to CCL ( g C 1)

n p,Pt/C ': Pore number distribution of carbon after Pt loading ( g C 1)

P: Total gas pressure (atm)

P Pt,in: Probability distribution of Pt inside nanopores

P Pt,out: Probability distribution of Pt on the support surface

R bulk , sec: Bulk diffusion resistance in secondary pores (S·m-1)

R diff , ion: Diffusion resistance in ionomer normalized to CCL (S·m-1)

R diss , ion: Dissolution resistance normalized to CCL (S·m-1)

R Kn,sec: Knudsen diffusion resistance in secondary pores (S·m-1)

R local total: Total local transport resistance (S·m-1)

R pri: Knudsen diffusion resistance in primary pores (S·m-1)

R Pt: Transport resistance on the Pt surface normalized to CCL (S·m-1)

R sec: Total diffusion resistance in secondary pores (S·m-1)

R diff , ion ': Diffusion resistance in ionomer for a catalyst particle (S·m-1)

R diss , ion ': Dissolution resistance for a catalyst particle (S·m-1)

R Pt ': Transport resistance on the Pt surface for a catalyst particle (S·m-1)

T: Temperature (K)

V apparent,C total: Total apparent volume occupied by the carbon support particles (m3)

V CCL total: Total volume of CCL

V ion total: Total ionomer volume of CCL (m3)

V ion,in total: Total ionomer volume of CCL inside nanopores (m3)

V ion,out total: Total ionomer volume of CCL on the support surface (m3)

v N 2: Diffusion volume of nitrogen (cm3·mol-1)

v O 2: Diffusion volume of oxygen (cm3·mol-1)

V p,C total: Total volume of nanopores (m3)

v p ': Pore volume distribution of carbon without normalization ( m 3  g C 1)

v pri ': Total volume of nanopores ( m 3  g C 1)

v sec ': Total volume of secondary pores ( m 3  g C 1)

v p,C ': Pore volume distribution of carbon normalized to CCL ( m 3  g C 1)

v p,Pt/C ': Pore volume distribution of carbon after Pt loading ( m 3  g C 1)

v p,ion ': Pore volume distribution of catalyst after ionomer loading ( m 3  g C 1)

Greek

δ ion,in: Thickness of ionomer film inside nanopores (m)

δ ion,out: Thickness of ionomer film on the support surface (m)

δ ion,out min: Minimum thickness of ionomer film on the support surface (m)

ε C,pack: Packing density of carbon support particles

ε p,C: Nanopore porosity inside the carbon support

ε pri: Primary porosity normalized to CCL

ε sec: Secondary porosity normalized to CCL

θ Pt,in: Ionomer coverage of Pt inside nanopores

θ Pt,out: Ionomer coverage of Pt on the support surface

ρ C: Carbon density (kg·m-3)

ρ ion: Ionomer density (kg·m-3)

ρ Pt: Platinum density (kg·m-3)

φ I/C: Mass ratio of ionomer to carbon

φ Pt,Pt/C: Mass ratio of Pt in catalyst

φ Pt,in: Distribution ratio of Pt inside nanopores

φ Pt,in covered: Ratio of covered Pt inside nanopores to the total covered Pt particles

χ p,Pt/C,blocked: Fraction of blocked pores by Pt particles

Superscripts and subscripts

apparent: Apparent

blocked: Blocked pores

bulk: Bulk diffusion

C: Carbon, carbon support particle

CCL: Cathode catalyst layer

covered: Covered by the ionomer

depth: Depth

diff: Diffusion

diss: Dissolution

g: Gas phase

in: Inside nanopores

ion: Ionomer

I/C: Ionomer to carbon

Kn: Knudsen diffusion

local: Local

min: Minimum

N2: Nitrogen

O2: Oxygen

out: On the support surface

p: Pore

pack: Packing

pri: Primary pore

Pt: Platinum

Pt/C: Catalyst

Sec: Secondary pore

Threshold: Threshold value

Total: Total

Acknowledgements

This research was financially supported by the Program of Ministry of Science and Technology of China (No. 2023YFB2504200). The authors are also grateful to the support of Shanghai Rising-Star Program (Grant No. 24QB2703200) and the Major Science and Technology Projects of Yunnan Province (No. 202302AH360001).

Conflicts of interest

There are no conflicts of interest to declare.

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

[1]

Zhang G B, Qu Z G, Tao W Q, Mu Y T, Jiao K, Xu H, Wang Y. Advancing next-generation proton-exchange membrane fuel cell development in multi-physics transfer[J]. Joule, 2024, 8(1): 45-63. https://doi.org/10.1016/j.joule.2023.11.015.

[2]

Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595: 361-369. https://doi.org/10.1038/s41586-021-03482-7.

[3]

Ren P, Pei P C, Li Y H, Wu Z Y, Chen D F, Huang S W. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Prog. Energ. Combust., 2020, 80: 100859. https://doi.org/10.1016/j.pecs.2020.100859.

[4]

Woo S, Lee S, Taning A Z, Yang T H, Park S H, Yim S D. Current understanding of catalyst/ionomer interfacial structure and phenomena affecting the oxygen reduction reaction in cathode catalyst layers of proton exchange membrane fuel cells[J]. Curr. Opin. Electroche., 2020, 21: 289-296. https://doi.org/10.1016/j.coelec.2020.03.006.

[5]

Jinnouchi R, Kudo K, Kodama K, Kitano N, Suzuki K, Minami S, Shinozaki K, Hasegawav N, Shinohara A. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells[J]. Nat. Commun., 2021, 12: 4956-4964. https://doi.org/10.1038/s41467-021-25301-3.

[6]

Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Prog. Energ. Combust., 2011, 37(3): 221-291. https://doi.org/10.1016/j.pecs.2010.06.002.

[7]

Liang Z J, Hong Z B, Xie M Y, Gu D. Recent progress of mesoporous carbons applied in electrochemical catalysis[J]. New Carbon Mater., 2022, 37(1): 152-179. https://doi.org/10.1016/S1872-5805(22)60575-4.

[8]

Huang Y H, Gu J, Hu Y D, Lei Y J, Yu T, Wang C. Preparation of mesoporous carbon with adjustable diameter and pore size[J]. Diam. Relat. Mater., 2022, 130: 109515. https://doi.org/10.1016/j.diamond.2022.109515.

[9]

Wang G X, Zhao W, Mansoor M, Liu Y N, Wang X Y, Zhang K Y, Xiao C L, Liu Q S, Mao L L, Wang M, Lv H F. Recent progress in using mesoporous carbon materials as catalyst support for proton exchange membrane fuel cells[J]. Nanomaterials-Basel, 2023, 13(21): 2818-2827. https://doi.org/10.3390/nano13212818.

[10]

Ramaswamy N, Zulevi B, McCool G, Shi Z X, Chavez A, Muller D A, Kongkanand A, Kumaraguru S. Graphitized mesoporous engineered carbon support for fuel cell applications[J]. ACS Appl. Eng. Mater., 2023, 1(10): 2543-2554. https://doi.org/10.1021/acsaenm.3c00354.

[11]

Huang O, Hu L Y, Chen X C, Cai W J, Wang L, Wang B. Metal-organic framework-derived N-doped carbon with controllable mesopore sizes for low-Pt fuel cells[J]. Adv. Funct. Mater., 2023, 33(44): 2302582. https://doi.org/10.1002/adfm.202302582.

[12]

Xi M, Chu T K, Wang X L, Li B, Yan D J, Ming P W, Zhang C M. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energ., 2022, 47(65): 28074-28085. https://doi.org/10.1016/j.ijhydene.2022.06.131.

[13]

Xi M, Chu T K, Wang X L, Li B, Yan D J, Ming P W, Zhang C M. Study on durability of proton exchange membrane fuel cell stack based on mesoporous carbon supported platinum catalysts under dynamic cycles conditions[J]. J. Power Sources, 2023, 553: 232277. https://doi.org/10.1016/j.jpowsour.2022.232277.

[14]

Gu K, Kim E J, Sharm S K, Sharm P R, Bliznakov S, Hsiao B S, Rafailovich M H. Mesoporous carbon aerogel with tunable porosity as the catalyst support for enhanced proton-exchange membrane fuel cell performance[J]. Mater. Today Energy, 2021, 19: 100560. https://doi.org/10.1016/j.mtener.2020.100560.

[15]

Sung M, Yi H, Han J, Lee J B, Yoon S H, Park T L. Enhanced performance and durability of proton exchange membrane fuel cell catalyst supports via nanodrilling-induced selective mesoporous carbon structures[J]. ACS Appl. Eng. Mater., 2025, 8(2): 1230-1240. https://doi.org/10.1021/acsaem.4c02713.

[16]

Yarlagadda V, Ramaswamy N, Kukreja R S, Kumaraguru S. Ordered mesoporous carbon supported fuel cell cathode catalyst for improved oxygen transport[J]. J. Power Sources, 2022, 532: 231349. https://doi.org/10.1016/j.jpowsour.2022.231349.

[17]

Wu M J, Meng Z H, Xiong Y F, Zhang H N, Zhang A J, Zhang H, Zhu L Y, Tang H B, Tian T, Tang H L. Structurally tunable graphitized mesoporous carbon for enhancing the accessibility and durability of cathode Pt-based catalysts for proton exchange membrane fuel cells[J]. Small Sci., 2024, 4(7): 2400016. https://doi.org/10.1002/smsc.202400016.

[18]

Liu J J, Zenyuk I V. Proton transport in ionomer-free regions of polymer electrolyte fuel cells and implications for oxygen reduction reaction[J]. Curr. Opin. Electroche., 2018, 12: 202-208. https://doi.org/10.1016/j.coelec.2018.11.015.

[19]

Tu W Y, Liu W J, Cha C S, Wu B L. Study of the powder/membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion interfaces[J]. Electrochim. Acta, 1998, 43(24): 3731-3739. https://doi.org/10.1016/S0013-4686(98)00131-5.

[20]

Liu W J, Wu B L, Cha C S. Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes[J]. J. Electroanal. Chem., 1999, 476(2): 101-108. https://doi.org/10.1016/S0022-0728(99)00371-X.

[21]

Paulus U A, Veziridis Z, Schnyder B, Kuhnke M, Scherer G G, Wokaun A. Fundamental investigation of catalyst utilization at the electrode/solid polymer electrolyte interface Part I. Development of a model system[J]. J. Electroanal. Chem., 2003, 541: 77-91. https://doi.org/10.1016/S0022-0728(02)01416-X.

[22]

Tominaka S, Wub C W, Kurodaa K, Osaka T. Electrochemical analysis of perpendicular mesoporous Pt electrode filled with pure water for clarifying the active region in fuel cell catalyst layers[J]. J. Power Sources, 2010, 195(8): 2236-2240. https://doi.org/10.1016/j.jpowsour.2009.11.002.

[23]

Chan K, Eikerling M. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs[J]. J. Electrochem. Soc., 2011, 158(1): B18-B28. 10.1149/1.3505042.

[24]

Debe M K. Tutorial on the Fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts[J]. J. Electrochem. Soc., 2013, 160(6): F522-F534. 10.1149/2.049306jes.

[25]

Kudo K, Jinnouchi R, Morimoto Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode[J]. Electrochim. Acta, 2016, 209: 682-690. https://doi.org/10.1016/j.electacta.2016.04.023.

[26]

Kudo K, Morimoto Y. Analysis of oxygen transport resistance of Nafion thin film on Pt electrode[J]. ECS Transactions, 2012, 50(2): 1487-1494. 10.1149/05002.1487ecst.

[27]

Suzuki T, Kudo K, Morimoto Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell[J]. J. Power Sources, 2013, 222: 379-389. https://doi.org/10.1016/j.jpowsour.2012.08.068.

[28]

Parthasarathy A, Srinivasan S, Appleby A J, Martin C R. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation[J]. J. Electrochem. Soc., 1992, 139(9): 2530-2537. 10.1149/1.2221258.

[29]

Soboleva T, Zhao X S, Malek K, Xie Z, Navessin T, Holdcroft S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers[J]. ACS Appl. Mater. Interfaces, 2010, 2(2): 375-384. https://doi.org/10.1021/am900600y.

[30]

Park Y C, Tokiwa H, Kakinuma K, Watanabe M, Uchida M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. J. Power Sources, 2016, 315: 179-191. https://doi.org/10.1016/j.jpowsour.2016.02.091.

[31]

Kobayashi A, Fujii T, Harada C, Yasumoto E, Takeda K, Kakinuma K, Uchida M. Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability[J]. ACS Appl. Energy Mater., 2010, 4(3): 2307-2317. https://doi.org/10.1021/acsaem.0c02841.

[32]

Lopez-Haro M, Guetaz L, Printemps T, Morin A, Escribano S, Jouneau P H, Bayle-Guillemaud P, Chandezon F, Gebel G. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nat. Commun., 2014, 5: 5229-5234. https://doi.org/10.1038/ncomms6229.

[33]

Zou G F, Chen W S, She J, Yang T Q, Chen B. Effects of water dynamic behavior on oxygen transport in catalyst layers: A pore-scale study of proton exchange membrane fuel cells[J]. Int. Commun. Heat. Mass., 2025, 164(Part A)108806. https://doi.org/10.1016/j.icheatmasstransfer.2025.108806.

[34]

Dou S J, Hao L, Wang Y H, Wang Q Q. Pore-scale study of coupled charge, gas, and liquid water transport in the catalyst layer of PEM fuel cells[J]. Fuel, 2025, 380: 133141.

[35]

Sun F, Di Q, Chen M, Liu H J, Wang H J. Exploring local oxygen transport in low-Pt loading proton exchange membrane fuel cells: A comprehensive review[J]. eTransportation, 2024, 20: 100327. https://doi.org/10.1016/j.etran.2024.100327.

[36]

Shin S, Kim A R, Um S. Computational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann method[J]. Electrochim. Acta, 2018, 275: 87-99. https://doi.org/10.1016/j.electacta.2018.04.138.

[37]

Zhao C F, Yuan S, Cheng X J, Zheng Z F, Liu J, Yin J W, Shen S Y, Yan X Y, Zhang J L. The effect of catalyst layer design on catalyst utilization in PEMFC studied via stochastic reconstruction method[J]. Energy Ai, 2023, 13: 100245. https://doi.org/10.1016/j.egyai.2023.100245.

[38]

Ishikawa H, Sugawara Y, Inoue G, Kawase M. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells[J]. J. Power Sources, 2018, 374: 196-204. https://doi.org/10.1016/j.jpowsour.2017.11.026.

[39]

Hao L, Moriyama K, Gu W B, Wang C Y. Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells[J]. J. Electrochem. Soc., 2015, 16(88): F854-F867. 10.1149/2.0221508jes.

[40]

Xie B, Zhang G B, Xuan J, Jiao K. Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer[J]. Energ. Convers. Manage., 2019, 199: 112051. https://doi.org/10.1016/j.enconman.2019.112051.

[41]

Wang N, Qu Z G, Jiang Z Y, Zhang G B. A unified catalyst layer design classification criterion on proton exchange membrane fuel cell performance based on a modified agglomerate model[J]. Chem. Eng. J., 2022, 447: 137489. https://doi.org/10.1016/j.cej.2022.137489.

[42]

Samris A, Mounir H. Using a three-dimensional computational fluid dynamics model and an agglomerate model to investigate the effect of varying agglomerate parameters and output voltages on proton exchange membrane fuel cell performance[J]. Heliyon, 2024, 10(11): e32277. https://doi.org/10.1016/j.heliyon.2024.e32277.

[43]

An K B, Fang W Z, Xuan Z H, Zhao G R, Ling H, Tao W Q. Mechanisms of oxygen transport resistance of mesoporous carbon-supported catalysts in fuel cells[J]. J. Mater. Chem. A, 2025, 13: 2143-2154. https://doi.org/10.1039/D4TA06413E.

[44]

Fan L H, Wang J Q, Diaz D F R, Li L C, Wang Y, Jiao K. Molecular dynamics modeling in catalyst layer development for PEM fuel cell[J]. Prog. Energ. Combust., 2025, 108: 101220. https://doi.org/10.1016/j.pecs.2025.101220.

[45]

Kikkawa N, Kimura M. Comprehensive molecular dynamics study of oxygen diffusion in carbon mesopores: Insights for designing fuel-cell catalyst supports[J]. Langmuir, 2024 40(3): 1674-1687. https://doi.org/10.1021/acs.langmuir.3c02627.

[46]

Scherzer A C, Schneider P, Herring P K, Klingele M, Zamel N, Gerteisen D. Modeling the morphological effects of catalyst and ionomer loading on porous carbon supports of PEMFC[J]. J. Electrochem. Soc., 2022, 169(3): 034509-034522. 10.1149/1945-7111/ac58c2.

[47]

Sabharwal M, Pant L M, Patel N, Secanell M. Computational analysis of gas transport in fuel cell catalyst layer under dry and partially saturated conditions[J]. J. Electrochem. Soc., 2019, 166(7): F3065-F3080. 10.1149/2.0081907jes.

[48]

Olbrich W, Kadyk T, Sauter U, Eikerling M. Review-wetting phenomena in catalyst layers of PEM fuel cells: Novel approaches for modeling and materials research[J]. J. Electrochem. Soc., 2022, 169(5): 054521-054531. 10.1149/1945-7111/ac6e8b.

[49]

Ren H, Teng Y, Meng X C, Fang D H, Huang He, Geng J T, Shao Z G. Ionomer network of catalyst layers for proton exchange membrane fuel cell[J]. J. Power Sources, 2021, 506: 230186. https://doi.org/10.1016/j.jpowsour.2021.230186.

[50]

Srouji A C, Zheng L J, Dross R, Aaron D, Mench M M. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading[J]. J. Power Sources, 2017, 364: 92-100. https://doi.org/10.1016/j.jpowsour.2017.07.036.

[51]

Salari S, Tam M, McCague C, Stumper J, Bahrami M. The ex-situ and in-situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance[J]. J. Power Sources, 2020, 449: 227479. https://doi.org/10.1016/j.jpowsour.2019.227479.

AI Summary AI Mindmap
PDF (4423KB)

320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/