Three-Dimensional Melamine Carbon Sponge/NaI as Cathode Materials for Sodium-ion Batteries

Qian-Ying Huang , Yue Liu , Zi-Xin Lin , Shu-Yi Zheng , Ting-Ting Mei , Yu-Ting Tang , Ying-He Zhang , Jun Liu

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2501081

PDF (4223KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2501081 DOI: 10.61558/2993-074X.3534
ARTICLE
research-article

Three-Dimensional Melamine Carbon Sponge/NaI as Cathode Materials for Sodium-ion Batteries

Author information +
History +
PDF (4223KB)

Abstract

The sodium-iodine (Na-I) battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery. However, its development is hindered by inadequate electrical and thermal stability, as well as the dissolution and shuttling of polyiodide. In this study, we report a preparation method for melamine carbon sponge (MC) via carbonizing a commercially available kitchen sponge. It was revealed that the as-prepared MC, composed of unique self-growing carbon nanotubes, could provide both physical and chemical adsorption capabilities for intermediate polyiodides to improve the electrochemical performance of NaI. Consequently, the NaI/MC electrode effectively minimized polyiodide dissolution and reduced the electrochemical impedance. The NaI/MC cathode demonstrated a high average discharge capacity of 92.75 mAh·g-1 over 200 cycles while maintaining a coulombic efficiency of 94%. The research findings from our study have promising applications in Na-I batteries.

Keywords

sodium-iodine battery / sodium iodide / melamine carbon sponge

Cite this article

Download citation ▾
Qian-Ying Huang, Yue Liu, Zi-Xin Lin, Shu-Yi Zheng, Ting-Ting Mei, Yu-Ting Tang, Ying-He Zhang, Jun Liu. Three-Dimensional Melamine Carbon Sponge/NaI as Cathode Materials for Sodium-ion Batteries. Journal of Electrochemistry, 2025, 31(5): 2501081 DOI:10.61558/2993-074X.3534

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

The work was supported by Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application (Grant No. ZDSYS20220527171407017).

Conflict of Interests

There are no conflicts to declare.

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Author contributions

Jun Liu: Conceptualization; Qian-Ying Huang: Investigation (Equal), Methodology (Equal), Writing - original draft (Lead); Yue Liu: Investigation (Equal), Methodology (Equal); Zi-Xin Lin: Methodology (Supporting); Shu-Yi Zheng: Investigation (Supporting), Methodology (Supporting); Ting-Ting Mei: Methodology (Supporting); Yu-Ting Tang: Methodology (Supporting); Ying-He Zhang: Writing - review & editing (Equal).

References

[1]

Han M H, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy Environ. Sci., 2015, 8(1): 81-102.

[2]

Xie J, Lu Y C. A retrospective on lithium-ion batteries[J]. Nat. Commun., 2020, 11(1): 2499.

[3]

Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121.

[4]

Davidsson Kurland S. Energy use for GWh-scale lithium-ion battery production[J]. Environ. Res. Commun., 2019, 2(1): 012001.

[5]

Kallitsis E. On the energy use of battery Gigafactories[J]. J. Clean. Prod., 2022, 364: 132573.

[6]

May G J, Davidson A, Monahov B. Lead batteries for utility energy storage: A review[J]. J. Energy Storage, 2018, 15: 145-157.

[7]

Walter M, Kovalenko M V, Kravchyk K V. Challenges and benefits of post-lithium-ion batteries[J]. New J. Chem., 2020, 44(5): 1677-1683.

[8]

Wankmüller F, Thimmapuram P R, Gallagher K G, Botterud A. Impact of battery degradation on energy arbitrage revenue of grid-level energy storage[J]. J. Energy Storage, 2017, 10: 56-66.

[9]

Zhu Z X, Jiang T L, Ali M, Meng Y H, Jin Y, Cui Y, Chen W. Rechargeable batteries for grid scale energy storage[J]. Chem. Rev., 2022, 122(22): 16610-16751.

[10]

Gerbig F, Cernak S, Nirschl H. Towards a novel sodium-iodine battery with an aqueous catholyte: numerical investigations of complex cathode structures[J]. ECS Trans., 2021, 104(1): 123-130.

[11]

Mond H G, Freitag G. The cardiac implantable electronic device power source: Evolution and revolution[J]. Pacing Clin. Electrophysiol., 2014, 37(12): 1728-1745.

[12]

Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23): 11636-11682.

[13]

Kim S, Li X, Sang L, Yun Y S, Nuzzo R G, Gewirth A A, Braun P V. High energy density CNT/NaI composite cathodes for sodium‐ion batteries[J]. Adv. Mater. Interfaces, 2018, 5(23): 1801342.

[14]

Zhang Q, Wu Z Z, Liu F, Liu S, Liu J, Wang Y L, Yan T Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries[J]. J. Mater. Chem. A, 2017, 5(29): 15235-15242.

[15]

Zhang Q, Zeng Y H, Ye S H, Liu S. Inclusion complexation enhanced cycling performance of iodine/carbon composites for lithium-iodine battery[J]. J. Power Sources, 2020, 463: 228212.

[16]

Zhao Q, Lu Y Y, Zhu Z Q, Tao Z L, Chen J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode[J]. Nano Letters, 2015, 15(9): 5982-5987.

[17]

Gong D C, Wang B, Zhu J Y, Podila R, Rao A M, Yu X Z, Xu Z, Lu B G. An iodine quantum dots based rechargeable sodium-iodine battery[J]. Adv. Energy Mater., 2016, 7(3): 1601885.

[18]

Liang S, Xia Y, Liang C, Gan Y P, Huang H, Zhang J, Tao X Y, Sun W, Han W Q, Zhang W K. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. J. Mater. Chem. A, 2018, 6(21): 9906-9914.

[19]

Wang C, Cai W L, Li G R, Liu B H, Li Z P. In situ synthesis of Li2S‐loaded amphiphilic porous carbon and modification of the Li2S electrode for long‐life Li2S batteries[J]. ChemElectroChem, 2017, 5(1): 112-118.

[20]

Ye F, Noh H, Lee H, Kim H T. An ultrahigh capacity graphite/Li2S battery with holey‐Li2S nanoarchitectures[J]. Adv. Sci., 2018, 5(7): 1800139.

[21]

Li K D, Lin B, Li Q F, Wang H F, Zhang S, Deng C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(24): 20508-20518.

[22]

Qiao L, Wang C, Zhao X S. Encapsulation of iodine in nitrogen-containing porous carbon plate arrays on carbon fiber cloth as a freestanding cathode for lithium-iodine batteries[J]. ACS Appl. Energy Mater., 2021, 4(7): 7012-7019.

[23]

Xie S M, Wang H K, Yao T H, Wang J K, Wang C D, Shi J W, Han X G, Liu T X, Cheng Y H. Embedding CoMoO4 nanoparticles into porous electrospun carbon nanofibers towards superior lithium storage performance[J]. J. Colloid Interface Sci., 2019, 553: 320-327.

[24]

Xu H Y, Chen H, Gao C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries[J]. ACS Mater. Lett., 2021, 3(8): 1221-1237.

[25]

Yang S N, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries[J]. Chem. Eng. J., 2020, 384: 123294.

[26]

Lu K, Hu Z Y, Ma J Z, Ma H Y, Dai L M, Zhang J T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry[J]. Nat. Commun., 2017, 8(1): 527.

[27]

Wang H F, Zhang G M, Ke L L, Liu B D, Zhang S, Deng C. Understanding the effects of 3D porous architectures on promoting lithium or sodium intercalation in iodine/C cathodes synthesized via a biochemistry-enabled strategy[J]. Nanoscale, 2017, 9(27): 9365-9375.

[28]

Shan Q Y, Huo W C, Shen M, Jing C, Peng Y, Pu H, Zhang Y X. Melamine sponge derived porous carbon monoliths with NiMn oxides for high performance supercapacitor[J]. Chin. Chem. Lett., 2020, 31(9): 2245-2248.

[29]

Gopalakrishnan A, Yu A, Badhulika S. Three-dimensional nitrogen rich bubbled porous carbon sponge for supercapacitor & pressure sensing applications[J]. Int. J. Energy Res., 2020, 44(9): 7242-7253.

[30]

Jing X X, Wang L, Qu K G, Li R, Kang W J, Li H B, Xiong S L. KOH chemical-activated porous carbon sponges for monolithic supercapacitor electrodes[J]. ACS Appl. Energy Mater., 2021, 4(7): 6768-6776.

[31]

Shi H D, Yue M, Zhang C J, Dong Y F, Lu P F, Zheng S H, Huang H J, Chen J, Wen P C, Xu Z C, Zheng Q, Li X F, Yu Y, Wu Z S. 3D flexible, conductive, and recyclable Ti3C2Tx mxene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano, 2020, 14(7): 8678-8688.

[32]

Liu X Q, Yuan H L, Zheng Q, Huang B Y, Liao F, Gao H J, Fu H Q, Zhang J, Liao Y W. Understanding the adsorption sites on nitrogen- and oxygen-doped carbon nanotubes for iodine uptake[J]. Appl. Surf. Sci., 2023, 629: 157387.

[33]

Komarov N S, Pavlova T V, Andryushechkin B V. Iodine adsorption on Ni(111): STM and DFT study[J]. Surf. Sci., 2016, 651: 112-119.

[34]

Han M S, Liu J, Deng C F, Guo J C, Mu Y B, Zou Z Y, Zheng K X, Yu F H, Li Q, Wei L, Zeng L, Zhao T S. Yolk-shell structure and spin‐polarized surface capacitance enable FeS stable and fast ion transport in sodium‐ion batteries[J]. Adv. Energy Mater., 2024, 14: 2400246.

[35]

Liu J, Zheng K X, Mu Y B, Zou Z Y, Han M S, Deng C F, Guo J C, Yu F H, Li W, Wei L, Zeng L, Zhao T S. Nanosheet-interwoven structures and ion-electron decoupling storage enable Fe1-xS fast ion transport in Li+/Na+/K+ batteries[J]. Nano Energy, 2024, 131: 110266.

AI Summary AI Mindmap
PDF (4223KB)

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/