PM IRRAS Studies of Organized Molecular Films at a Gold Electrode Surface

Zhang-Fei Su , Ai-Cheng Chen , Jacek Lipkowski

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (6) : 2417003

PDF (3269KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (6) : 2417003 DOI: 10.61558/2993-074X.3528
REVIEW
research-article

PM IRRAS Studies of Organized Molecular Films at a Gold Electrode Surface

Author information +
History +
PDF (3269KB)

Abstract

This feature article illustrates the potential of polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) to provide molecular-level information about the structure, orientation and conformation of constituents of thin films at electrode surfaces. PM IRRAS relies on the surface selection rules stating that the p-polarized IR beam is enhanced, while the s-polarized beam is attenuated at the metal surface. The difference between p- and s-polarized beams eliminates the background of the solvent and provides IR spectra at a single electrode potential. In contrast, two other popular in situ IR spectroscopic techniques, namely, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) and surface-enhanced infrared absorption spectroscopy (SEIRAS), provide potential difference spectra to remove the signal from the bulk solution. In this feature article, we provide a brief tutorial on how to run the PM IRRAS experiment and describe the methods used for background elimination first. The application of the PM IRRAS in the biomimetic research is then illustrated by three examples: construction of a tethered bilayer, reconstitution of colicin into a phospholipid bilayer and determination of the orientation of nucleolipids in a monolayer assembled at a gold electrode surface. Finally, the structural changes of graphene oxide during its electrochemical reduction are described to highlight the promising application of PM IRRAS in materials science.

Keywords

polarization modulation infrared reflection absorption spectroscopy / biomimetic membranes / graphene oxide reduction

Cite this article

Download citation ▾
Zhang-Fei Su, Ai-Cheng Chen, Jacek Lipkowski. PM IRRAS Studies of Organized Molecular Films at a Gold Electrode Surface. Journal of Electrochemistry, 2025, 31(6): 2417003 DOI:10.61558/2993-074X.3528

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This research was funded by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (JL: RGPIN-2022-03958; AC: RGPIN-2022-04238). A. Chen acknowledges NSERC and the Canada Foundation for Innovation (CFI) for the Canada Research Chair Award in Electrochemistry and Nanoscience. JL expresses his gratitude to Professor Ian Burgess for discussion of recent developments in SEIRAS.

Data availability:

This review does not involve the use of primary data. All information is based on previously published studies.

Author contribution

Jacek Lipkowski: Conceptualization (Lead), Formal analysis (Lead), Writing - original draft (Lead), Writing - review & editing (Lead); Zhang-Fei Su: Data curation (Equal), Formal analysis (Equal), Writing - original draft (Equal), Writing - review & editing (Equal); Ai-Cheng Chen: Conceptualization (Equal), Supervision (Equal), Writing - review & editing (Equal)

References

[1]

Moskovits M. Surface selection rules[J]. J. Chem. Phys., 1982, 77(9): 4408-4416.

[2]

Hansen W N. Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium[J]. J. Opt. Soc. Am., 1968, 58(3): 380-390.

[3]

Zamlynny V, Lipkowski J. Quantitative SNIFTIRS and PM IRRAS of organic molecules at electrode surfaces. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds). Advances in Electrochemical Science and Engineering[M]. vol. 9. WILEY-VCH: New Jersey, 2006: 315-376.

[4]

Kycia AH, Su Z, Brosseau CL, Lipkowski J. In situ PM-IRRAS studies of biomimetic membranes supported at gold electrode surfaces[M]// Wieckowski A, Korzeniewski C, Braunschweig B (eds). Vibrational Spectroscopy. WILEY-VCH: New Jersey, 2013: 345-417.

[5]

Brand I. Application of infrared spectroscopy for structural analysis of planar lipid bilayers under electrochemical control[M]//Advances in planar lipid bilayers and liposomes, vol. 18. Elsevier 2013: 21-62.

[6]

Brand I. Application of polarization modulation infrared reflection absorption spectrosocpy under electrochemical control for structural studies of biomimetic assemblies[J]. Z. Phys. Chem., 2016, 230(2): 133-183.

[7]

Monyoncho E A, Zamlynny V, Woo T K, Baranova E A. The Utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: New data processing and presentation approach[J]. Analyst, 2018, 143(11): 2563-2573.

[8]

Palik E D. Handbook of optical constants of solids, vol. 3[M]. Academic press, 1998.

[9]

Bertie J E, Ahmed M K, Eysel H H. Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of water and water-D2 at 22. Degree. C[J]. J. Phys. Chem., 1989, 93(6): 2210-2218.

[10]

Bin X. Electrochemical and polarization modulation fourier transform infrared reflection absorption spectroscopic studies of phospholipids bilayers on a Au(111) electrode surface[D]. University of Guelph, Guelph, ON, Canada, 2006.

[11]

Röfzaad M, Klüner T, Brand I. Orientation of the Gm1 ganglioside in langmuir-blodgett monolayers: A PM IRRAS and computational study[J]. Phys. Chem. Chem. Phys., 2009, 11(43): 10140-10151.

[12]

Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch K W, Brand I. Impact of strong and weak lipid-protein interactions on the structure of a lipid bilayer on a gold electrode surface[J]. ChemphysChem, 2011, 12(6): 1066-1079.

[13]

Meiners F, Ross J H, Brand I, Buling A, Neumann M, Köster P J, Christoffers J, Wittstock G. Modification of silicon oxide surfaces by monolayers of an oligoethylene glycol-terminated perfluoroalkyl silane[J]. Colloids Surf. A: Physicochem. Eng. Asp., 2014, 449: 31-41.

[14]

Brand I, Habecker F, Ahlers M, Klüner T. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy[J]. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2015, 138: 216-224.

[15]

Brand I, Rüdiger C, Hingerl K, Portenkirchner E, Kunze-Liebhäuser J. Compact titanium oxycarbide: A new substrate for quantitative analysis of molecular films by means of infrared reflection absorption spectroscopy[J]. J. Phys. Chem. C, 2015, 119(24): 13767-13776.

[16]

Dongmo S, Wittstock G, Christoffers J, Brand I. In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control[J]. Electrochim. Acta, 2017, 255: 298-308.

[17]

Harms L, Brand I. Application of PM IRRAS to study structural changes of the magnesium surface in corrosive environments[J]. Vib. Spectrosc., 2018, 97: 106-113.

[18]

Sieling T, Brand I. In situ spectroelectrochemical investigation of potential-dependent changes in an amphiphilic imidazolium-based ionic liquid film on the Au(111) electrode surface[J]. Chemelectrochem, 2020, 7(15): 3233-3243.

[19]

Wittmar J, Meyer S, Sieling T, Kunte J, Smiatek J, Brand I. What does ectoine do to DNA? A molecular-scale picture of compatible solute-biopolymer interactions[J]. J. Phys. Chem. B, 2020, 124(37): 7999-8011.

[20]

Brand I, Khairalla B. Structural changes in the model of the outer cell membrane of gram-negative bacteria interacting with melittin: An in situ spectroelectrochemical study[J]. Faraday Discuss., 2021, 232(0): 68-85.

[21]

Komorek P, Jachimska B, Brand I. Adsorption of lysozyme on gold surfaces in the presence of an external electric potential[J]. Bioelectrochemistry, 2021, 142: 107946.

[22]

Sieling T, Petersen T, Alpers T, Christoffers J, Klüner T, Brand I. Cd stretching modes are sensitive to the microenvironment in ionic liquids[J]. Chem. Eur. J., 2021, 27(71): 17808-17817.

[23]

Wittmar J, Ohle C, Kunte J, Brand I. Effect of ectoine on the conformation and hybridization of dsdna in monolayer films: A spectroelectrochemical study[J]. Chemelectrochem, 2021, 8(20): 3844-3854.

[24]

Bozek J, Tomala J, Wójcik S, Kaminska B, Brand I, Pochec E, Szostak E. Effects of Piptoporus Betulinus ethanolic extract on the proliferation and viability of melanoma cells and models of their cell membranes[J]. Int. J. Mol. Sci., 2022, 23(22): 13907.

[25]

Khairalla B, Brand I. Membrane potentials trigger molecular-scale rearrangements in the outer membrane of gram-negative bacteria[J]. Langmuir, 2022, 38(1): 446-457.

[26]

Rose J, Brand I, Bilstein-Schloemer M, Jachimska B, Twyman R M, Prüfer D, Noll G A. The Ca2+ response of a smart forisome protein is dependent on polymerization[J]. Protein Sci., 2022, 31(3): 602-612.

[27]

Becker J, Speldrich S, Wittstock G, Noll G A, Brand I. Controlled mechanical actuation of adsorbed forisome mechanoproteins: A step toward biomolecular devices[J]. Adv. Funct. Mater., 2024, 34(13): 2312159.

[28]

Stephani J C, Gerhards L, Khairalla B, Solov'yov I A, Brand I. How do antimicrobial peptides interact with the outer membrane of gram-negative bacteria? Role of lipopolysaccharides in peptide binding, anchoring, and penetration[J]. ACS Infect. Dis., 2024, 10(2): 763-778.

[29]

Hillman A R, Ryder K S, Madrid E, Burley A W, Wiltshire R J, Merotra J, Grau M, Horswell S L, Glidle A, Dalgliesh R M, Hughes A, Cubitt R, Wildes A. Structure and dynamics of phospholipid bilayer films under electrochemical control[J]. Faraday Discuss., 2010, 145: 357-379.

[30]

Madrid E, Horswell S L. Effect of headgroup on the physicochemical properties of phospholipid bilayers in electric fields: size Matters[J]. Langmuir, 2013, 29(5): 1695-1708.

[31]

Madrid E, Horswell SL. Effect of electric field on structure and dynamics of bilayers formed from anionic phospholipids[J]. Electrochim. Acta, 2014, 146: 850-860.

[32]

Madrid E, Horswell S L. Effect of deuteration on phase behavior of supported phospholipid bilayers: A spectroelectrochemical study[J]. Langmuir, 2015, 31(45): 12544-12551.

[33]

Madrid E, Horswell S L. The electrochemical phase behaviour of chemically asymmetric lipid bilayers supported at Au(111) electrodes[J]. J. Electroanal. Chem., 2018, 819: 338-346.

[34]

Jemmett P N, Milan D C, Nichols R J, Cox L R, Horswell S L. Effect of molecular structure on electrochemical phase behavior of phospholipid bilayers on Au(111)[J]. Langmuir, 2021, 37(40): 11887-11899.

[35]

Wood M H, Milan D C, Nichols R J, Casford M T L, Horswell S L. A quantitative determination of lipid bilayer deposition efficiency using Afm[J]. RSC Adv., 2021, 11(32): 19768-19778.

[36]

Alvarez-Malmagro J, Su Z, Jay Leitch J, Prieto F, Rueda M, Lipkowski J. Spectroelectrochemical characterization of 1, 2-dipalmitoyl-sn-glycero-3-cytidine diphosphate nucleolipid monolayer supported on gold (111) electrode[J]. Langmuir, 2019, 35(4): 901-910.

[37]

Alvarez-Malmagro J, Su Z, Leitch J J, Prieto F, Rueda M, Lipkowski J. Electric field driven molecular recognition reactions of guanine with 1, 2-dipalmitoyl-sn-glycero-3-cytidine monolayer deposited on gold electrodes[J]. Langmuir, 2019: 9297-9307.

[38]

Alvarez-Malmagro J, Su Z, Leitch J J, Prieto F, Rueda M, Lipkowski J. Molecular recognition between guanine and cytosine-functionalized nucleolipid hybrid bilayers supported on gold (111) electrodes[J]. Bioelectrochemistry, 2020, 132: 107416.

[39]

Prieto-Dapena F, Su Z, Alvarez-Malmagro J, Rueda M, Lipkowski J. Electrostatics affects formation of Watson-Crick complex between DNA bases in monolayers of nucleolipids deposited at a gold electrode surface[J]. Electrochim. Acta, 2021, 390: 138816.

[40]

Dapena F P, Su Z, Malmagro J A, Rueda M, Lipkowski J. Mixed monolayer of a nucleolipid and a phospholipid has improved properties for spectroelectrochemical sensing of complementary nucleobases[J]. J. Electroanal. Chem., 2021, 896: 115120.

[41]

Pieta P, Majewska M, Su Z, Grossutti M, Wladyka B, Piejko M, Lipkowski J, Mak P. Physicochemical studies on orientation and conformation of a new Bacteriocin Bacsp222 in a planar phospholipid bilayer[J]. Langmuir, 2016, 32(22): 5653-5662.

[42]

Mrdenovic D, Majewska M, Pieta I S, Bernatowicz P, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Size-dependent interaction of amyloid Β oligomers with brain total lipid extract bilayer—fibrillation versus membrane destruction[J]. Langmuir, 2019, 35(36): 11940-11949.

[43]

Mrdenovic D, Su Z, Kutner W, Lipkowski J, Pieta P. Alzheimer's disease-related amyloid Β peptide causes structural disordering of lipids and changes the electric properties of a floating bilayer lipid membrane[J]. Nanoscale Adv., 2020, 2(8): 3467-3480.

[44]

Matyszewska D, Leitch J, Bilewicz R, Lipkowski J. PM-IRRAS studies of the influence of perfluorinated compounds on the properties of a model biological membrane[J]. Langmuir, 2008, 24: 7408-7412.

[45]

Matyszewska D, Bilewicz R, Su Z, Abbasi F, Leitch J J, Lipkowski J. PM-IRRAS studies of DMPC bilayers supported on Au(111) electrodes modified with hydrophilic monolayers of thioglucose[J]. Langmuir, 2016, 32(7): 1791-1798.

[46]

Alvarez-Malmagro J, Matyszewska D, Nazaruk E, Szwedziak P, Bilewicz R. PM-IRRAS study on the effect of phytantriol-based cubosomes on DMPC bilayers as model lipid membranes[J]. Langmuir, 2019, 35(50): 16650-16660.

[47]

Lipkowski J. Biomimetic membrane supported at a metal electrode surface: A molecular view[M]//Advances in planar lipid bilayers and liposomes[M]. vol. 20. Elsevier 2014: 1-49.

[48]

Su Z, Chen A, Lipkowski J. What spectro-electrochemical studies tell about interactions between antimicrobial peptides and biomimetic membranes at electrode surfaces[J]. J. Phys. Chem. C, 2025, 129(5): 2291-2309.

[49]

Su Z, Leitch J J, Lipkowski J. Electrode-supported biomimetic membranes: An electrochemical and surface science approach for characterizing biological cell membranes[J]. Curr. Opin. Electrochem., 2018, 12: 60-72.

[50]

Schiller S M, Naumann R, Lovejoy K, Kunz H, Knoll W. Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces[J]. Angew. Chem. Int. Ed., 2003, 42(2): 208-211.

[51]

Knoll W, Köper I, Naumann R, Sinner E K. Tethered bimolecular lipid membranes—a novel model membrane platform[J]. Electrochim. Acta, 2008, 53(23): 6680-6689.

[52]

Schiller S, Reisinger-Friebis A, Gotz H, Hawker C, Frank C, Naumann R, Knoll W. Biomimetic lipoglycopolymer membranes: Photochemical surface attachment of supramolecular architectures with defined orientation[J]. Angew. Chem. Int. Ed., 2009, 48(37): 6896.

[53]

Junghans A, Köper I. Structural analysis of tethered bilayer lipid membranes[J]. Langmuir, 2010, 26(13): 11035-11040.

[54]

Becucci L, Moncelli M R, Naumann R, Guidelli R. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer[J]. J. Am. Chem. Soc., 2005, 127(38): 13316-13323.

[55]

Becucci L, Santucci A, Guidelli R. Gramicidin conducting dimers in lipid bilayers are stabilized by single-file ionic flux along them[J]. J. Phys. Chem. B, 2007, 111(33): 9814-9820.

[56]

Becucci L, Aloisi G, Guidelli R. When and how the melittin ion channel exhibits ohmic behavior[J]. Bioelectrochemistry, 2017, 113: 51-59.

[57]

Guidelli R, Becucci L. Functional activity of peptide ion channels in tethered bilayer lipid membranes[J]. Electrochem. Sci. Adv., 2022, 2(6): e2100180.

[58]

Priske G, Su Z, Abbasi F, Lipkowski J, Auzanneau F I. Synthesis and electrochemical characterization of 4-thio pseudo-glycolipids as candidate tethers for lipid bilayer models[J]. Electrochim. Acta, 2019, 298: 150-162.

[59]

Leitch J, Kunze J, Goddard J D, Schwan A L, Faragher R J, Naumann R, Knoll W, Dutcher J R, Lipkowski J. In situ PM-IRRAS studies of an archaea analogue thiolipid assembled on a Au (111) electrode surface[J]. Langmuir, 2009, 25(17): 10354-10363.

[60]

Su Z, Leitch J J, Faragher R J, Schwan A L, Lipkowski J. Gramicidin a ion channel formation in model phospholipid bilayers tethered to gold (111) electrode surfaces[J]. Electrochim. Acta, 2017, 243: 364-373.

[61]

Brosseau C, Sabri E. Resistor-capacitor modeling of the cell membrane: A multiphysics analysis[J]. J. Appl. Phys., 2021, 129(1): 011101.

[62]

Nagle J F, Tristram-Nagle S. Structure of lipid bilayers[J]. Biochim. Biophys. Acta., 2000, 1469(3): 159-195.

[63]

Kelkar D A, Chattopadhyay A. The gramicidin ion channel: A model membrane protein[J]. Biochim. Biophys. Acta., 2007, 1768(9): 2011-2025.

[64]

Langs D, Smith G, Courseille C, Precigoux G, Hospital M. Monoclinic uncomplexed double-stranded, antiparallel, left-handed beta 5.6-Helix (Increases Decreases Beta 5.6) structure of gramicidin A: Alternate patterns of helical association and deformation[J]. PNAS, 1991, 88(12): 5345-5349.

[65]

Laredo T, Dutcher J R, Lipkowski J. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface[J]. Langmuir, 2011, 27(16): 10072-10087.

[66]

Barth A, Zscherp C. What vibrations tell about proteins[J]. Q. Rev. Biophys., 2002, 35(4): 369-430.

[67]

Cramer W A, Sharma O, Zakharov S. On mechanisms of colicin import: The outer membrane quandary[J]. Biochem. J., 2018, 475(23): 3903-3915.

[68]

Lugo M R, Ho D, Merrill A R. Resolving the 3d spatial orientation of helix I in the closed state of the colicin E1 channel domain by Fret. Insights into the integration mechanism[J]. Arch. Biochem. Biophys., 2016, 608: 52-73.

[69]

Zakharov S D, Cramer W A. Colicin crystal structures: Pathways and mechanisms for colicin insertion into membranes[J]. Biochim. Biophys. Acta., 2002, 1565(2): 333-346.

[70]

Su Z, Ho D, Merrill A R, Lipkowski J. In situ electrochemical and PM-IRRAS studies of Colicin E1 Ion channels in the floating bilayer lipid membrane[J]. Langmuir, 2019, 35(25): 8452-8459.

[71]

Kycia A H, Wang J, Merrill A R, Lipkowski J. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer[J]. Langmuir, 2011, 27(17): 10867-10877.

[72]

Leitch J J, Brosseau C L, Roscoe S G, Bessonov K, Dutcher J R, Lipkowski J. Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane[J]. Langmuir, 2013, 29(3): 965-976.

[73]

Su Z, Leitch J, Lipkowski J. Measurements of the potentials of zero free charge and zero total charge for 1-thio-±β-D-glucose and DPTL modified Au(111) surface in different electrolyte solutions[J]. Z. Phys. Chem., 2012, 226(9-10): 995-1009.

[74]

Valincius G, Meškauskas T, Ivanauskas F. Electrochemical impedance spectroscopy of tethered bilayer membranes[J]. Langmuir, 2012, 28(1): 977-990.

[75]

Miao W E, Luo X H, Liang Y Q. Molecular recognition of 7-(2-octadecyloxycarbonylethyl) guanine to cytidine at the air/water interface and LB film studied by fourier transform infrared spectroscopy[J]. Spectrochim. Acta Part A, 2003, 59(5): 1045-1050.

[76]

Miao W, Luo X, Wu S, Liang Y. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl) guanine before and after recognition to cytidine[J]. Spectrochim. Acta Part A, 2004, 60(1-2): 413-416.

[77]

Wang Y C, Du X Z, Miao W G, Liang Y Q. Molecular recognition of cytosine-and guanine-functionalized nucleolipids in the mixed monolayers at the air-water interface and langmuir-blodgett films[J]. J. Phys. Chem. B, 2006, 110(10): 4914-4923.

[78]

Čoga L, Spindler L, Masiero S, Drevenšek-Olenik I. Molecular recognition of a lipophilic guanosine derivative in langmuir films at the air-water interface[J]. Biochim. Biophys. Acta., 2017, 1861(5): 1463-1470.

[79]

Wu J Y, Lin H, Moss D J, Loh K P, Jia B H. Graphene oxide for photonics, electronics and optoelectronics[J]. Nat. Rev. Chem., 2023, 7(3): 162-183.

[80]

Avornyo A, Chrysikopoulos C V. Applications of graphene oxide (Go) in oily wastewater treatment: Recent developments, challenges, and opportunities[J]. J. Environ. Manag., 2024, 353: 120178.

[81]

Song J Y, Fan M S, Zhang R, Qu M J, Tang P, Wang H, Bin Y Z. Highly sensitive humidity sensor based on composite film of partially reduced graphene oxide and bacterial cellulose[J]. Biosens. Bioelectron., 2024, 257: 116296.

[82]

Pabel M Y, Yasmin S, Shaikh M A A, Kabir M H. Electronic waste derived reduced graphene oxide supported silver nanoparticles for the electrochemical sensing of trace level arsenite in aqueous medium[J]. Sens. Actuators A: Phys., 2024, 366: 115028.

[83]

Boateng E, Thiruppathi A R, Hung C K, Chow D, Sridhar D, Chen A. Functionalization of graphene-based nanomaterials for energy and hydrogen storage[J]. Electrochim. Acta, 2023, 452: 142340.

[84]

Kaur M, Chand P, Anand H. Fabrication of asymmetric supercapacitor device with NiCo2O4@reduced graphene oxide nanocomposites[J]. Electrochim. Acta, 2024, 507: 145118.

[85]

Ghanashyam G, Kim H. Co-doped 1t-MoS2 microspheres embedded in N-doped reduced graphene oxide for efficient electrocatalysis toward hydrogen and oxygen evolution reactions[J]. J. Power Sources, 2024, 596: 234088.

[86]

Ahmed A, Singh A, Young S J, Gupta V, Singh M, Arya S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (RGO) composites: A review[J]. Compos. Part A-Appl. S, 2023, 165: 107373.

[87]

Anegbe B, Ifijen I H, Maliki M, Uwidia I E, Aigbodion A I. Graphene oxide synthesis and applications in emerging contaminant removal: A comprehensive review[J]. Environ. Sci. Eur., 2024, 36(1): 15.

[88]

Gao M M, Xu Y Y, Wang X H, Sang Y H, Wang S G. Analysis of electrochemical reduction process of graphene oxide and its electrochemical behavior[J]. Electroanalysis, 2016, 28(6): 1377-1382.

[89]

Fuente E, Menéndez J, Díez M, Suárez D, Montes-Morán M. Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds[J]. J. Phys. Chem. B, 2003, 107(26): 6350-6359.

[90]

Acik M, Lee G, Mattevi C, Pirkle A, Wallace R M, Chhowalla M, Cho K, Chabal Y. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. J. Phys. Chem. C, 2011, 115(40): 19761-19781.

[91]

Ren Y Y, Zhou T, Su G H, Ma Y A. Online tracking of the thermal reduction of graphene oxide by two-dimensional correlation infrared spectroscopy[J]. Vib. Spectrosc., 2018, 96: 32-45.

[92]

Su Z, Quintal J, Al-Jeda M, Thiruppathi A R, Lipkowski J, Chen A. Electrochemical reduction of graphene oxide on the gold surface: localized electrochemical impedance and in situ polarization modulation infrared reflection absorption spectroscopic studies[J]. J. Phys. Chem. C, 2023, 127(44): 21644-21655.

[93]

Aligholizadeh N, Alzate-Carvajal N, Nallayagari A R, Monyoncho E A, Zulevi B, Serov A, Baranova E A. In situ polarization modulation IRRAS investigation of ammonia electrooxidation on Pt-Ir and Pt-Ru nanoparticles prepared on engineered catalyst supports[J]. Electrochim. Acta, 2024, 507: 145046.

[94]

Bewick A, Kunimatsu K. Infra red spectroscopy of the electrode-electrolyte interphase[J]. Surf. Sci., 1980, 101(1-3): 131-138.

[95]

Davidson T, Pons B S, Bewick A, Schmidt P P. Vibrational spectroscopy of the electrode/electrolyte interface—use of Fourier transform infrared spectroscopy[J]. J. Electroanal. Chem., 1981, 125(1): 237-241.

[96]

Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bull. Chem. Soc. Jpn., 1997, 70(12): 2861-2880.

[97]

Osawa M. Surface-enhanced infrared absorption[M]// Near-field optics and surface plasmon polaritons, Springer, 2006: 163-187.

[98]

Kozuch J, Ataka K, Heberle J. Surface-enhanced infrared absorption spectroscopy[J]. Nat. Rev. Methods Primers, 2023, 3(1): 70.

[99]

Chao Y, Li H, Jiang T W, Huang J A, Ma X Y, Jiang K, Cai W B. Recent advancements of electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy[J]. Curr. Opin. Electrochem., 2024: 101509.

[100]

Morhart T A, Unni B, Lardner M J, Burgess I J. Electrochemical ATR-SEIRAS using low-cost, micromachined Si wafers[J]. Anal. Chem., 2017, 89(21): 11818-11824.

[101]

Morhart T A, Read S, Wells G, Jacobs M, Rosendahl S M, Achenbach S, Burgess I J. Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectromicroscopy using synchrotron radiation and micromachined silicon wafers for microfluidic applications[J]. Appl. Spectrosc., 2018, 72(12): 1781-1789.

[102]

Andvaag I R, Morhart T A, Clarke O J R, Burgess I J. Hybrid gold-conductive metal oxide films for attenuated total reflectance surface enhanced infrared absorption spectroscopy[J]. ACS Appl. Nano Mater., 2019, 2(3): 1274-1284.

[103]

Morhart T A, Read S T, Wells G, Jacobs M, Rosendahl S M, Achenbach S, Burgess I J. Micromachined multigroove silicon ATR FT-IR internal reflection elements for chemical imaging of microfluidic devices[J]. Anal. Methods, 2019, 11(45): 5776-5783.

[104]

Andvaag I R, Lins E, Burgess I J. An effective medium theory description of surface-enhanced infrared absorption from metal island layers grown on conductive metal oxide films[J]. J. Phys. Chem. C, 2021, 125(40): 22301-22311.

[105]

Tu K Y, Morhart T A, Read S T, Rosendahl S M, Burgess I J. Probing heterogeneity in attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) response with synchrotron infrared microspectroscopy[J]. Appl. Spectrosc., 2021, 75(9): 1198-1206.

[106]

Morhart T A, Tu K Y, Read S T, Rosendahl S M, Wells G, Achenbach S, Burgess I J. Surface enhanced infrared spectroelectrochemistry using a microband electrode[J]. Can. J. Chem., 2022, 100(7): 495-499.

[107]

Clarke O J R, Rowley A, Fox R V, Atifi A, Burgess I J. Diamonds in the rough: Direct surface enhanced infrared spectroscopic evidence of nitrogen reduction on boron-doped diamond supported metal catalysts[J]. Anal. Chem., 2023, 95(28): 10476-10480.

[108]

Ma X Y, Ding C, Li H, Jiang K, Duan S, Cai W B. Revisiting the acetaldehyde oxidation reaction on a Pt electrode by high-sensitivity and wide-frequency infrared spectroscopy[J]. J. Phys. Chem. Lett., 2020, 11(20): 8727-8734.

[109]

Ma X Y, Zhang W Y, Ye K, Jiang K, Cai W B. Electrolyte-layer-tunable ATR-SEIRAS for simultaneous detection of adsorbed and dissolved species in electrochemistry[J]. Anal. Chem., 2022, 94(32): 11337-11344.

[110]

Mao Z, Wu Y, Ma X Y, Zheng L, Zhang X G, Cai W B. In situ wide-frequency surface-enhanced infrared absorption spectroscopy enables one to decipher the interfacial structure of a Cu plating additive[J]. J. Phys. Chem. Lett., 2022, 13(39): 9079-9084.

[111]

Zhang W Y, Ma X Y, Jiang T W, Xu X, Ni B, Chen B, Wang Y, Jiang K, Cai W B. Atomic layer deposition of TiO2 on Si window enables in situ ATR-SEIRAS measurements in strong alkaline electrolytes[J]. Anal. Chem., 2024, 96(25): 10111-10115.

[112]

Mao Z, Wu Y, Xu X, Chao Y, Zhang X G, Wang C, Cai W B. Uncovering the dissociative adsorption of the Leveler Janus Green B on Cu electrodes at the molecular level[J]. J. Phys. Chem. Lett., 2024, 15: 6668-6675.

[113]

Zhou Z Y, Sun S G. In situ step-scan time-resolved microscope FTIR spectroscopy applied in irreversible electrochemical reactions[J]. Electrochim. Acta, 2005, 50(25-26): 5163-5171.

[114]

Zhou Z Y, Lin S C, Chen S P, Sun S G. In situ step-scan time-resolved microscope FTIR spectroscopy working with a thin-layer cell[J]. Electrochem. Commun., 2005, 7(5): 490-495.

[115]

Zhou Z Y, Tian N, Chen Y J, Chen S P, Sun S G. In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: Study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode[J]. J. Electroanal. Chem., 2004, 573(1): 111-119.

[116]

Osawa M, Yoshii K, Ataka K I, Yotsuyanagi T. Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-total-reflection spectroscopy[J]. Langmuir, 1994, 10(3): 640-642.

[117]

Ataka K, Nishina G, Cai W B, Sun S G, Osawa M. dynamics of the dissolution of an underpotentially deposited Cu layer on Au(111): A combined time-resolved surface-enhanced infrared and chronoamperometric study[J]. Electrochem. Commun., 2000, 2(6): 417-421.

[118]

Samjeské G, Osawa M. Current oscillations during formic acid oxidation on a Pt electrode: insight into the mechanism by time-resolved IR spectroscopy[J]. Angew. Chem. Int. Ed., 2005, 44(35): 5694-5698.

[119]

Clarke O J R, Burgess I J. Electrodeposited gold nanodaggers on conductive metal oxide films provide substrates for dual-modality surface sensitive vibrational spectroscopy[J]. J. Phys. Chem. C, 2020, 124(24): 13356-13364.

[120]

Lins E, Read S, Unni B, Rosendahl S M, Burgess I J. Microsecond resolved infrared spectroelectrochemistry using dual frequency comb IR lasers[J]. Anal. Chem., 2020, 92(9): 6241-6244.

[121]

Lins E, Andvaag I R, Read S, Rosendahl S M, Burgess I J. Dual-frequency comb spectroscopy studies of ionic strength effects in time-resolved ATR-SEIRAS[J]. J. Electroanal. Chem., 2022, 921: 116672.

[122]

Osawa M, Ataka K I, Yoshii K, Nishikawa Y. Surface-enhanced infrared spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J]. Appl. Spectrosc., 1993, 47(9): 1497-1502.

[123]

Su Z F, Sun S G, Wu C X, Cai Z P. Study of anomalous infrared properties of nanomaterials through effective medium theory[J]. J. Chem. Phys., 2008, 129(4): 044707.

[124]

Bin X, Lipkowski J. Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au(111) electrode[J]. J. Phys. Chem. B, 2006, 110(51): 26430-26441.

AI Summary AI Mindmap
PDF (3269KB)

259

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/