Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide: On the Origin of Photocatalytic Oxygen Evolution Activity

Yi-Qing Wang , Zhi Lin , Ming-Tao Li , Shao-Hua Shen

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2418002

PDF (2656KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (5) : 2418002 DOI: 10.61558/2993-074X.3523
ARTICLE
research-article

Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide: On the Origin of Photocatalytic Oxygen Evolution Activity

Author information +
History +
PDF (2656KB)

Abstract

Polymeric perylene diimide (PDI) has been evidenced as a good candidate for photocatalytic water oxidation, yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration. Herein, with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern, the electronic structure is theoretically illustrated by the first-principles density functional theory calculations, suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI. It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis. The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H2O → *OH → *O → *OOH → *O2 with an overpotential of 0.81 V. Through an in-depth theoretical computational analysis in the atomic and electronic structures, the origin of photocatalytic oxygen evolution activity for PDI is well illustrated, which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.

Keywords

Photocatalytic oxygen evolution / Polymeric perylene diimide / Atomic structure / Electronic structure / Reaction pathway

Cite this article

Download citation ▾
Yi-Qing Wang, Zhi Lin, Ming-Tao Li, Shao-Hua Shen. Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide: On the Origin of Photocatalytic Oxygen Evolution Activity. Journal of Electrochemistry, 2025, 31(5): 2418002 DOI:10.61558/2993-074X.3523

登录浏览全文

4963

注册一个新账户 忘记密码

Supporting Information

Additional information as noted in the text is available free of charge via the internet at https://jelectrochem.xmu.edu.cn/journal/

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 523B2070, No. 52225606),

Conflict of interests

The authors declare no competing interests.

Author contributions

Shao-Hua Shen: Conceptualization (Lead), Project administration (Lead), Supervision (Lead), Writing - original draft (Lead), Writing - review & editing (Lead), funded (Lead); Yi-Qing Wang: Conceptualization (Lead), Investigation (Lead), Methodology (Lead), Visualization (Lead), Writing - original draft (Lead), Writing - review & editing (Lead), funded (Supporting); Zhi Lin: Conceptualization (Supporting), Investigation (Supporting); Ming-Tao Li: Methodology (Supporting).

References

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[2]

Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chem. Soc. Rev., 2019, 48(7): 2109-2125.

[3]

Wang Y Q, Zhao D M, Deng H, Li M T, Chen J, Shen S H. Theoretical insights into the limitation of photocatalytic overall water splitting performance of via group elements doped polymeric carbon nitride: a density functional theory calculation predicting solar-to-hydrogen efficiency[J]. Solar RRL, 2021, 5(6): 2000630.

[4]

Rahman M Z, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production[J]. Nat. Rev. Chem., 2022, 6(4): 243-258.

[5]

Wang Y, Vogel A, Sachs M, Sprick R S, Wilbraham L, Moniz S J A, Godin R, Zwijnenburg M A, Durrant J R, Cooper A I, Tang J. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts[J]. Nat. Energy, 2019, 4(9): 746-760.

[6]

Zhang G G, Huang C J, Wang X C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation[J]. Small, 2015, 11(9-10): 1215-1221.

[7]

Zhao D M, Dong C L, Wang B, Chen C, Huang Y C, Diao Z D, Li S Z, Guo L J, Shen S H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Adv. Mater., 2019, 31(43): 1903545.

[8]

Zhao D M, Wang Y Q, Dong C L, Huang Y C, Chen J, Xue F, Shen S H, Guo L J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting[J]. Nat. Energy, 2021, 6(4): 388-397.

[9]

Yang B, Lu L L, Liu S Y, Cheng W J, Liu H, Huang C, Meng X T, Rodriguez R D, Jia X. Recent progress in perylene diimide supermolecule-based photocatalysts[J]. J. Mater. Chem. A, 2024, 12(7): 3807-3843.

[10]

Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation[J]. Adv. Mater., 2020, 32(32): 1907746.

[11]

Lin Z, Wang Y Q, Peng Z M, Huang Y C, Meng F Q, Chen J L, Dong C L, Zhang Q H, Wang R Z, Zhao D M. Single‐metal atoms and ultra‐small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production[J]. Adv. Energy Mater., 2022, 12(26): 2200716.

[12]

Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.

[13]

Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. J. Phys. Cond. Matter, 1994, 6(40): 8245.

[14]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.

[15]

Bučko T, Lebègue S, Hafner J, Ángyán JG. Tkatchenko-Scheffler Van Der Waals correction method with and without self-consistent screening applied to solids[J]. Phys. Rev. B, 2013, 87(6): 064110.

[16]

Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892.

[17]

Medford A J, Shi C, Hoffmann M J, Lausche A C, Fitzgibbon S R, Bligaard T, Nørskov J K. Catmap: A Software package for descriptor-based microkinetic mapping of catalytic trends[J]. Catal. Lett., 2015, 145(3): 794-807.

[18]

Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2014, 53(52): 14433-14437.

[19]

Boultif A, Louër D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method[J]. J. Appl. Cryst., 1991, 24(6): 987-993.

[20]

Qin J Y, Shu Q W, Yuan Y, Qiu W, Xiao L H, Peng P, Lu G S. First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33Wo3[J]. Acta Phys. Sin., 2020, 69(4): 047102-047101-047102-047107.

[21]

Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541-545.

[22]

Yi Y W, Quan C Y, Long F, Pu Y, Li X A. Exploring the thickness dependent photocatalytic oxygen evolution performance for Bi4TaO8Cl two-dimensional semiconductor[J]. Appl. Surf. Sci., 2021, 539: 148193.

[23]

Sze S M, Ng K K. Physics of semiconductor devices[M]. Berlin, Germany: Springer, 2006.

[24]

Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. J. Phys. Chem. A, 2011, 115(21): 5461-5466.

[25]

Wang Z Q, Zheng Z Q, Xue Y R, He F, Li Y L. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Adv. Energy Mater., 2021, 11(32): 2101138.

[26]

Lin S, Ye X, Gao X, Huang J. Mechanistic insight into the water photooxidation on pure and sulfur-doped g-C3N4 photocatalysts from DFT calculations with dispersion corrections[J]. J. Mol. Catal. A: Chem., 2015, 406: 137-144.

AI Summary AI Mindmap
PDF (2656KB)

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/