SnO2 Particles Embedded into Carbon Coated Mesoporous SiOx Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries

Jia-Lin Guo , Ni-Ni Li , Peng Zheng

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (2) : 2410171

PDF (1329KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (2) :2410171 DOI: 10.61558/2993-074X.3520
ARTICLE
research-article

SnO2 Particles Embedded into Carbon Coated Mesoporous SiOx Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries

Author information +
History +
PDF (1329KB)

Abstract

Due to the high capacity and moderate volume expansion of silicon protoxide SiOx (160%) compared with that of Si (300%), reducing silicon dioxide SiO2 into SiOx while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries. Herein, through a one-pot facile high-temperature annealing route, using SBA15 as the silicon source, and embedding tin dioxide SnO2 particles into carbon coated SiOx, the mesoporous SiOx-SnO2@C rod composite was prepared and tested as the anode material. The results revealed that the SnO2 particles were distributed uniformly in the wall, which could further improve their volume energy densities. The coated carbon plays a role in maintaining structural integrality during lithiation, and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer. At 0.1 A·g-1, the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g-1and 1573 mAh·cm-3, respectively. After 200 cycles, the 95% capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g-1. And the rod morphology was well kept, except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.

Keywords

Carbon coating / Mesoporous SiOx / Anode / Li-ion battery

Cite this article

Download citation ▾
Jia-Lin Guo, Ni-Ni Li, Peng Zheng. SnO2 Particles Embedded into Carbon Coated Mesoporous SiOx Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries. Journal of Electrochemistry, 2025, 31(2): 2410171 DOI:10.61558/2993-074X.3520

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pendashteh A, Tomey R, Vilatela J. Nanotextile 100% Si anodes for the next generation energy-dense Li-ion batteries[J]. Adv. Energy Mater., 2024, 14(16): 2304018.

[2]

Lu B, Ma B J, Deng X L, Li W W, Wu Z Y, Shu H B, Wang X Y. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery[J]. ACS Appl. Mater. Interfaces, 2017, 9(38): 32829-32839.

[3]

Xu G L, Xiao L, Sheng T, Liu J, Hu Y X, Ma T, Amine R, Xie Y, Zhang X, Liu, Y. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid[J]. Nano Lett., 2018, 18(1): 336-346.

[4]

Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv. Energy Mater., 2017, 7(1): 1601507.

[5]

Meng B C, Yu J, Peng J X, Wei Y B, Zhu F, Chen T X, Yang N X, Chuan X, Li L B. Combine natural stibnite with bio-carbon: A high-capacity composite anode material for lithium-ion battery[J]. JOM, 2023, 75(7): 2626-2635.

[6]

Ma Y, Zheng Y, Xu M, Huang S, Yuan G H. One-step binding and wrapping fragmented natural microcrystalline graphite via phenolic resin into secondary particles for high-performance lithium-ion battery anode[J]. JOM, 2023, 75(12): 5321-5330.

[7]

Xia X, Qian X Y, Chen C, Li W Y, He D F, He G Y, Chen H Q. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. J. Energy Storage, 2023, 72: 108715.

[8]

Liu Y B, Liu X Y, Zhu Y L, Wang J W, Ji W W, Liu X Z. Scalable synthesis of pitch-coated nanoporous Si/graphite composite anodes for lithium-ion batteries[J]. Energy Fuels, 2023, 37(6): 4624-4631.

[9]

Li Y F, Li Q M, Chai J L, Wang Y T, Du J K, Chen Z Y, Rui Y C, Jiang L, Tang B H J. Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress[J]. ACS Mater. Lett., 2023, 5(11): 2948-2970.

[10]

Ming H, Qiu J Y, Zhang S T, Li M, Zhu X Y, Wang L M, Ming J. Constructing dense SiOx@carbon nanotubes versus spinel cathode for advanced high-energy lithium-ion batteries[J]. ChemElectroChem, 2017, 4(5): 1165-1171.

[11]

Liu Q, Cui Z, Zou R J, Zhang J H, Xu K B, Hu J Q. Surface coating constraint induced anisotropic swelling of silicon in Si-void@SiOx nanowire anode for lithium-ion batteries[J]. Small, 2017, 13(13): 1603754.

[12]

Fu R S, Zhang K L, Zaccaria R P, Huang H R, Xia Y G, Liu Z P. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries[J]. Nano Energy, 2017, 39: 546-553.

[13]

Chen P H, Wu H, Huang S S, Zhang Y. Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials[J]. Ceram. Int., 2016, 42(8): 10498-10505.

[14]

Wu G L, Jia Z R, Cheng Y H, Zhang H X, Zhou X F, Wu H J. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries[J]. Appl. Surf. Sci., 2019, 464: 472-478.

[15]

Liu Y, Haridas A. K., Lee Y., Cho K K, Ahn J H. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Appl. Surf. Sci., 2019, 472: 135-142.

[16]

Ma T Y, Yu X N, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Lett., 2017, 17(6): 3959-3964.

[17]

Zhou Z W, Liu Y T, Xie X M, Ye X Y. Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage[J]. Appl. Surf. Sci., 2016, 8(11): 7092-7100.

[18]

Lei Y, Li S, Du M, Mi J, Gao D C, Hao L, Jiang L J, Luo M, Jiang W Q, Li F, Wang S H. Preparation of double-shell Si@SnO2@C nanocomposite as anode for lithium-ion batteries by hydrothermal method[J]. Rare Met., 2023, 42(9): 2972-2981.

[19]

Ji X L, Lee K T, Monjauze M, Nazar L F. Strategic synthesis of SBA-15 nanorods[J]. Chem. Commun., 2008, 36: 4288-4290.

[20]

Zhang N, Zhao Q, Han X P, Yang J G, Chen J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries[J]. Nanoscale, 2014, 6(5): 2827-2832.

[21]

Ren D Z, Huang H, Qi J G, Zheng P. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technol., 2020, 8(7): 2000314.

[22]

Liu Y H, Xu Y H, Zhu Y J, Culver J N, Lundgren C A, Xu K, Wang C S. Tin-coated viral nanoforests as sodium-ion battery anodes[J]. ACS Nano, 2013, 7(4): 3627-3634.

[23]

Chang P, Liu X X, Zhao Q J, Huang Y Q, Huang Y H, Hu X L. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(37): 31879-31886.

[24]

Murugesan S, Harris J T, Korgel B A, Stevenson K J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chem. Mater., 2012, 24(7): 1306-1315.

[25]

Zheng P, Liu T, Guo S W. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries[J]. Sci. Rep., 2016, 6: 35620.

[26]

Zheng P, Liu T, Yuan X Y, Zhang L F, Liu Y, Huang J F, Guo S W. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode[J]. Sci. Rep., 2016, 6: 26246.

[27]

Michelson A, Zhang H H, Xiang S T, Gang O. Engineered silicon carbide three-dimensional frameworks through DNA-prescribed assembly[J]. Nano Lett., 2021, 21(4): 1863-1870.

[28]

Ren Y R, Li M Q. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance[J]. J. Power Sources, 2016, 306: 459-466.

[29]

Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlögl R, Antonietti M, Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew. Chem., Int. Ed., 2008, 47(9): 1645-1649.

[30]

Zheng P, Su J X, Wang Y B, Zhou W, Song J J, Su Q M, Reeves-McLaren N, Guo S W. A high-performance primary nanosheet heterojunction cathode composed of Na0.44MnO2 tunnels and layered Na2Mn3O7 for Na-ion batteries[J]. ChemSusChem, 2020, 13(7): 1793-1799.

[31]

Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L, Mai L Q. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48(1): 285-309.

PDF (1329KB)

613

Accesses

0

Citation

Detail

Sections
Recommended

/