In-situ Electrodeposition of FeCo-MOF on Au Ultramicroelectrode for Highly Sensitive Detection of Epinephrine

Yan Chen , Jian Shang , Si-Yu Wan , Xiao-Tong Cui , Zhong-Gang Liu , Zheng Guo

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (3) : 2417001

PDF (1321KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (3) :2417001 DOI: 10.61558/2993-074X.3516
ARTICLE
research-article

In-situ Electrodeposition of FeCo-MOF on Au Ultramicroelectrode for Highly Sensitive Detection of Epinephrine

Author information +
History +
PDF (1321KB)

Abstract

Metal-organic framework (MOF) nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors. The rational design of bimetallic MOF-functionalized microelectrode is of importance for improving the electrochemical performance but still in great challenge. In this work, the bimetallic FeCo-MOF nanostructures were assembled onto a gold disk ultramicroelectrode (Au UME, 5.2 µm in diameter) via an in-situ electrodeposition method, which enhanced the sensitive detection of epinephrine (EP). The in-situ electrodeposited FeCo-MOF exhibited a characteristic nanoflower-like morphology and was uniformly dispersed on the Au UME. The FeCo-MOF/Au UME demonstrated excellent electrochemical performance on the detection of EP with a high sensitivity of 36.93 μA·μmol-1·L·cm-2 and a low detection limit of 1.28 μmol·L-1. It can be attributed to the nonlinear diffusion of EP onto the ultra-micro working substrate, coupled with synergistical catalytic activity of the bimetallic Fe, Co within MOF structure. Furthermore, the FeCo-MOF/Au UME has been successful applied to the analysis of EP in human serum samples, yielding high recovery rates. These results not only contribute to the expansion of the research area of electrochemical sensors, but also provide novel insights and directions into the development of high-performance MOF-based electrochemical sensors.

Keywords

FeCo-MOF / gold disk ultramicroelectrode / in-situ electrodeposition / electroanalysis / epinephrine

Cite this article

Download citation ▾
Yan Chen, Jian Shang, Si-Yu Wan, Xiao-Tong Cui, Zhong-Gang Liu, Zheng Guo. In-situ Electrodeposition of FeCo-MOF on Au Ultramicroelectrode for Highly Sensitive Detection of Epinephrine. Journal of Electrochemistry, 2025, 31(3): 2417001 DOI:10.61558/2993-074X.3516

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding Y N, Tan K W, Zhang S C, Wang S, Zhang X, Hu P A. Wearable and recyclable epinephrine biosensors based on molecular imprinting polymer modified organic electrochemical transistors[J]. Chem. Eng. J., 2023, 477: 146844.

[2]

Srivastava A, Kumar G, Kumar P, Srikrishna S, Chandra P, Singh V P. Thiazole-based silver ion sensor for sequential colorimetric visualization of epinephrine in the brain tissues of an Alzheimer's disease model of mouse[J]. ACS Appl. Bio Mater., 2024, 7(5): 3271-3282.

[3]

Su Y, Bian S M, Sawan M. Real-time in vivo detection techniques for neurotransmitters: A review[J]. Analyst, 2020, 145(19): 6193-6210.

[4]

Leau S A, Lete C, Lupu S. Nanocomposite materials based on metal nanoparticles for the electrochemical sensing of neurotransmitters[J]. Chemosensors, 2023, 11(3): 179.

[5]

Xu Q Q, Wang Q Q, Liu Z G, Guo Z, Huang X J. Ultrafine Co3O4 nanoparticle-loaded carbon spheres for the simultaneous ultrasensitive electrochemical determination of hydroquinone and catechol[J]. ACS Sustain. Chem. Eng., 2023, 11(47): 16764-16773.

[6]

Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang X X, Huo P P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives[J]. Environ. Res., 2024, 247: 118002.

[7]

Li B, Meng T H, Xie X M, Guo X T, Li Q Z, Du W B, Zhang X A, Meng X R, Pang H. Fe-based Composites-enabled electrochemical sensors for nitrite detection: A review[J]. Mater. Today Chem., 2023, 33: 101747.

[8]

Qian L T, Durairaj S, Prins S, Chen A C. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds[J]. Biosens. Bioelectron., 2021, 175: 112836.

[9]

Du Y J, Jia X T, Zhong L, Jiao Y, Zhang Z J, Wang Z Y, Feng Y X, Bilal M, Cui J D, Jia S R. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites[J]. Coordin. Chem. Rev., 2022, 454: 214327.

[10]

Peng Y, Sanati S, Morsali A, Garcia H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem. Int. Ed., 2023, 62(9): e202214707.

[11]

Mohan B, Priyanka Singh G, Chauhan A, Pombeiro A J L, Ren P Metal-organic frameworks(MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. J. Hazard. Mater., 2023, 453: 131324.

[12]

Rasheed T, Rizwan K. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications[J]. Biosens. Bioelectron., 2022, 199: 113867.

[13]

Chen X R, Sun D L, Wu W, Wu P, Yang F, Liu J, Ma Z L, Zhang Y Y, Zheng D Y. Boosting the electrochemcial activity of Fe-MIL-101 via acid modulators for highly sensitive detection of o-nitrophenol[J]. Microchem. J., 2022, 183: 108076.

[14]

Lakhan M N, Hanan A, Wang Y, Liu S M, Arandiyan H. Recent progress on nickel- and iron-based metallic organic frameworks for oxygen evolution reaction: A review[J]. Langmuir, 2024, 40(5): 2465-2486.

[15]

Ling C, Leng X Y, Lu X J, Li J H, Yang Z K, Xu A W. A self-supported S-doped Fe-based organic framework platform enhances electrocatalysis toward highly efficient oxygen evolution in alkaline media[J]. J. Mater. Chem. A, 2022, 10(33): 17246-17253.

[16]

Kavya K V, Muthu D, Varghese S, Pattappan D, Kumar R T R, Haldorai Y. Glassy carbon electrode modified by gold nanofibers decorated iron metal-organic framework nanocomposite for voltammetric determination of acetaminophen[J]. Carbon Lett., 2022, 32(6): 1441-1449.

[17]

Liang H, Liu R P, Hu C Z, An X Q, Zhang X W, Liu H J, Qu J H. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation[J]. J. Hazard. Mater., 2021, 406: 124692-124701.

[18]

Wang S, Li Q, Sun S J, Ge K, Zhao Y, Yang K, Zhang Z H, Cao J Y, Lu J, Yang Y F, Zhang Y, Pan M W, Lin Z Q, Zhu L. Heterostructured ferroelectric BaTiO3@MOF-Fe/Co electrocatalysts for efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2022, 10(10): 5350-5360.

[19]

Peng Y, Yu L Y, Sheng M T, Wang Q, Jin Z Y, Huang J S, Yang X R. Room-temperature synthesized iron/cobalt metal-organic framework nanosheets with highly efficient catalytic activity toward luminol chemiluminescence reaction[J]. Anal. Chem., 2023, 95(50): 18436-18442.

[20]

Hang X X, Yang R, Xue Y D, Zheng S S, Shan Y Y, Du M, Zhao J W, Pang H. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance[J]. Chin. Chem. Lett., 2023, 34(7): 107787.

[21]

Cui S M, Shao Y J, Zhong W Q. Synthesis and characterization of novel bimetallic Mg-Ca/DOBDC metal-organic frameworks as a high stability CO2 adsorbent[J]. Chem. Eng. J., 2023, 474: 145018.

[22]

Luo J, Luo X, Gan Y H, Xu X M, Xu B, Liu Z, Ding C C, Cui Y B, Sun C. Advantages of bimetallic organic frameworks in the adsorption, catalysis and detection for water contaminants[J]. Nanomaterials, 2023, 13(15): 2194.

[23]

Sanati S, Abazari R, Albero J, Morsali A, Garcia H, Liang Z B, Zou R Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2021, 60(20): 11048-11067.

[24]

Wang X L, Dong L Z, Qiao M, Tang Y J, Liu J, Li Y, Li S L, Su J X, Lan Y Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system[J]. Angew. Chem. Int. Ed., 2018, 57(31): 9660-9664.

[25]

Yang H G, Yang R T, Zhang P, Qin Y M, Chen T, Ye F G. A bimetallic(Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide[J]. Microchim. Acta, 2017, 184(12): 4629-4635.

[26]

Xie J W, Cheng D, Li P P, Xu Z J, Zhu X H, Zhang Y Y, Li H T, Liu X Y, Liu M L, Yao S Z. Au/Metal-organic framework nanocapsules for electrochemical determination of glutathione[J]. ACS Appl. Nano Mater., 2021, 4(5): 4853-4862.

[27]

Fu X C, Ding B W, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications[J]. Coordin. Chem. Rev., 2023, 475: 214814.

[28]

Danis L, Polcari D, Kwan A, Gateman S M, Mauzeroll J. Fabrication of carbon, gold, platinum, silver, and mercury ultramicroelectrodes with controlled geometry[J]. Anal. Chem., 2015, 87(5): 2565-2569.

[29]

Moussa S, Mauzeroll J. Review-Microelectrodes: An overview of probe development and bioelectrochemistry applications from 2013 to 2018[J]. J. Electrochem. Soc., 2019, 166(6): G25-G38.

[30]

Xiao T, Huang J S, Wang D W, Meng T, Yang X R. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications[J]. Talanta, 2020, 206: 120210.

[31]

Sajid M, Nazal M K, Mansha M, Alsharaa A, Jillani S M S, Basheer C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J]. Trac-Trend Anal. Chem., 2016, 76: 15-29.

[32]

Chen Y, Yang X J, Liu Z G, Liu G H, Guo Z. NH2-MIL-101(Fe) anchored onto nanoporous gold microelectrode: Highly sensitive electrochemical platform for simultaneously sensing of ascorbic acid and uric acid[J]. Microchem. J., 2024, 198: 110152.

[33]

Farahani F S, Rahmanifar M S, Noori A, El-Kady M F, Hassani N, Neek-Amal M, Kaner R B, Mousavi M F. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications[J]. J. Am. Chem. Soc., 2022, 144(8): 3411-3428.

[34]

Li M Y, Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks[J]. J. Am. Chem. Soc., 2011, 133(33): 12926-12929.

[35]

Wang Q, Lu J H, Jiang Y, Yang S R, Yang Y, Wang Z H. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants[J]. Chem. Eng. J., 2022, 443: 136483.

[36]

Chen J L, Liu J, Xu S J, Wu Y, Ye Y N, Qian J J. Bimetallic ZnCo-MOF derived porous Ir-doped cobalt oxides for water oxidation with improved activity and stability[J]. Inorg. Chem. Front, 2024, 11(15): 4876-4885.

[37]

Jiang N, Song J L, Yan M Y, Hu Y, Wang M M, Liu Y B, Huang M H. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism[J]. Bioresour. Technol., 2023, 367: 128230.

[38]

Vijayaraghavan P, Wang Y Y, Palanisamy S, Lee L Y, Chen Y K, Tzou S C, Yuan S S F, Wang Y M. Hierarchical ensembles of FeCo metal-organic frameworks reinforced nickel foam as an impedimetric sensor for detection of IL-1RA in human samples[J]. Chem. Eng. J., 2023, 458: 141444.

[39]

Liu K K, Chen Y A, Dong X L, Hu Y M, Huang H P. Bimetallic FeCo metal-organic-frameworks anchored multi-walled carbon nanotubes for electrochemical nitrite sensing[J]. Electrochim. Acta, 2023, 456: 142441.

[40]

Xie M W, Ma, Y, Lin D M, Xu C G, Xie F Y, Zeng W. Bimetal-organic framework MIL-53(Co-Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020, 12(1): 67-71.

[41]

Wierzbicka E, Sulka G D. Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of epinephrine[J]. Sens. Actuators B: Chem., 2016, 222: 270-279.

[42]

Zhang J D, Kambayashi M, Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrodes: Electrochemical characterization and evaluation[J]. Electroanalysis, 2005, 17(5-6): 408-416.

[43]

Tortolini C, Cass A E G, Pofi R, Lenzi A, Antiochia R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection[J]. Microchim. Acta, 2022, 189(5): 180.

[44]

Soosaimanickam C, Sakthivel A, Murugavel K, Alwarappan S. Zeolite imidazolate framework-based platform for the electrochemical detection of epinephrine[J]. J. Electrochem. Soc., 2023, 170(10): 107504.

[45]

Da Silva L V, Dos Santos, N D, De Almeida A K A, Dos Santos D D E R, Ferreira Santos A C, Franca M C, Lima D J P, Lima P R, Goulart M O F. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids[J]. J. Electroanal. Chem., 2021, 881: 114919.

[46]

Mphuthi N G, Adekunle A S, Ebenso E E. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor[J]. Sci. Rep., 2016, 6: 26938.

[47]

Tohidinia M, Noroozifar M. Investigation of carbon allotropes for simultaneous determination of ascorbic acid, epinephrine, uric acid, nitrite and xanthine[J]. Inter. J. Electrochem. Sci., 2018, 13(3): 2310-2328.

[48]

Wierzbicka E, Szultka Mlynska M, Buszewski B, Sulka G D. Epinephrine sensing at nanostructured Au electrode and determination its oxidative metabolism[J]. Sens. Actuators B: Chem., 2016, 237: 206-215.

[49]

Ibanez Redin G, Wilson D, Goncalves D, Oliveira O N, Jr. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection[J]. J. Colloid Interface Sci., 2018, 515: 101-108.

[50]

Wierzbicka E, Sulka G D. Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing[J]. J. Electroanal. Chem., 2016, 762: 43-50.

PDF (1321KB)

848

Accesses

0

Citation

Detail

Sections
Recommended

/