PDF
(6375KB)
Abstract
Lithium nickel oxide (Li2NiO2), as a sacrificial cathode prelithiation additive, has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries (LIBs). However, high-cost Li2NiO2 suffers from inferior delithiation kinetics during the first cycle. Herein, we investigated the effects of the cost-effective copper substituted Li2Ni1-xCuxO2 (x = 0, 0.2, 0.3, 0.5, 0.7) synthesized by a high-temperature solid-phase method on the structure, morphology, electrochemical performance of graphite‖LiFePO4 battery. The X-ray diffraction (XRD) refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiOx impurity phase and weakening Li-O bond. Analysis on density of states (DOS) indicates that Cu substitution is good for enhancing the electronic conductivity, as well as reducing the delithiation voltage polarization confirmed by electrochemical characterizations. Therefore, the optimal Li2Ni0.7Cu0.3O2 delivered a high delithiation capacity of 437 mAh·g-1, around 8% above that of the pristine Li2NiO2. Furthermore, a graphite‖LiFePO4 pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity, energy density and cycle life through introducing 2 wt% Li2Ni0.7Cu0.3O2 additive, delivering a 6.2 mAh·g-1 higher initial discharge capacity and achieving around 5% improvement in capacity retentnion at 0.5P over 1000 cycles. Additionally, the post-mortem analyses testified that the Li2Ni0.7Cu0.3O2 additive could suppress solid electrolyte interphase (SEI) decomposition and homogenize the Li distribution, which benefits to stabilizing interface between graphite and electrolyte, and alleviating dendritic Li plating. In conclusion, the Li2Ni0.7Cu0.3O2 additive may offer advantages such as lower cost, lower delithiation voltage and higher prelithiation capacity compared with Li2NiO2, making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
Keywords
Li2Ni1-xCuxO2
/
cathode prelithiation additive
/
LiFePO4 battery
/
cycle life
/
grid energy storage
Cite this article
Download citation ▾
Jian-Ming Zheng, Jing-Wen Zhang, Tian-Peng Jiao.
Enhancing Cycle Life of Graphite‖LiFePO4 Batteries via Copper Substituted Li2Ni1-xCuxO2 Cathode Prelithiation Additive.
Journal of Electrochemistry, 2025, 31(2): 2408301 DOI:10.61558/2993-074X.3515
| [1] |
Kebede A A, Kalogiannis T, Van Mierlo J, Berecibar M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration[J]. Renew. Sust. Energ. Rev., 2022, 159: 112213.
|
| [2] |
Huang X, Luo B, Chen P, Searles D J, Wang D, Wang L Z. Sulfur-based redox chemistry for electrochemical energy storage[J]. Coord. Chem. Rev., 2020, 422: 213445.
|
| [3] |
Chen H S, Cong T N, Yang W, Tan C Q, Li Y L, Ding Y L. Progress in electrical energy storage system: A critical review[J]. Prog. Nat. Sci., 2009, 19(3): 291-312.
|
| [4] |
Tian Y S, Zeng G B, Rutt, A, Shi T, Kim H, Wang J Y, Koettgen J, Sun Y Z, Ouyang B, Chen T, Lun Z Y, Rong Z Q, Persson K, Ceder G. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chem. Rev., 2021, 121 (3): 1623-1669.
|
| [5] |
Yang Z G, Dai Y, Wang S P, Yu J X. How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods[J]. J. Mater. Chem. A., 2016, 4(47): 18210-18222.
|
| [6] |
Shi Z C, Li C, Yang Y. The electrochemical performance studies on novel LiFePO4 cathode materials for Li-ion batteries[J]. J. Electrochem., 2003, 9(1): 9-14.
|
| [7] |
Xie H, Zhou Z H. The synthesis, structure and electrochemical performances of lithium iron phosphate[J]. J. Electrochem., 2006, 12(4): 378-381.
|
| [8] |
Niu J T, Sun L, Kang S W, Zhao Z W, Ma Z F. Impact of water content on the performance of LiFePO4 based lithium-ion battery[J]. J. Electrochem., 2015, 21(5): 465-470.
|
| [9] |
Peng Y F, Zhong C, Ding M F, Zhang H Y, Jin Y T, Hu Y G, Liao Y Q, Yang L F, Wang S X, Yin X T, Liang J D, Wei Y M, Chen J, Yan J W, Wang X F, Gong Z L, Yang Y. Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries[J]. Adv. Funct. Mater., 2024, 34(42): 2404495.
|
| [10] |
Holtstiege F, Wilken A, Winter M, Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries[J]. Phys. Chem. Chem. Phys., 2017, 19(38), 25905-25918.
|
| [11] |
Wang Cun, Zhang W J, He T F, Lei B, Shi Y J, Zhang Y D, Luo W L, Jiang F M. Degradation and thermal characteristics of LiNi0.8Co0.15Al0.05O2/Graphite lithium ion battery after different state of charge ranges cycling[J]. J. Electrochem., 2020, 26(6): 777-788.
|
| [12] |
Lang S Y, Shen Z Z, Hu X C, Shi Y, Guo Y G, Jia F F, Wang F Y, Wen R, Wan L J. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode[J]. Nano Energy., 2020, 75: 104967.
|
| [13] |
Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895.
|
| [14] |
Zou K Y, Deng W T, Cai P, Deng X L, Wang B W, Liu C, Li J Y, Hou H S, Zou G Q, Ji X B. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives[J]. Adv. Funct. Mater., 2020, 31(5): 2005581.
|
| [15] |
Sun Y M, Lee H W, Seh Z W, Liu N, Sun J, Li Y Z, Cui Y. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nat. Energy, 2016, 1(1): 15008.
|
| [16] |
Li Z, Sun X Z, Liu W J, Zhang X, Wang K, Ma Y W. A comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitors[J]. J. Electrochem., 2019, 25(1): 122-136.
|
| [17] |
Yue X Y, Yao Y X, Zhang J, Yang S Y, Li Z H, Yan C, Zhang Q. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries[J]. Adv. Mater., 2022, 34(15): 2110337.
|
| [18] |
Cao Z Y, Xu P Y, Zhai H W, Du S C, Mandal J, Dontigny M, Zaghib K, Yang Y. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Lett., 2016, 16(11): 7235-7240.
|
| [19] |
Wu Z C, Li R H, Zhang S Q, Lv L, Deng T, Zhang H, Zhang R X, Liu J J, Ding S H, Fan L W, Chen L X, Fan X L. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664.
|
| [20] |
Zhong W, Zeng Z Q, Cheng S J, Xie J. Advancements in prelithiation technology: transforming batteries from Li-shortage to Li-rich systems[J]. Adv. Funct. Mater., 2023, 34(2): 2307860.
|
| [21] |
Liu X M, Wu Z, Xie L Q, Sheng L, Liu J H, Wang L, Wu K, He X M. Prelithiation enhances cycling life of lithium-ion batteries: a mini review[J]. Energy Environ. Mater., 2023, 6(6): e12501.
|
| [22] |
Fu Y P, Xie Y, Zeng L Y, Shi Z C. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries[J]. Surf. Interfaces, 2023, 36: 102610.
|
| [23] |
Pan Y J, Qi X Q, Du H R, Ji Y S, Yang D, Zhu Z L, Yang Y, Qie L, Huang Y H. Li2Se as a cathode prelithiation additive for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(15), 18763-18770.
|
| [24] |
Zhan R M, Wang X C, Chen Z H, Seh Z W, Wang L, Sun Y M. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries[J]. Adv. Energy Mater., 2021, 11 (35): 2101565.
|
| [25] |
Back C K, Yin R-Z, Shin S-J, Lee Y-S, Choi W, Kim Y S. Electrochemical properties and gas evolution behavior of overlithiated Li2NiO2 as cathode active mass for rechargeable Li ion batteries[J]. J. Electrochem. Soc., 2012, 159 (6): A887-A893.
|
| [26] |
Kim M G, Cho J. Air stable Al2O3-coated Li2NiO2cathode additive as a surplus current consumer in a Li-ion cell[J]. J. Mater. Chem., 2008, 18(48): 5880-5887.
|
| [27] |
Han H, Go C Y, Kim K C. Dopant-based modulation of structural, electronic, and electrochemical properties of Li-excessive Li2NiO2 cathodes[J]. Curr. Appl. Phys., 2023, 48, 1-10.
|
| [28] |
Yue X Y, Yao Y X, Zhang J, Li Z H, Yang S Y, Li X L, Yan C, Zhang Q. The raw mixed conducting interphase affords effective prelithiation in working batteries[J]. Angew. Chem. Int. Ed., 2022, 61(29): e202205697.
|
| [29] |
Lee H, Chang S K, Goh E Y, Jeong J Y, Lee J H, Kim H J, Cho J J, Hong S T. Li2NiO2 as a novel cathode additive for overdischarge protection of Li-ion batteries[J]. Chem. Mater., 2008, 20, 1, 5-7.
|
| [30] |
Wu Y L, Zhang W, Li S H, Wen N F, Zheng J Q, Zhang L Y, Zhang Z A, Lai Y Q. Li2Cu0.1Ni0.9O2 with copper substitution: a new cathode prelithiation additive for lithium-ion batteries[J]. ACS Sustainable Chem. Eng., 2023, 11: 1044-1053.
|
| [31] |
Biesinger M C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review[J]. Appl. Surf. Sci., 2022, 597: 153681.
|
| [32] |
Sun H, Zhu G Z, Zhu Y M, Lin M C, Chen H, Li Y Y, Hung W H, Zhou B, Wang X, Bai Y X, Gu M, Huang C L, Tai H C, Xu X T, Angell M, Shyue J J, Dai H J. High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte[J]. Adv. Mater., 2020, 32(26): 2001741.
|
| [33] |
Katayama M, Sumiwaka K, Miyahara R, Yamashige H, Arai H, Uchimoto Y, Ohta T, Inada Y, Ogumi Z. X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode[J]. J. Power Sources, 2014, 269: 994-999.
|
| [34] |
Liu T C, Lin L P, Bi X X, Tian L L, Yang K, Liu J J, Li M F, Chen Z H, Lu J, Amine K, Xu K, Pan F. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nat. Nanotechnol., 2019, 14: 50-56.
|