PDF
(4761KB)
Abstract
Dopamine (DA) is a vital neurotransmitter, and accurate detection of its concentration is critical for both clinical diagnostics and neuroscience research. Due to its electrochemical activity, DA is commonly detected using electrochemical methods, which are favored for their simplicity, fast response time, and suitability for in vivo analysis. In this work, a highly sensitive DA electrochemical sensor was developed using an Au@MoS2 composite, created by modifying molybdenum disulfide (MoS2) nanosheets with gold nanoparticles through HAuCl4 reduction, and it was aimed at enhancing DA adsorption and improving detection performance. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive Spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray Diffraction (XRD) confirmed the successful synthesis of Au@MoS2 and the uniform distribution of gold nanoparticles across the MoS2 nanosheets. Then, the electrochemical characterization demonstrated that the Au@MoS2/GCE exhibited distinct oxidation peaks in a 10 μmol·L-1 DA solution, with significantly enhanced electrochemical activity compared to both unmodified GCE and pristine MoS2. Furthermore, differential pulse voltammetry (DPV) further revealed a strong linear relationship between DA concentration and the current response in the range of 800 nmol·L-1 to 10 μmol·L-1, with a low detection limit (LOD) of 78.9 nmol·L-1 (S/N=3). Additionally, the sensor showed excellent selectivity against other interfering substances. Moreover, the laser-induced Au@MoS2 (LIAu@MoS2), with its abundance of negatively charged surface defects, enabled the ultra-sensitive detection of the ultra-low concentrations of DA. In conclusion, the successfully fabricated Au@MoS2 based sensor offers advantages such as low cost, ease of operation, and scalability, making it a promising candidate for biosensing applications due to its enhanced DA detection capabilities.
Keywords
Dopamine
/
Electrochemical sensor
/
Molybdenum disulfide
/
Gold nanoparticles
Cite this article
Download citation ▾
Ning An, Ni Su, Xin-Ran Li, Jian-Yu Liu, Qi-Yan Wang.
Study on Dopamine Electrochemical Sensing Based on Au@MoS2.
Journal of Electrochemistry, 2025, 31(3): 2407241 DOI:10.61558/2993-074X.3503
| [1] |
Franco R, Reyes-Resina I, Navarro G. Dopamine in Health and Disease: Much More Than a Neurotransmitter[J]. Biomedicines, 2021, 9(2): 109-122.
|
| [2] |
Broome S T, Louangaphay K, Keay K A, Leggio G M, Musumeci G, Castorina A. Dopamine: An Immune Transmitter[J]. Neural Regen. Res., 2020, 15(12): 2173-2185.
|
| [3] |
Lakard S, Pavel I A, Lakard B. Electrochemical biosensing of dopamine neurotransmitter: A review[J]. Biosensors-Basel, 2021, 11(6): 179-202.
|
| [4] |
Battal D, Aktas Süküroglu A, Alkas F B, Ünlüsayin I. A rapid, precise, and sensitive Lc-Ms/Ms method for the quantitative determination of urinary dopamine levels a simple liquid-liquid extraction technique[J]. Turk. J. Pharm. Sci., 2021, 18(6): 761-769.
|
| [5] |
Ezquer-Garin C, Aguilar G, Ferriols-Lisart R, Alos-Almiñana M. Validated HPLC-UV method for amphotericin B quantification in a critical patient receiving AmBisome and treated with extracorporeal replacement therapies[J]. Biomed. Chromatogr., 2023, 37(12): e5749-e5759.
|
| [6] |
Tiwari A, Walia S, Sharma S, Chauhan S, Kumar M, Gadly T, Randhawa J K. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[J]. J. Mater. Chem. B, 2023, 11(5): 1029-1043.
|
| [7] |
Hsine Z, Mlika R, Jaffrezic-Renault N, Korri-Youssoufi H. Review-recent progress in graphene based modified electrodes for electrochemical detection of dopamine[J]. Chemosensors, 2022, 10(7): 249-271.
|
| [8] |
Tian Y M, Wu W N, Zhao X L, Wang Y, Fan Y C, Xu Z H. Dual Fluorescence and electrochemical detection of carbon monoxide based on a ferrocene-chalcone platform[J]. Sensor Actuat. B-Chem., 2024, 419(15): 136440-136450.
|
| [9] |
Nawz T, Safdar A, Hussain M, Lee D S, Siyar M. Graphene to advanced MoS2: A review of structure, synthesis, and optoelectronic device application[J]. Crystals, 2020, 10(10): 902-933.
|
| [10] |
Subramanian S, Campbell Q T, Moser S K, Kiemle J, Zimmermann P, Seifert P, Sigger F, Sharma D, Al-Sadeg H, Labella M, Waters D, Feenstra R M, Koch R J, Jozwiak C, Bostwick A, Rotenberg E, Dabo I, Holleitner A W, Beechem T E, Wurstbauer U, Robinson J A. Photophysics and electronic structure of lateral graphene/MoS2 and metal/MoS2 junctions[J]. ACS Nano, 2020, 14(12): 16663-16671.
|
| [11] |
Ying H T, Li X, Wang H M, Wang Y R, Hu X, Zhang J, Zhang X F, Shi Y Q, Xu M X, Zhang Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors[J]. Adv. Opt. Mater., 2020, 8(13): 2000430-2000438.
|
| [12] |
Zhang Y C, Zhang R J, Guo Y X, Li Y M, Li K S. A review on MoS2 structure, preparation, energy storage applications and challenges[J]. J. Alloy. Compd., 2024, 998(5): 174916-174933.
|
| [13] |
Bo Z, Cheng X N, Yang H C, Guo X Z, Yan J H, Cen K F, Han Z J, Dai L M. Ultrathick MoS2 Films with exceptionally high volumetric capacitance[J]. Adv. Energy Mater., 2022, 12(11): 2103394-2103403.
|
| [14] |
Liao M Z, Wei Z, Du L J, Wang Q Q, Tang J, Yu H, Wu F F, Zhao J J, Xu X Z, Han B, Liu K H, Gao P, Polcar T, Sun Z P, Shi D X, Yang R, Zhang G Y. Precise control of the interlayer twist angle in large scale MoS2 homostructures[J]. Nat. Commun., 2020, 11(1): 2153-2161.
|
| [15] |
Park S G, Rajesh P P, Hwang M H, Chu K H, Cho S, Chae K J. Long-term effects of anti-biofouling proton exchange membrane using silver nanoparticles and polydopamine on the performance of microbial electrolysis cells[J]. Int. J. Hydrogen. Energ., 2021, 46(20): 11345-11356.
|
| [16] |
Samy O, Zeng S W, Birowosuto M D, El Moutaouakil A. A review on MoS2 properties, synthesis, sensing applications and challenges[J]. Crystals, 2021, 11(4): 355-379.
|
| [17] |
Zhang H B, Yu L, Chen T, Zhou W, Lou X W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution[J]. Adv Funct. Mater., 2018, 28(51): 1807086-1807094.
|
| [18] |
Huang M T, Tian H M, Zhou P L, Ma S S, Chen J M, Zhang N, Zhang K Y. Electrochemical sensor for detection of ascorbic acid based on MoS2-AuNPs modified glassy carbon electrode[J]. Int. J. Electrochem. Sci., 2021, 16(1): 151014-151022.
|
| [19] |
Li Q L, Li P, Li Y K, Sidike S, Xu Y L, Wang Y C, Hu Z, Guo M M, Zhang H Q, Zhang Y C. Flexible molybdenum disulfide/carbon nanotube composite films for thermoelectric applications[J]. Energy Mater. Adv., 2024, 5(24): 0114-0121.
|
| [20] |
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2d MoS2 nanosheets with various metal and metal oxide nanostructures: Their properties and application in electrochemical sensors[J]. Biosensors-Basel, 2022, 12(6): 386-431.
|
| [21] |
Pavlicková M, Lorencová L, Hatala M, Kovác M, Tkác J, Gemeiner P. Facile fabrication of screen-printed MoS2 electrodes for electrochemical sensing of dopamine[J]. Sci. Rep., 2022, 12(1): 11900-11911.
|
| [22] |
Wang Q W, Wang M, Zhang N, Huang X, Wang X H, Wang S T. A novel electrochemical sensor based on MoS2 electrospun nanofibers and polyoxometalate composite for the simultaneous detection of ractopamine and clenbuterol[J]. Microchem. J., 2023, 189: 108434.
|
| [23] |
Xin Y Y, Liu L H, Liu Y, Deng Z P, Cheng X L, Zhang X F, Xu Y M, Li-Hua H, Gao S. Nanoflower MoS2/rGO composite rich in edge defects for enhanced electrochemical sensing of nM-level dopamine[J]. Microchem. J., 2024, 197: 109878.
|
| [24] |
Geng H Y, Pedersen S V, Ma Y, Haghighi T, Dai H L, Howes P D, Stevens M M. Noble metal nanoparticle biosensors: From fundamental studies toward point-of-care diagnostics[J]. Accounts Chem. Res., 2022, 55(5): 593-604.
|
| [25] |
Jin S L, Zhang D X, Yang B, Guo S, Chen L, Jung Y M. Noble metal-free SERS: Mechanisms and applications[J]. Analyst, 2023, 149(1): 11-28.
|
| [26] |
Putri L A, Prabowo Y D, Dewi DM M, Mumtazah Z, Adila F P, Fadillah G, Amrillah T, Triyana K, Nugroho F A A, Wasisto H S. Review of noble metal nanoparticle-based colorimetric sensors for food safety monitoring[J]. ACS Appl. Nano Mater., 2024, 7(17): 19821-19853.
|
| [27] |
Xu Q, Jia H Y, Duan X M, Lu L M, Tian Q Y, Chen S X, Xu J K, Jiang F X. Label-free electrochemical immunosensor for the detection of prostate specific antigen based three-dimensional Au nanoparticles/MoS2-graphene aerogels composite[J]. Inorg. Chem. Commun., 2020, 119: 108122.
|
| [28] |
Yang S Z, Liu Q A, Liu Y L, Weng G J, Zhu J, Li J J. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles[J]. Microchim. Acta., 2021, 188(8): 1-23.
|
| [29] |
Sun X J, Chen C, Xiong C, Zhang C M, Zheng X S, Wang J, Gao X P, Yu Z Q, Wu Y E. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection[J]. Nano Res., 2023, 16(1): 917-924.
|
| [30] |
Lu K D, Liu J M, Dai X Y, Zhao L, Yang Y F, Li H, Jiang Y Y. Construction of a Au@MoS2 composite nanosheet biosensor for the ultrasensitive detection of a neurotransmitter and understanding of its mechanism based on DFT calculations[J]. RSC Adv., 2021, 12(2): 798-809.
|
| [31] |
Zhao Z H, Qin F, Kasiraju S, Xie L X, Alam M K, Chen S, Wang D Z, Ren Z F, Wang Z M, Grabow L C, Bao J M. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution[J]. ACS Catal., 2017, 7(10): 7312-7318.
|
| [32] |
Liu P F, Yang S, Zheng L R, Zhang B, Yang H G. Mo6+ activated multimetal oxygen-evolving catalysts[J]. Chem. Sci., 2017, 8(5): 3484-3488.
|
| [33] |
Li L, Qin Z D, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D, Chhowalla M, Voiry D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen[J]. ACS Nano, 2019, 13(6): 6824-6834.
|
| [34] |
Sylvestre J P, Poulin S, Kabashin A V, Sacher E, Meunier M, Luong J H T. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media[J]. J. Phys. Chem. B, 2004, 108(43): 16864-16869.
|
| [35] |
Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. J. Am. Chem. Soc., 2020, 142(9): 4298-4308.
|
| [36] |
Zhu X F, He M, Xiao L, Liu H Z, Hu M C, Li S N, Zhai Q G, Chen Y, Jiang Y C. Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC[J]. J. Appl. Electrochem., 2022, 52(6): 979-987.
|
| [37] |
Su N, Wang K B, Li X R, Huo X K, Chai G B, Fan W, Shi Q Z, Lv M Y, Zhang S S, Xie J P, Wei R H, Zhang Q D, Wang Q Y. Laser-induced stripping defect for highly selective electrochemical quantification of dopamine: Anti-interference from other catecholamine neurotransmitters[J]. Talanta, 2024, 279: 126638.
|
| [38] |
Luo N, Chen C, Yang D M, Hu W Y, Dong F Q. S Defect-rich ultrathin 2d MoS2: The role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis[J]. Appl. Catal. B-Environ., 2021, 299: 120664.
|
| [39] |
Atta N F, El-Kady M F. Poly(3-Methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: Voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen[J]. Talanta, 2009, 79(3): 639-647.
|
| [40] |
Thompson I, Campbell D. Interpreting nyquist responses from defective coatings on steel substrates[J]. Corros. Sci., 1994, 36(1): 187-198.
|
| [41] |
Cadiz F, Robert C, Wang G, Kong W, Fan X, Blei M, Lagarde D, Gay M, Manca M, Taniguchi T, Watanabe K, Amand T, Marie X, Renucci P, Tongay S, Urbaszek B. Ultra-low power threshold for laser induced changes in optical properties of 2d molybdenum dichalcogenides[J]. 2D Mater, 2016, 3(4): 045008.
|
| [42] |
Bakker E, Pretsch E, Bühlmann P. Selectivity of potentiometric ion sensors[J]. Anal. Chem., 2000, 72(6): 1127-1133.
|