A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction

He Pei-Pei , Shi Jin-Hua , Li Xiao-Yu , Liu Ming-Jie , Fang Zhou , He Jing , Li Zhong-Jian , Peng Xin-Sheng , He Qing-Gang

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (1) : 2405241

PDF
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (1) :2405241 DOI: 10.61558/2993-074X.3502
ARTICLE
research-article

A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

The poor electronic conductivity of metal-organic framework (MOF) materials hinders their direct application in the field of electrocatalysis in fuel cells. Herein, we proposed a strategy of embedding carbon nanotubes (CNTs) during the growth process of MOF crystals, synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure. Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin. Simultaneously, the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency. X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co, optimizing the electronic structure. Consequently, the E1/2 of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V (vs. RHE), outperforming the catalyst without CNTs. When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells (MFCs) with Nafion-117 as the proton exchange membrane, the maximum power density of MFCs reached approximately 500 mW·m-2.

Keywords

Metal organic framework / CNT intercalated / Electrocatalysis / Oxygen reduction reaction / Microbial fuel cell

Cite this article

Download citation ▾
He Pei-Pei, Shi Jin-Hua, Li Xiao-Yu, Liu Ming-Jie, Fang Zhou, He Jing, Li Zhong-Jian, Peng Xin-Sheng, He Qing-Gang. A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction. Journal of Electrochemistry, 2025, 31(1): 2405241 DOI:10.61558/2993-074X.3502

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[C]. Chem. Soc. Rev., 2015, 44(8): 2168-2201.

[2]

Chen Z W, Higgins D, Yu A P, Zhang L, Zhang J J. A review on non-precious metal electrocatalysts for PEM fuel cells[C]. Energy. Environ. Sci., 2011, 4(9): 3167-3192.

[3]

Hou J G, Wu Y Z, Zhang B, Cao S Y, Li Z W, Sun L C. Rational design of nanoarray architectures for electrocatalytic water splitting[J]. Adv. Funct. Mater., 2019, 29(20): 1808367.

[4]

Liang Z Z, Fan X, Lei H T, Qi J, Li Y Y, Gao J P, Huo M L, Yuan H T, Zhang W, Lin H P, Zheng H Q, Cao R. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2018, 57(40): 13187-13191.

[5]

Zhang C C, Yang H, Zhong D, Xu Y, Wang Y Z, Yuan Q, Liang Z Z, Wang B, Zhang W, Zheng H Q, Cheng T, Cao R. A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction[J]. J. Mater. Chem. A., 2020, 8(19): 9536-9544.

[6]

Wang M Q, Yang W H, Wang H H, Chen C, Zhou Z Y, Sun S G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium[J]. ACS. Catal., 2014, 4(11): 3928-3936.

[7]

Bezerra C W B, Zhang L, Lee K, Liu H, Marques A L B, Marques E P, Wang H, Zhang J. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction[J]. Electrochim. Acta., 2008, 53(15): 4937-4951.

[8]

Fu K, Wang Y, Mao L C, Yang X X, Jin J H, Yang S L, Li G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary zinc-air battery[J]. Chem. Eng. J., 2018, 351: 94-102.

[9]

Yin Y H, Zhang H B, Gao R Z, Wang A L, Mao X X, Dong H Y, Yang S T. In situ synthesis of metal embedded nitrogen doped carbon nanotubes as an electrocatalyst for the oxygen reduction reaction with high activity and stability[J]. RSC. Adv., 2018, 8(44): 25051-25056.

[10]

Zhang B B, Sun L C. Artificial photosynthesis: opportunities and challenges of molecular catalysts[J]. Chem. Soc. Rev., 2019, 48(7): 2216-2264.

[11]

Pegis M L, Wise C F, Martin D J, Mayer J M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chem. Rev., 2018, 118(5): 2340-2391.

[12]

Zhang W, Lai W Z, Cao R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017, 117(4): 3717-3797.

[13]

Guo X J, Wang N, Li X L, Zhang Z Y, Zhao J P, Ren W J, Ding S P, Xu G L, Li J F, Apfel U P, Zhang W, Cao R. Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8941-8946.

[14]

Bhunia S, Rana A, Roy P, Martin D J, Pegis M L, Roy B, Dey A. Rational design of mononuclear iron porphyrins for facile and selective 4e-/4H+ O2 reduction: Activation of O-O Bond by 2nd sphere hydrogen bonding[J]. J. Am. Chem. Soc., 2018, 140(30): 9444-9457.

[15]

Xie L S, Zhang X P, Zhao B, Li P, Qi J, Guo X N, Wang B, Lei H T, Zhang W, Apfel U P, Cao R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7576-7581.

[16]

Costentin C, Saveant J M. Homogeneous molecular catalysis of electrochemical reactions: Manipulating intrinsic and operational factors for catalyst improvement[J]. J. Am. Chem. Soc., 2018, 140(48): 16669-16675.

[17]

Lv B, Li X L, Guo K, Ma J, Wang Y Z, Lei H T, Wang F, Jin X T, Zhang Q X, Zhang W, Long R, Xiong Y J, Apfel U P, Cao R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew. Chem. Int. Ed., 2021, 60(23): 12742-12746.

[18]

Brezny A C, Johnson S I, Raugei S, Mayer J M. Selectivity-determining steps in O2 reduction catalyzed by iron(tetramesitylporphyrin)[J]. J. Am. Chem. Soc., 2020, 142(9): 4108-4113.

[19]

Liu Y J, Zhou G J, Zhang Z Y, Lei H T, Yao Z, Li J F, Lin J, Cao R. significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(II) porphyrin-porphyrin dyad[J]. Chem. Sci., 2020, 11(1): 87-96.

[20]

Guo K, Lei H T, Li X L, Zhang Z Y, Wang Y B, Guo H B, Zhang W, Cao R. Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins[J]. Chin. J. Catal., 2021, 42(9): 1439-1444.

[21]

Sun L, Reddu V, Fisher A C, Wang X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts[J]. Energ. Environ. Sci., 2020, 13(2): 374-403.

[22]

Corbin N, Zeng J, Williams K, Manthiram K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction[J]. Nano Res., 2019, 12(9): 2093-2125.

[23]

Sévery L, Szczerbinski J, Taskin M, Tuncay I, Nunes F B, Cignarella C, Tocci G, Blacque O, Osterwalder J, Zenobi R, Iannuzzi M, Tilley S D. Immobilization of molecular catalysts on electrode surfaces using host-guest interactions[J]. Nat. Chem., 2021, 13(6): 523-529.

[24]

Sun C F, Gobetto R, Nervi C. Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes[J]. New. J. Chem., 2016, 40(7): 5656-5661.

[25]

Diercks C S, Liu Y Z, Cordova K E, Yaghi O M. The role of reticular chemistry in the design of CO2 reduction catalysts[J]. Nat. Mater., 2018, 17(10): 943-943.

[26]

Yang Z W, Chen J M, Qiu L Q, Xie W J, He L N. Molecular engineering of metal complexes for electrocatalytic carbon dioxide reduction: from adjustment of intrinsic activity to molecular immobilization[J]. Angew. Chem. Int. Edit., 2022, 61(44): e202205301

[27]

Li X L, Lei H T, Xie L S, Wang N. Zhang W, Cao R. Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions[J]. Acc. Chem. Res., 2022, 55(6): 878-892.

[28]

Xie W Y, Ling C, Huang Z Y, Chen W C, He S F, Si L P, Liu H Y. Metalloporphyrin doped rice husk-based biomass porous carbon materials as high performance electrocatalyst for oxygen reduction reaction in Zn-air battery[J]. Int. J. Hydrogen. Energ., 2024, 51: 857-868.

[29]

Leng F C, Liu H, Ding M L, Lin Q P, Jiang H L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters[J]. ACS. Catal., 2018, 8(5): 4583-4590.

[30]

Yang J, Wang Z, Li Y S, Zhuang Q X, Zhao W R, Gu J L. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase[J]. Rsc. Adv., 2016, 6(74): 69807-69814.

[31]

Gil-San-Millan R, Koziel M, Bury W. Multivariate porphyrinic MOFs as precursors of nanoalloy catalysts for efficient dehydrogenation of hydrogen molecular carriers[J]. ACS. Appl. Energ. Mater., 2023, 6(18): 9136-9144.

[32]

Cichocka M O, Liang Z Z, Feng D W, Back S, Siahrostami S, Wang X, Samperisi L, Sun Y J, Xu H Y, Hedin N, Zheng H Q, Zou X D, Zhou H C, Huang Z H. A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units[J]. J. Am. Chem. Soc., 2020, 142(36): 15386-15395.

[33]

Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Férey G, Vittadini A, Gross S, Serre C. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks[J]. Angew. Chem. Int. Edit., 2012, 51(37): 9267-9271.

PDF

672

Accesses

0

Citation

Detail

Sections
Recommended

/