Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications

Abdul Qadeer Muhammad , Fareed Iqra , Hussain Asif , Asim Farid Muhammad , Nazir Sadia , K. Butt Faheem , Zou Ji-Jun , Tahir Muhammad , Du Shang-Feng

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (1) : 2416001

PDF
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (1) :2416001 DOI: 10.61558/2993-074X.3498
REVIEW
research-article

Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications

Author information +
History +
PDF

Abstract

Graphitic carbon nitride (g-C3N4) exhibits great mechanical as well as thermal characteristics, making it a valuable material for use in photoelectric conversion devices, an accelerator for synthesis of organic compounds, an electrolyte for fuel cell applications or power sources, and a hydrogen storage substance and a fluorescence detector. It is fabricated using different methods, and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes. There are many reports about g-C3N4 in recent years, but a comprehensive review which covers nanostructure dimensions and their properties are missing. This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C3N4. It highlights the recent progress of g-C3N4 nanostructure designing by covering synthesis methods, dimensions, morphologies, applications and properties. Along with the summary, we will also discuss the challenges and prospects. Scientists, investigators, and engineers looking at g-C3N4 nanostructures for a variety of applications might find our review paper to be a useful resource.

Keywords

Graphitic carbon nitride / HER / OER / Fuel Cell / Sustainable energy / electrocatalyst

Cite this article

Download citation ▾
Abdul Qadeer Muhammad, Fareed Iqra, Hussain Asif, Asim Farid Muhammad, Nazir Sadia, K. Butt Faheem, Zou Ji-Jun, Tahir Muhammad, Du Shang-Feng. Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications. Journal of Electrochemistry, 2025, 31(1): 2416001 DOI:10.61558/2993-074X.3498

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J, Wang H Q, Antonietti M. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis[J]. Chem. Soc. Rev., 2016, 45(8): 2308-2326.

[2]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[3]

Hasan M, Ali S, Khan M, Rizwan M, Zulqarnain M, Hussain A. Structural, optical, electrical and magnetic tuning based on Zn substitution at a site in yttrium doped spinel ferrites[J]. Mater. Chem. Phys., 2023, 301: 127538.

[4]

Mosali v S S, Zhang X, Liang Y, Li L, Puxty G, Horne M D, Brajter-Toth A, Bond A M, Zhang J. CdS-enhanced ethanol selectivity in electrocatalytic CO2 reduction at sulfide-derived Cu-Cd[J]. ChemSusChem, 2021, 14(14): 2924-2934.

[5]

Ahamed S T, Kulsi C, Banerjee D, Srivastava D N, Mondal A. Synthesis of multifunctional CdSe and Pd quantum dot decorated CdSe thin films for photocatalytic, electrocatalytic and thermoelectric applications[J]. Surf. Interfaces, 2021, 25: 101149.

[6]

Caglar A, Er O F, Aktas N, Kivrak H. The effect of different carbon-based CdTe alloys for efficient photocatalytic glucose electrooxidation[J]. J. Electroanal. Chem., 2022, 920: 116611.

[7]

Gotić M, Musić S, Ivanda M, Šoufek M, Popović S. Synthesis and characterisation of bismuth (III) vanadate[J]. J. Mol. Struct., 2005, 744: 535-540.

[8]

Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chem. Soc. Rev., 2013, 42(6): 2321-2337.

[9]

Chen Y, Wang D K, Deng X Y, Li Z H. Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction[J]. Catal. Sci. Technol., 2017, 7(21): 4893-4904.

[10]

Labhasetwar N, Saravanan G, Megarajan S K, Manwar N, Khobragade R, Doggali P, Grasset F. Perovskite-type catalytic materials for environmental applications[J]. Sci. Technol. Adv. Mat., 2015, 16: 036002.

[11]

Vyas Y, Chundawat P, Dharmendra D, Chaubisa P, Kumar M, Punjabi P B, Ameta C. Revolutionizing fuel production through biologically synthesized zero-dimensional nanoparticles[J]. Nanoscale Adv., 2023, 5(18): 4833-4851.

[12]

Deng J Y, Zhu S L, Zheng J F, Nie L H. Preparation of multi-dimensional (1D/2D/3D) carbon/g-C3N4 composite photocatalyst with enhanced visible-light catalytic performance[J]. J. Colloid Interf. Sci., 2020, 569: 320-331.

[13]

Huang D L, Li Z H, Zeng G M, Zhou C Y, Xue W J, Gong X M, Yan X L, Chen S, Wang W J, Cheng M. Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance[J]. Appl. Catal. B-Environ., 2019, 240: 153-173.

[14]

Yuan Y J, Shen Z K, Wu S T, Su Y B, Pei L, Ji Z G, Ding M Y, Bai W F, Chen Y F, Yu Z T, Zou ZG. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2production activity[J]. Appl. Catal. B-Environ., 2019, 246: 120-128.

[15]

Tang J, Guo C Y, Wang T T, Cheng X L, Huo L H, Zhang X F, Huang C B, Major Z, Xu Y M. A review of g‐C3N4‐based photocatalytic materials for photocatalytic CO2 reduction[J]. Carbon Neutralization, 2024, 3(4): 557-583

[16]

Ma D D, Zhang Z M, Zou Y J, Chen J T, Shi J W. The progress of g-C3N4 in photocatalytic H2evolution: From fabrication to modification[J]. Coord. Chem. Rev., 2024, 500: 215489.

[17]

Zhang X L, Chen S Y, Guo F S, Jing Q, Huo P P, Feng L, Sun F Z, Chandrasekar S, Hao L T, Liu B. A novel method for synthesizing specific surface area modulable g-C3N4 photocatalyst with maize-like structure[J]. Appl. Surf. Sci., 2024, 651: 159224.

[18]

Anus A, Park S. The synthesis and key features of 3D carbon nitrides (C3N4) used for CO2photoreduction[J]. Chem. Eng. J., 2024, 486: 150213.

[19]

Sheng W B, Li W, Tan D M, Zhang P P, Zhang E, Sheremet E, Schmidt B V K J, Feng X L, Rodriguez R D, Jordan R, Amin I. Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles[J]. ACS Appl. Mater. Interfaces, 2020, 12(8): 9797-9805.

[20]

Muhammad M H, Chen X L, Liu Y Y, Shi T, Peng Y Y, Qu L B, Yu B. Recyclable Cu@C3N4-catalyzed hydroxylation of aryl boronic acids in water under visible light: synthesis of phenols under ambient conditions and room temperature[J]. ACS Sustainable Chem. Eng., 2020, 8(7): 2682-2687.

[21]

Jin C, Li W, Chen Y S, Li R, Huo J B, He Q Y, Wang Y Z. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nanosheets[J]. Ind. Eng. Chem. Res., 2020, 59(7): 2860-2873.

[22]

Song C, Li X J, Hu L H, Shi T F, Wu D, Ma H M, Zhang Y, Fan D W, Wei Q, Ju H X. Quench-type electrochemiluminescence immunosensor based on resonance energy transfer from carbon nanotubes and Au-nanoparticles-enhanced g-C3N4 to CuO@polydopamine for procalcitonin detection[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8006-8015.

[23]

Zhang Y W, Liu J H, Wu G, Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4(17): 5300-5303.

[24]

Hussain A, Tahir M, Yang W, Ji R L, Zheng K W, Umer M, Ahmad S M, Boota M, Iftikhar A, Raza A, Rehman Z U, Ahmad N, Busquets R, Hou J H, Wang X Z. Synergic effect among activated carbon/sulphur-assisted graphitic carbon nitride for enhanced photocatalytic activity[J]. Diam. Relat. Mater., 2023, 135: 109836.

[25]

Hussain A, Maqsood S, Ji R L, Zhang Q K, Farooq M U, Boota M, Umer M, Hashim M, Naeem H, Toor Z S, Ali A, Hou J H, Xue Y X, Wang X Z. Investigation of transition metal-doped graphitic carbon nitride for MO dye degradation[J]. Diam. Relat. Mater., 2023, 132: 109648.

[26]

Hou J H, Wang H Y, Qin R R, Zhang Q K, Wu D, Hou Z H, Yang W, Hussain A, Tahir M, Yin W Q, Wang X Z. Grinding preparation of 2D/2D g-C3N4/BiOCl with oxygen vacancy heterostructure for improved visible-light-driven photocatalysis[J]. Carbon Res., 2024, 3(1): 1-12.

[27]

Ul Hassan H M, Tawab S A, Khan M, Hussain A, Elsaeedy H, Almutairi B S, Hassan A, Raza A. Reduce the recombination rate by facile synthesis of MoS2/g-C3N4heterostructures as a solar light responsive catalyst for organic dye degradation[J]. Diam. Relat. Mater., 2023, 140: 110420.

[28]

Fageria P, Sudharshan K, Nazir R, Basu M, Pande S. Decoration of MoS2 on g-C3N4surface for efficient hydrogen evolution reaction[J]. Electrochim. Acta, 2017, 258: 1273-1283.

[29]

Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Crit. Rev. Env. Sci. Tec., 2021, 51(8): 751-790.

[30]

Yang X L, Qian F F, Zou G J, Li M L, Lu J R, Li Y M, Bao M T. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Appl. Catal. B-Environ., 2016, 193: 22-35.

[31]

Xu Q L, Zhu B C, Cheng B, Yu J G, Zhou M H, Ho W K. Photocatalytic H2 evolution on graphdiyne/g-C3N4hybrid nanocomposites[J]. Appl. Catal. B: Environ., 2019, 255: 117770.

[32]

Jiang T, Wang Z W, Wei G, Wu S X, Huang L Q, Li D R, Ruan X F, Liu Y C, Jiang C Z, Ren F. Defective high-crystallinity g-C3N4 heterostructures by double-end modulation for photocatalysis[J]. ACS Energy Lett., 2024, 9(4): 1915-1922.

[33]

Lin S, Sun Z W, Qiu X Y, Li H, Ren P D, Xie H J, Guo L. Construction of embedded sulfur‐doped g‐C3N4/BiOBr S‐scheme heterojunction for highly efficient visible light photocatalytic degradation of organic compound Rhodamine B[J]. Small, 2024, 20(14): 2306983.

[34]

Hou G L, Dong W J, Li Z F, Cao X H, Zou L X, Liu Y H, Zhang Z B. Donor-Acceptor characteristic g-C3N4 hollow nanospheres heterojunctions for efficient photocatalytic uranium reduction[J]. J. Solid State Chem., 2024, 336: 124739.

[35]

Rostami M, Jourshabani M, Davar F, Ziarani G M, Badiei A. Black TiO2‐g‐C3N4 heterojunction coupled with MOF (ZIF‐67)‐derived Co3S4/nitrogen‐doped carbon hollow nanobox[J]. J. Am. Ceram. Soc., 2024, 107(2): 719-735.

[36]

Xu J X, Chen Y F, Chen M, Wang J, Wang L. In situ growth strategy synthesis of single-atom nickel/sulfur co-doped g-C3N4 for efficient photocatalytic tetracycline degradation and CO2 reduction[J]. Chem. Eng. J., 2022, 442: 136208.

[37]

Kong L R, Mu X J, Fan X X, Li R, Zhang Y T, Song P, Ma F C, Sun M T. Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism[J]. Appl. Mater. Today, 2018, 13: 329-338.

[38]

Dong G H, Jacobs D L, Zang L, Wang C Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets[J]. Appl. Catal. B-Environ., 2017, 218: 515-524.

[39]

Huang Y Y, Li D, Fang Z Y, Chen R J, Luo B F, Shi W D. Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution[J]. Appl. Catal. B-Environ., 2019, 254: 128-134.

[40]

Jiang L B, Yuan X Z, Zeng G M, Liang J, Wu Z B, Yu H B, Mo D, Wang H, Xiao Z H, Zhou C Y. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. J. Colloid Interf. Sci., 2019, 536: 17-29.

[41]

Liu Y Y, Zheng Y M, Zhang W J, Peng Z B, Xie H, Wang Y X, Guo X L, Zhang M, Li R, Huang Y. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation[J]. J. Mater. Sci. Technol., 2021, 95: 127-135.

[42]

Liu M Q, Jiao Y Y, Qin J C, Li Z J, Wang J S. Boron doped C3N4nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J]. Appl. Surf. Sci., 2021, 541: 148558.

[43]

Wang N, Cheng L, Liao Y L, Xiang Q J,. Effect of Functional Group Modifications on the Photocatalytic Performance of g-C3N4[J]. Small, 2023, 19(27): 2300109.

[44]

Pei J X, Li H F, Zhuang S L, Zhang D W, Yu D C. Recent advances in g-C3N4 photocatalysts: A review of reaction parameters, structure design and exfoliation methods[J]. Catalysts, 2023, 13(11): 1402.

[45]

Alaghmandfard A, Ghandi K. A comprehensive review of graphitic carbon nitride (g-C3N4)-metal oxide-based nanocomposites: Potential for photocatalysis and sensing[J]. Nanomaterials, 2022, 12(2): 294.

[46]

Groenewolt M, Antonietti M. Synthesis of g‐C3N4 nanoparticles in mesoporous silica host matrices[J]. Adv. Mater., 2005, 17(14): 1789-1792.

[47]

Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew. Chem. Int. Ed., 2012, 51(1): 68-89.

[48]

Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents[J]. Chem. Sci., 2016, 7(5): 3062-3066.

[49]

Wang X C, MaedA K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80.

[50]

Praus P, Smýkalová A, Foniok K, Novák V, Hrbáč J. Doping of graphitic carbon nitride with oxygen by means of cyanuric acid: Properties and photocatalytic applications[J]. J. Environ. Chem. Eng., 2021, 9(4): 105498.

[51]

Praus P, Svoboda L, Ritz M, Troppová I, Šihor M, Kočí K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide[J]. Mater. Chem. Phys., 2017, 193: 438-446.

[52]

Wang W J, Yu J C, Shen Z R, Chan D K L, Gu T. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chem. Commun., 2014, 50(70): 10148-101450.

[53]

Sun B, Lu N, Su Y, Yu H T, Meng X Y, Gao Z M. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance[J]. Appl. Surf. Sci., 2017, 394: 479-487.

[54]

Pang X H, Bian H J, Wang W J, Liu C, Khan M S, Wang Q, Qi J N, Wei Q, Du B. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV[J]. Biosens. Bioelectron., 2017, 91: 456-464.

[55]

Hayat A, Sohail M, El Jery A, Al‐Zaydi K M, Alshammari K F, Khan J, Ali H, Ajmal Z, Taha T, UD D I. Different dimensionalities, morphological advancements and engineering of g-C3N4-based nanomaterials for energy conversion and storage[J]. Chem. Rec., 2023, 23(5): e202200171.

[56]

Wang L J, Zhou G, Tian Y, Yan L K, Deng M X, Yang B, Kang Z H, Sun H Z. Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design[J]. Appl. Catal. B: Environ., 2019, 244: 262-271.

[57]

Wang H, Yuan X Y, Wang H, Chen X H, Wu Z B, Jiang L B, Xiong W P, Zeng G M. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance[J]. Appl. Catal. B: Environ., 2016, 193: 36-46.

[58]

Tahir M, Cao C, Mahmood N, Butt F K, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties[J]. ACS Appl. Mater. & Interfaces, 2014, 6(2): 1258-1265.

[59]

Zhang M Y, Sun Y, Chang X, Zhang P. Template-free synthesis of one-dimensional g-C3N4chain nanostructures for efficient photocatalytic hydrogen evolution[J]. Front. Chem., 2021, 9: 652762.

[60]

Wang L, Zhang W Y, Su Y G, Liu Z L, Du C F. Halloysite derived 1D mesoporous tubular g-C3N4: Synergy of template effect and associated carbon for boosting photocatalytic performance toward tetracycline removal[J]. Appl. Clay Sci., 2021, 213: 106238.

[61]

Kadi M W, Mohamed R M, Bahnemann D W. Controlled synthesis of Ag2O/g-C3N4heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin[J]. Ceram. Int., 2021, 47(22): 31073-31083.

[62]

He F, Chen G, Miao J W, Wang Z X, Su D M, Liu S, Cai W Z, Zhang L P, Hao S, Liu B. Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2evolution[J]. ACS Energy Lett., 2016, 1(5): 969-975.

[63]

Jiang Z X, Zhang X, Chen H S, Hu X, Yang P. Formation of g‐C3N4 nanotubes towards superior photocatalysis performance[J]. ChemCatChem, 2019, 11(18): 4558-4567.

[64]

Iqbal N, Afzal A, Khan I, Khan M S, Qurashi A. Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications[J]. Sci. Rep.-UK, 2021, 11(1): 16886.

[65]

Lu X F, Gai L G, Cui D F, Wang Q, Zhao X, Tao X T. Synthesis and characterization of C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles[J]. Mater. Lett., 2007, 61(21): 4255-4258.

[66]

Long D, Chen W L, Rao X, Zheng S H, Zhang Y P. Synergetic effect of C60/g‐C3N4 nanowire composites for enhanced photocatalytic H2evolution under visible light irradiation[J]. ChemCatChem, 2020, 12(7): 2022-2031.

[67]

Pasupuleti K S, Ghosh S, Jayababu N, Kang C J, Cho H D, Kim S G, Kim M D. Boron doped g-C3N4quantum dots based highly sensitive surface acoustic wave NO2sensor with faster gas kinetics under UV light illumination[J]. Sensor Actuat. B-Chem., 2023, 378: 133140.

[68]

Medetalibeyoğlu H. An investigation on development of a molecular imprinted sensor with graphitic carbon nitride (g-C3N4) quantum dots for detection of acetaminophen[J]. Carbon Lett., 2021, 31(6): 1237-1248.

[69]

He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance[J]. J. Solid State Chem., 2004, 177(11): 3868-3872.

[70]

Chen L maigbay M A, Li M, Qiu X Q. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Advanced Powder Materials, 2023, 3(1): 100150.

[71]

Raziq F, Hayat A, Humayun M, Baburao Mane S K, Faheem M B, AlI A, Zhao Y, Han S B, Cai C, Li W, Qi D C, Yi J B, Yu X J, Breese M B H, Hassan F, Ali F, Mavlonov A, Dhanabalan K, Xiang X, Zu X T, Li S, Qiao L. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites[J]. Appl. Catal. B: Environ., 2020, 270: 118867.

[72]

Yan P C, Jin Y C, Xu L, Mo Z, Qian J C, Chen F, Yuan J J, Xu H, Li H N. Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine[J]. Biosens. Bioelectron., 2022, 206: 114144.

[73]

Liang D, Luo J J, Liang X, Wang H X, Wang J X, Qiu X Q. An “on-off-super on” photoelectrochemical sensor based on quenching by Cu-induced surface exciton trapping and signal amplification of copper sulfide/porous carbon nitride heterojunction[J]. Chemosphere, 2021, 267: 129218.

[74]

VijetA A, Casadevall C, Roy S, Reisner E. Visible-light promoted C-O bond formation with an integrated carbon nitride-nickel heterogeneous photocatalyst[J]. Angew. Chem. Int. Ed., 2021, 60(15): 8494-8499.

[75]

Chen L, Maigbay M A, Li M, Qiu X Q. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Adv. Powder Mater., 2024, 3(1): 100150.

[76]

Muhammad B, Rehman Z U, Butt F K, Jrar J A, Yang X, Zheng K W, Hussain A, Wang C Y, Hou J H. Vanadium doped nickel oxide/g-C3N4 composites for multifunctional biosensing of dopamine, ascorbic acid and H2O2[J]. Ceram. Int., 2024, 50(18): 34091-34100.

[77]

Ullah S, Hussain A, Farid M A, Anjum F, Amin R, Du S F, Zou J J, Huang Z F, Tahir M. Sulfurization of bimetallic (Co and Fe) oxide and alloy decorated on multi-walled carbon nanotubes as efficient bifunctional electrocatalyst for water splitting[J]. Heliyon, 2024, 10(12): e32989.

[78]

Ali A, Farid M A, Amin M, Hussain A, Hou J H, Huang Z F, Du S F, Tahir M. Enhanced photocatalytic activities of FCNO nanoparticles on graphitic carbon nitride[J]. Diam. Relat. Mater., 2024, 146: 111243.

[79]

Nazir S, Noor N, Hussain A, Naseem S, Riaz S, Laref A, Mumtaz S, Ibrahim A. DFT study of rare-earth ferromagnetic spinels HgNd2Z4 (Z= S, Se) for spintronics applications[J]. J. Rare Earth., 2024, DOI: 10.1016/j.jre.2024.05.004.

[80]

Lin Z Z, Wang X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angew. Chem. Int. Ed., 2013, 52(6): 1735-1738.

[81]

Dong G P, Zhang Y H, Pan Q W, Qiu J R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties[J]. J. Photoch. Photobio. C, 2014, 20: 33-50.

[82]

Li Y H, Ho W K, Lv K L, Zhu B C, Lee S C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Appl. Surf. Sci., 2018, 430: 380-389.

[83]

Zhang K F, Zhou W, Zhang X C, Sun B J, Wang L, Pan K, Jiang B J, Tian G, Fu H G. Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts[J]. Appl. Catal. B: Environ., 2017, 206: 336-343.

[84]

Cao Y Z, Gao Q, Li Q, Jing X B, Wang S F, wang W. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Adv., 2017, 7(65): 40727-40733.

[85]

Chen X J, Shi R, Chen Q, Zhang Z J, Jiang W J, Zhu Y F, Zhang T R. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting[J]. Nano Energy, 2019, 59: 644-650.

[86]

Lin B, Yang G D, Yang B L, Zhao Y X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity[J]. Appl. Catal. B: Environmen., 2016, 198: 276-285.

[87]

Rono N, Kibet J K, Martincigh B S, Nyamori V O. A review of the current status of graphitic carbon nitride[J]. Crit. Rev. Solid State, 2021, 46(3): 189-217.

[88]

Sohail M, Anwar U, Taha T, Qazi H, Al-Sehemi A G, Ullah S, Algarni H, Ahmed I, Amin M A, Palamanit A. Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review[J]. Arab. J. Chem., 2022, 15(9): 104070.

[89]

Ma T Y, Dai S, Jaroniec M, Qiao S Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew. Chem. Int. Ed., 2014, 53(28): 7281-7285.

[90]

Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review[J]. Desalin. Water Treat., 2012, 41(1-3): 131-169.

[91]

Shanker U, Rani M, Jassal V. Degradation of hazardous organic dyes in water by nanomaterials[J]. Environ. Chem. Lett., 2017, 15(4): 623-642.

[92]

Fareed I, Farooq M U H, Khan M D, Yunas M F, Sandali Y, Ali Z, Tanveer M, Butt F K. Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation[J]. Mater. Chem. Phys., 2024, 316: 129062.

[93]

Al-Nuaim M A, AlwasitI A A, Shnain Z Y. The photocatalytic process in the treatment of polluted water[J]. Chem. Pap., 2023, 77(2): 677-701.

[94]

Li Y F, Xia Z L, Yang Q, Wang L X, Xing Y. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. J. Mater. Sci. Technol., 2022, 125: 128-144.

[95]

Tahir M, Cao C, Butt F K, Butt S, Idrees F, Ali Z, Aslam I, Tanveer M, Mahmood A, Mahmood N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability[J]. CrystEngComm, 2014, 16(9): 1825-1830.

[96]

Tahir M, Cao C, Butt F K, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T. Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis[J]. J. Mater. Chem. A, 2013, 1(44): 13949-13955.

[97]

Akram M Y, Ashraf T, Tong L, Yin X L, Dong H J, Lu H L. Architecting high-performance photocatalysts: A review of modified 2D/2D graphene/g-C3N4 heterostructures[J]. J. Environ. Chem. Eng., 2024, 12(5): 113415.

[98]

Ma C Y, Liu P H, Wang R T, Zhao G H, Zhou N, Zhang Q Y. Synthesis and characterization of enhanced visible light-driven C-doped ZnO-2D GO/g-C3N4 heterojunction photocatalyst[J]. Diam. Relat. Mater., 2023, 139: 110364.

[99]

Bao Y C, Chen K Z. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism[J]. Appl. Surf. Sci., 2018, 437: 51-61.

[100]

Wang X Y, Wang H H, Yu K, Hu X F. Immobilization of 2D/2D structured g-C3N4nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance[J]. Mater. Res. Bull., 2018, 97: 306-313.

[101]

Zhang M, Xu J, Zong R L, Zhu Y F. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4[J]. Appl. Catal. B: Environ., 2014, 147: 229-235.

[102]

Li Y W, Li S Z, Zhao M B, Liu L Y, Zhang Z F, Ma W L. Acid-induced tubular g-C3N4 for the selective generation of singlet oxygen by energy transfer: Implications for the photocatalytic degradation of parabens in real water environments[J]. Sci. Total Environ., 2023, 896: 165316.

[103]

Jia Y C, Tong X, Zhang J Z, Zhang R, Yang Y, Zhang L, Ji X. A facile synthesis of coral tubular g-C3N4 for photocatalytic degradation RhB and CO2 reduction[J]. J. Alloy Compd., 2023, 965: 171432.

[104]

Wang S P, Hou M C, Fu H, Ruan Z Z, Sun T T, Zhu Y Q, Wang L W, Wang Y H, Zhang S L. Synthesis of ultrathin porous g-C3N4 nanofilm via template-free method for photocatalytic degradation of tetracycline[J]. J. Alloy Compd., 2023, 939: 168738.

[105]

Singla S, Sharma S, Basu S, Shetti N P, Aminabhavi T M. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials[J]. Int. J. Hydrogen. Energy, 2021, 46(68): 33696-36717.

[106]

Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.

[107]

Vesborg P C K, Jaramillo T F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy[J]. RSC Adv., 2012, 2(21): 7933-7947.

[108]

Jiang L B, Yuan X Z, Pan Y, Liang J, Zeng G M, Wu Z B, Wang H. Doping of graphitic carbon nitride for photocatalysis: A review[J]. Appl. Catal. B: Environ., 2017, 217: 388-406.

[109]

Rehman Z U, Butt F K, Balayeva N O, Idrees F, Hou J H, Tariq Z, Rehman S U, Ul Haq B, Alfaify S, Ali S, Zaman S. Two dimensional graphitic carbon nitride Nanosheets as prospective material for photocatalytic degradation of nitrogen oxides[J]. Diam. Relat. Mater., 2021, 120: 108650.

[110]

Niu P, Zhang L L, Liu G, Cheng H M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv. Funct. Mater., 2012, 22(22): 4763-4770.

[111]

Yang B, Han J zhang Q, Liao G F, Cheng W J, Ge G X, Liu J C, Yang X D, Wang R J, Jia X. Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2production[J]. Carbon, 2023, 202: 348-357.

[112]

Zhang Y, Cao N, Liu X M, He F T, Zheng B, Zhao C C, Wang Y Q. Enhanced electron density of the π-conjugated structure and in-plane charge transport to boost photocatalytic H2 evolution of g-C3N4[J]. Sci. China Mater., 2023, 66(6): 2274-2282.

[113]

Guan P, Yin H, Han P G, Liu J Y, Yang S Q. Hydrochloric-acid-induced hydrothermally pretreated ultrathin C3N4 nanosheets for efficient photocatalytic H2 evolution[J]. J. Chem. Technol. Biot., 2023, 98(8): 1964-1974.

[114]

Zhang Q Q, Bai X, Hu X Y, Fan J, Liu E Z. Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface[J]. Appl. Surf. Sci., 2022, 579: 152224.

[115]

Ismael M. Construction of novel Ru-embedded bulk g-C3N4 photocatalysts toward efficient and sustainable photocatalytic hydrogen production[J]. Diam. Relat. Mater., 2024, 144: 111024.

[116]

Tahir M. Synergistic effect of TP-Ru complex with optimized Ru-NP-loaded exfoliated g-C3N4 for photocatalytic green hydrogen production[J]. Energy & Fuels, 2024, 38(15) : 14588-14603

[117]

Li R T, Gao T Y, Wang Y, Chen Y, Luo W, Wu Y, Xie Y, Wang Y, Zhang Y F. Engineering of bimetallic Au-Pd alloyed particles on nitrogen defects riched g-C3N4 for efficient photocatalytic hydrogen production[J]. Int. J. Hydrogen Energy, 2024, 63: 1116-1127.

[118]

Yu C F, Yang H Y, Zhao H Y, Huang X, Liu M N, Du C W, Chen R Y, Feng J L, Dong S Y, Sun J H, Jiang K. Simultaneous hydrogen production from wastewater degradation by protonated porous g-C3N4/BiVO4 Z-scheme composite photocatalyst[J]. Sep. Purif. Technol., 2024, 335: 126201.

[119]

Hassan A E, Elewa A M, Hussien M S, El-Mahdy A F, Mekhemer I M, Yahia I S, Mohamed T A, Chou H H, Wen Z. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production[J]. J. Colloid Interf. Sci., 2024, 653: 1650-1661.

[120]

Qian A, Han X, Liu Q A, Fan M W, Ye L, Pu X, Chen Y, Liu J C, Sun H, Zhao J G, Ling H, Wang R J, Li J B, Jia X. Photocatalytic hydrogen production from pure water using a IEF-11/g-C3N4 S‐scheme heterojunction[J]. ChemSusChem, 2024, 17(6): e202301538.

[121]

Gong Y Y, Xu Z D, Wu J, Zhong J B, Ma D M. Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies[J]. Appl. Surf. Sci., 2024, 657: 159790.

[122]

González A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: Technologies and materials[J]. Renew. Sust. Energ. Rev., 2016, 58: 1189-1206.

[123]

Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M. Supercapacitors: Properties and applications[J]. J. Energy Storage, 2018, 17: 224-227.

[124]

Miller E E, Hua Y, Tezel F H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors[J]. J. Energy Storage, 2018, 20: 30-40.

[125]

Muralee gopi C V V, Vinodh R, Sambasivam S, Obaidat I M, Kim H J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications[J]. J. Energy Storage, 2020, 27: 101035.

[126]

Zhang X Y, Liao H W, Liu X, Shang R G, Zhou Y, Zhou Y N. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors[J]. Ionics, 2020, 26(7): 3599-607.

[127]

Shen C, Li R Z, Yan L J, Shi Y X, Guo H T, Zhang J H, Lin Y, Zhang Z K, Gong Y Y, Niu L Y. Rational design of activated carbon nitride materials for symmetric supercapacitor applications[J]. Appl. Surf. Sci., 2018, 455: 841-848.

[128]

Gonçalves R, Lima T M, Paixão M W, Pereira E C. Pristine carbon nitride as active material for high-performance metal-free supercapacitors: simple, easy and cheap[J]. RSC Adv., 2018, 8(61): 35327-35336.

[129]

Butt F K, Hauenstein P, Kosiahn M, Garlyyev B, Dao M, Lang A, Scieszka D, Liang Y, Kreuzpaintner W. An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: A revisited insight into a potential electrode material for supercapacitors[J]. Micropor. Mesopor. Mat., 2020, 294: 109853.

[130]

Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.

[131]

Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J]. J. Catal., 2006, 239(1): 83-96.

[132]

Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew. Chem. Int. Ed., 2011, 50(14): 3257-3261.

[133]

Tahir M, Mahmood N, Zhu J H, Mahmood A, Butt F K, Rizwan S, Aslam I, Tanveer M, Idrees F, Shakir I, Cao C B, Hou Y L. One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts[J]. Sci. Rep.-UK, 2015, 5(1): 12389.

[134]

Zhang C Z, Hao R, Liao H B, Hou Y L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction[J]. Nano Energy, 2013, 2(1): 88-97.

[135]

Mahmood N, Zhang C Z, Hou Y L. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small, 2013, 9(8): 1321-1328.

[136]

Mahmood N, Zhang C Z, Jiang J, Liu F, Hou Y L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction[J]. Chem.-Eur. J., 2013, 19(16): 5183-5190.

[137]

Li C X, Li X S, Zhang X Y, Yang X J, Wang L Y, W. The g-C3N4 quantum dot decorated g-C3N4Sheet/reduced graphene oxide composite as efficient metal-free electrocatalyst for oxygen reduction reaction[J]. J. Electrochem. Soc., 2020, 167(10): 100534.

[138]

Prabakaran K, Jandas P J, Luo J T, Fu C. Chapter 11 - Graphitic carbon nitride for fuel cells[M]//Editors. Pandikumar A, Murugan C, Vinoth S. Nanoscale graphitic carbon nitride-synthesis and applications, Elsevier Inc., 2022: 341-366.

[139]

Zhang L, Li L B, Gao Z L, Guo L J, Li M T, Su J Z. Porous hierarchical iron/nitrogen co‐doped carbon etched by g‐C3N4 pyrolysis as efficient non‐noble metal catalysts for PEM fuel cells[J]. ChemElectroChem, 2022, 9(6): e202101681.

[140]

Harun N A M, Shaari N, Ramli Z A C. Progress of g‐C3N4 and carbon‐based material composite in fuel cell application[J]. Int. J. Energy Res., 2022, 46(12): 16281-16315.

[141]

Ponnusamy P, Panthalingal M K, Badhirappan G P, Pullithadathil B. Durable electrocatalyst support materials based on N-doped mesoporous carbon nanofibers with titanium nitride overlay coating for high-performance proton exchange membrane fuel cells[J]. ACS Appl. Nano Mater., 2024, 7(5): 4676-4691.

[142]

Ravichandran S, Bhuvanendran N, Kumar R S, Balla P, Lee S Y, Xu Q, Su H N. Polyhedron shaped palladium nanostructures embedded on MoO2/PANI-g-C3N4 as high performance and durable electrocatalyst for oxygen reduction reaction[J]. J. Colloid. Interf. Sci., 2023, 629: 357-369.

[143]

Boretti A, Banik B K. Advances in hydrogen production from natural gas reforming[J]. Adv. Energy Sust. Res., 2021, 2(11): 2100097.

[144]

Peng Y D, Jiang K, Hill W, Lu Z Y, Yao H B, Wang H T. Large-scale, low-cost, and high-efficiency water-splitting system for clean H2 generation[J]. ACS Appl. Mater. & Interfaces, 2019, 11(4): 3971-3977.

[145]

Bockris J O M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. Int. J. Hydrogen Energy, 2002, 27(7): 731-740.

[146]

Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C J. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chem. Soc. Rev., 2020, 49(7): 2196-2214.

[147]

Karmakar A, Karthick K, Sankar S S, Kumaravel S, Madhu R, Kundu S. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review[J]. J. Mater. Chem. A, 2021, 9(3): 1314-1352.

[148]

Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A Review[J]. ACS Catal., 2016, 6(12): 8069-8097.

[149]

Li A L, Sun Y M, Yao T T, Han H X. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen[J]. Chem.-Eur. J., 2018, 24(69): 18334-18355.

[150]

Liu B, Sun Y L, Liu L, Xu S, Yan X B. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries[J]. Adv. Funct. Mater., 2018, 28(15): 1704973.

[151]

Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application[J]. Adv. Energy Mater., 2019, 9(17): 1803358.

[152]

Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem. Soc. Rev., 2020, 49(5): 1414-1448.

[153]

Zhao J W, Shi Z X, Li C F, Ren Q, Li G R. Regulation of perovskite surface stability on the electrocatalysis of oxygen evolution reaction[J]. ACS Mater. Lett., 2021, 3(6): 721-737.

[154]

Yun T G, Sim Y, Lim Y, Kim D, An J S, Lee H, Du Y, Chung S Y. Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: Atomistic features and viewpoints[J]. Mater. Today, 2022, 58: 221-237.

[155]

Torres-Pinto A, Díez A M, Silva C G, Faria J L, Sanromán M Á, Silva A M T, Pazos M. Tuning graphitic carbon nitride (g-C3N4) electrocatalysts for efficient oxygen evolution reaction (OER)[J]. Fuel, 2024, 360: 130575.

[156]

Yu Z, Li Y, Torres-Pinto A, Lagrow A P, Diaconescu V M, Simonelli L, Sampaio M J, Bondarchuk O, Amorim I, Araujo A, Silva A M T, Silva C G, Faria J L, Liu L. Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution[J]. Appl. Catal. B: Environ., 2022, 310: 121318.

[157]

Peng Z, Yang S W, Jia D S, Da P M, He P, Al-Enizi A M, Ding G Q, Xie X M, Zheng G F. Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media[J]. J. Mater. Chem. A, 2016, 4(33): 12878-12883.

[158]

Yu L H, Sun S N, Li H Y, Xu Z J. Effects of catalyst mass loading on electrocatalytic activity: An example of oxygen evolution reaction[J]. Fund Res.-China, 2021, 1(4): 448-452.

[159]

Ehsan M A, Babar N-U-A. Straightforward preparation of Fe-based electrocatalytic films at various substrates for IrO2-like water oxidation activity[J]. Energy & Fuels, 2023, 37(5): 3934-3941.

[160]

Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M, Qiao S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Commun., 2014, 5(1): 3783.

[161]

Wang F F, Wang Q G, Wang S M, Zhang K, Jia S Q, Chen J, Wang X H. Water-phase lateral interconnecting quantum dots as free-floating 2D film assembled by hydrogen-bonding interactions to acquire excellent electrocatalytic activity[J]. ACS Nano, 2022, 16(6): 9049-9061.

[162]

Wang S, Lv H, Tang F M, Sun Y W, Ji W X, Zhou W, Shen X J, Zhang C M. Defect engineering assisted support effect: IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis[J]. Chem. Eng. J., 2021, 419: 129455.

[163]

kayiş z akyüz d. A high-performance electrocatalyst via graphitic carbon nitride nanosheet-decorated bimetallic phosphide for alkaline water electrolysis[J]. Phys. Chem. Chem. Phys., 2024, 26(20): 14908-17918.

[164]

Zhao Y, Zhao F, Wang X P, Xu C Y, Zhang Z P, Shi G Q, Qu L T. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution[J]. Angew. Chem. Int. Ed., 2014, 53(50): 13934-13939.

[165]

Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Appl. Mater. & Interfaces, 2014, 6(2): 1011-1017.

[166]

Zhong H X, Zhang Q, Wang J, Zhang X B, Wei X L, Wu Z J, Li K, Meng F L, Bao D, Yan J M. Engineering ultrathin C3N4quantum dots on graphene as a metal-free water reduction electrocatalyst[J]. ACS Catal., 2018, 8(5): 3965-3970.

PDF

760

Accesses

0

Citation

Detail

Sections
Recommended

/