Single-Entity Collisional Electrochemistry at the Micro- and/or Nano-Interface Between Two Immiscible Electrolyte Solutions

Li-Fang Yang , Jun-Jie Chen , Ling-Yu Chen , Si-Qi Jin , Tao-Xiong Fang , Si-Jia He , Liang-Jun Shen , Xin-Jian Huang , Xiao-Hang Sun , Hai-Qiang Deng

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (11) : 2414005

PDF (2748KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (11) :2414005 DOI: 10.61558/2993-074X.3495
REVIEW
research-article

Single-Entity Collisional Electrochemistry at the Micro- and/or Nano-Interface Between Two Immiscible Electrolyte Solutions

Author information +
History +
PDF (2748KB)

Abstract

Single-entity collisional electrochemistry (SECE) is a branch of single-entity electrochemistry. It can directly characterize entities/particles with single particle resolution through random collisions between particles and electrodes in a solution, and obtain rich physicochemical information, thus becoming one of the frontiers of electroanalytical chemistry in the past two decades. Interestingly, the (micro/nanoscale) sensing electrodes have evolved from a polarizable liquid/liquid (mercury/liquid) interface to a solid/liquid interface and then to a liquid/liquid interface (i.e., an interface between two immiscible electrolyte solutions, ITIES), as if they have completed a cycle (but in fact they have not). ITIES has become the latest sensing electrode in the booming SECE due to its polarizability (up to 1.1 V at the water/α,α,α-trifluorotoluene interface) and high reproducibility. The four measurement modes (direct electrolysis, mediated electrolysis, current blockade, and charge displacement) developed in the realm of SECE at solid/liquid interfaces have also been fully realized at the miniature ITIES. This article will discuss these four modes at the ITIES from the perspectives of basic concepts, operating mechanisms, and latest developments (e.g., discovery of ionosomes, blockade effect of Faradaic ion transfer, etc.), and look forward to the future development and direction of this emerging field.

Keywords

Single-entity collisional electrochemistry / Interface between two immiscible electrolyte solutions / Charge transfer

Cite this article

Download citation ▾
Li-Fang Yang, Jun-Jie Chen, Ling-Yu Chen, Si-Qi Jin, Tao-Xiong Fang, Si-Jia He, Liang-Jun Shen, Xin-Jian Huang, Xiao-Hang Sun, Hai-Qiang Deng. Single-Entity Collisional Electrochemistry at the Micro- and/or Nano-Interface Between Two Immiscible Electrolyte Solutions. Journal of Electrochemistry, 2024, 30(11): 2414005 DOI:10.61558/2993-074X.3495

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker L A. Perspective and prospectus on single-entity electrochemistry[J]. J. Am. Chem. Soc., 2018, 140(46): 15549-15559.

[2]

Coulter W H. Means for counting particles suspended in a fluid: US, 2656508[P]. 1953.

[3]

Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres[J]. Nature, 1976, 260(5554): 799-802.

[4]

Finnegan J M, Borges R, Wightman R M. Comparison of cytosolic Ca2+ and exocytosis responses from single rat and bovine chromaffin cells[J]. Neuroscience, 1996, 71(3): 833-843.

[5]

Fan F R F, Bard A J. Electrochemical detection of single moleculas[J]. Science, 1995, 267(5199): 871-874.

[6]

Meier J, Friedrich K A, Stimming U. Novel method for the investigation of single nanoparticle reactivity[J]. Faraday Discuss., 2002, 121: 365-372.

[7]

Xu B, Tao N J. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science, 2003, 301(5637): 1221-1223.

[8]

Micka K, Kadlec O. Depolarisation der quecksilbertropfelektrode durch suspensionen unlöslicher stoffe i. allgemeine beobachtungen[J]. Collect. Czech. Chem. Commun., 1956, 21: 647-651.

[9]

Gorschlüter A, Sundermeier C, Roß B, Knoll M. Microparticle detector for biosensor application[J]. Sens. Actuators, B, 2002, 85(1-2): 158-165.

[10]

Quinn B M, Van’T Hof P G, Lemay S G. Time-resolved electrochemical detection of discrete adsorption events[J]. J. Am. Chem. Soc., 2004, 126(27): 8360-8361.

[11]

Xiao X, Bard A J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification[J]. J. Am. Chem. Soc., 2007, 129(31): 9610-9612.

[12]

Zhou Y, Rees N V, Compton R G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution[J]. Angew. Chem. Int. Ed., 2011, 50(18): 4219-4221.

[13]

Laborda E, Molina A, Espín V F, Martínez-Ortiz F, García de la Torre J, Compton R G. Single fusion events at polarized liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2017, 56(3): 782-785.

[14]

Stockmann T J, Angelé L, Brasiliense V, Combellas C, Kanoufi F. Platinum nanoparticle impacts at a liquid|liquid interface[J]. Angew. Chem. Int. Ed., 2017, 56(43): 13493-13497.

[15]

Egbe O N, Morrissey B H P, Harvey N E, Schneider C, Cahill L S, Stockmann T J. Ionosome single entity electrochemical detection at a micro water/alkylphosphonium ionic liquid interface[J]. J. Electroanal. Chem., 2023, 945: 117678.

[16]

Trojánek A, Mareček V, Samec Z. Open circuit potential transients associated with single emulsion droplet collisions at an interface between two immiscible electrolyte solutions[J]. Electrochem. Commun., 2018, 86: 113-116.

[17]

Trojánek A, Samec Z. Study of the emulsion droplet collisions with the polarizable water/1,2-dichloroethane interface by the open circuit potential measurements[J]. Electrochim. Acta, 2019, 299: 875-885.

[18]

Deng H, Peljo P, Huang X, Smirnov E, Sarkar S, Maye S, Girault H H, Mandler D. Ionosomes: Observation of ionic bilayer water clusters[J]. J. Am. Chem. Soc., 2021, 143(20): 7671-7680.

[19]

Huang L H, Zhang J C, Xiang Z P, Wu D, Huang X J, Huang X Z, Liang Z X, Tang Z Y, Deng H Q. Faradaic counter for liposomes loaded with potassium, sodium ions, or protonated dopamine[J]. Anal. Chem., 2021, 93(27): 9495-9504.

[20]

Zhang J Y, Huang L H, Fang T X, Du F, Xiang Z P, Zhang J C, Chen R, Peljo P, Ouyang G F, Deng H Q. Discrete events of ionosomes at the water/toluene micro‐interface[J]. ChemElectroChem, 2022, 9(22): e202200624.

[21]

Zhang J C, Huang L H, Fang T X, Xiang Z P, He S J, Peljo P, Gan S Y, Huang X J, Deng H Q. Quantized collision/fusion events of anionic ionosomes at a polarized soft micro‐interface[J]. Chem. - Asian J., 2022, 17(24): e202200731.

[22]

Zhang J Y, He S J, Fang T X, Xiang Z P, Sun X H, Yu J Z, Ouyang G F, Huang X J, Deng H Q. Observing discrete blocking events at a polarized micro- or submicro-liquid/liquid interface[J]. J. Phys. Chem. B, 2023, 127(41): 8974-8981.

[23]

Zhao L J, Qian R C, Ma W, Tian H, Long Y T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision[J]. Anal. Chem., 2016, 88(17): 8375-8379.

[24]

Edel J B, Kornyshev A A, Urbakh M. Self-Assembly of nanoparticle arrays for use as mirrors, sensors, and antennas[J]. ACS Nano, 2013, 7(11): 9526-9532.

[25]

Binder W H. Supramolecular assembly of nanoparticles at liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2005, 44(33): 5172-5175.

[26]

Taylor G, Girault H H. Ion transfer reactions across a liquid-liquid interface supported on a micropipette tip[J]. J. Electroanal. Chem. Interfacial Electrochem., 1986, 208(1):179-183.

[27]

Shao Y, Mirkin M V. Fast kinetic measurements with nanometer-sized pipets. transfer of potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6[J]. J. Am. Chem. Soc., 1997, 119(34): 8103-8104.

[28]

Shao Y, Liu B, Mirkin M V. Studying ionic reactions by a new generation/collection technique[J]. J. Am. Chem. Soc., 1998, 120(48): 12700-12701.

[29]

Liu S J, Li Q, Shao Y H. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces[J]. Chem. Soc. Rev., 2011, 40(5): 2236.

[30]

Zhang S D, Li M Z, Su B, Shao Y H. Fabrication and use of nanopipettes in chemical analysis[J]. Annu. Rev. Anal. Chem., 2018, 11(1): 265-286.

[31]

Deng H, Dick J E, Kummer S, Kragl U, Strauss S H, Bard A J. Probing ion transfer across liquid-liquid interfaces by monitoring collisions of single femtoliter oil droplets on ultramicroelectrodes[J]. Anal. Chem., 2016, 88(15): 7754-7761.

[32]

Rodgers A N J, Booth S G, Dryfe R A W. Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): A mini-review[J]. Electrochem. Commun., 2014, 47: 17-20.

[33]

Li X, Dunevall J, Ewing A G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry[J]. Acc. Chem. Res., 2016, 49(10): 2347-2354.

[34]

Poon J, Batchelor-McAuley C, Tschulik K, Compton R G. Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient[J]. Chem. Sci., 2015, 6(5): 2869-2876.

[35]

Stockmann T J, Lemineur J F, Liu H, Cometto C, Robert M, Combellas C, Kanoufi F. Single LiBH4 nanocrystal stochastic impacts at a micro water|ionic liquid interface[J]. Electrochim. Acta, 2019, 299: 222-230.

[36]

Svetličić V, Ivošević N, Kovac S, Žutić V. Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells[J]. Langmuir, 2000, 16(21): 8217-8220.

[37]

Azimzadeh Sani M, Pavlopoulos N G, Pezzotti S, Serva A, Cignoni P, Linnemann J, Salanne M, Gaigeot M P, Tschulik K. Unexpectedly high capacitance of the metal nanoparticle/water interface: molecular‐level insights into the electrical double layer[J]. Angew. Chem. Int. Ed., 2022, 61(5): e202112679.

[38]

Crooks R M. Concluding remarks: single entity electrochemistry one step at a time[J]. Faraday Discuss., 2016, 193: 533-547.

[39]

Lu S M, Vannoy K J, Dick J E, Long Y T. Multiphase chemistry under nanoconfinement: An electrochemical perspective[J]. J. Am. Chem. Soc., 2023, 145(46): 25043-25055.

[40]

Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur J F, Actis P, Kanoufi F, Unwin P R. The New era of high-throughput nanoelectrochemistry[J]. Anal. Chem., 2023, 95(1): 319-356.

[41]

Zhang L, Wahab O J, Jallow A A, O'Dell Z J, Pungsrisai T, Sridhar S, Vernon K L, Willets K A, Baker L A. Recent developments in single-entity electrochemistry[J]. Anal. Chem., 2024, 96: 8036-8055.

[42]

Nernst W, Riesenfeld E H. Ueber elektrolytische Erscheinungen u. elektromotorische Kräfte an der Grenzfläche zweier Lösungsmittel. Georg-Augusts-Universität zu Göttingen, 1901.

[43]

Gavach C, Henry F. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two non-miscible solutions: I. Aqueous solution-tetrabutylammonium ion specific liquid membrane[J]. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54(2): 361-370.

[44]

Gros M, Gromb S, Gavach C. The double layer and ion adsorption at the interface between two non-miscible solutions[J]. J. Electroanal. Chem. Interfacial Electrochem., 1978, 89(1): 29-36.

[45]

Samec Z, Mareček V, Weber J. Charge transfer between two immiscible electrolyte solutions[J]. J. Electroanal. Chem. Interfacial Electrochem., 1979, 100(1-2): 841-852.

[46]

Shi C, Anson F C. A Simple method for examining the electrochemistry of metalloporphyrins and other hydrophobic reactants in thin layers of organic solvents interposed between graphite electrodes and aqueous solutions[J]. Anal. Chem., 1998, 70(15): 3114-3118.

[47]

Deng H Q, Huang X J, Wang L S, Tang A M. Estimation of the kinetics of anion transfer across the liquid/liquid interface, by means of Fourier transformed square-wave voltammetry[J]. Electrochem. Commun., 2009, 11(6): 1333-1336.

[48]

Scholz F, Komorsky-Lovric S, Lovric M. A new access to Gibbs energies of transfer of ions across liquid/liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions[J]. Electrochem. Commun., 2000, 2(2): 112-118.

[49]

Deng H Q, Huang X J, Wang L S. A simultaneous study of kinetics and thermodynamics of anion transfer across the liquid/liquid interface by means of fourier transformed large-amplitude square-wave voltammetry at three-phase electrode[J]. Langmuir, 2010, 26(24): 19209-19216.

[50]

Benjamin I. Mechanism and dynamics of ion transfer across a liquid-liquid interface[J]. Science, 1993, 261(5128): 1558-1560.

[51]

Marcus R A. Theory of electron-transfer rates across liquid-liquid interfaces[J]. J. Phys. Chem., 1990, 94(10): 4152-4155.

[52]

Kikkawa N, Wang L, Morita A. Microscopic barrier mechanism of ion transport through liquid-liquid interface[J]. J. Am. Chem. Soc., 2015, 137(25): 8022-8025.

[53]

Kakiuchi T. Avalanche transfer of charged particles across the electrochemical liquid|liquid interface[J]. Electrochem. Commun., 2000, 2(5): 317-321.

[54]

Schweighofer K J, Benjamin I. Transfer of small ions across the water/1,2-dichloroethane interface[J]. J. Phys. Chem., 1995, 99(24): 9974-9985.

[55]

Dale S E C, Unwin P R. Polarised liquid/liquid micro-interfaces move during charge transfer[J]. Electrochem. Commun., 2008, 10(5): 723-726.

[56]

Samec Z. Electrical double layer at the interface between two immiscible electrolyte solutions[J]. Chem. Rev., 1988, 88(4): 617-632.

[57]

Kakiuchi T, Senda M. Polarizability and electrocapillary measurements of the nitrobenzene-water interface[J]. Bull. Chem. Soc. Jpn., 1983, 56(5): 1322-1326.

[58]

Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. J. Phys. Chem., 1959, 63(9): 1381-1387.

[59]

Hayamizu K, Chiba Y, Haishi T. Dynamic ionic radius of alkali metal ions in aqueous solution: a pulsed-field gradient NMR study[J]. RSC Adv., 2021, 11(33): 20252-20257.

[60]

Shao Y, Stewart A A, Girault H H. Determination of the half-wave potential of the species limiting the potential window. Measurement of gibbs transfer energies at the water/1,2-dichloroethane interface[J]. J. Chem. Soc., Faraday Trans., 1991, 87(16): 2593.

[61]

Smirnov E, Peljo P, Scanlon M D, Girault H H. Gold nanofilm redox catalysis for oxygen reduction at soft interfaces[J]. Electrochim. Acta, 2016, 197: 362-373.

[62]

Sabela A, Mareček V, Samec Z, Girault H H. Standard gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane[J]. Electrochim. Acta, 1992, 37(2): 231-235.

[63]

Xiao X, Fan F R F, Zhou J, Bard A J. Current transients in single nanoparticle collision events[J]. J. Am. Chem. Soc., 2008, 130(49): 16669-16677.

[64]

Xiang Z P, Deng H Q, Peljo P, Fu Z Y, Wang S L, Mandler D, Sun G Q, Liang Z X. Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(13): 3464-3468.

[65]

Smirnov E, Peljo P, Scanlon M D, Girault H H. Interfacial redox catalysis on gold nanofilms at soft interfaces[J]. ACS Nano, 2015, 9(6): 6565-6575.

[66]

Peljo P, Scanlon M D, Olaya A J, Rivier L, Smirnov E. Redox electrocatalysis of floating nanoparticles: Determining electrocatalytic properties without the influence of solid supports[J]. J. Phys. Chem. Lett., 2017, 8(15): 3564-3575.

[67]

Scanlon M D, Smirnov E, Stockmann T J, Peljo P. Gold nanofilms at liquid-liquid interfaces: An emerging platform for redox electrocatalysis, nanoplasmonic sensors, and electrovariable optics[J]. Chem. Rev., 2018, 118(7): 3722-3751.

[68]

Hotta H, Ichikawa S, Sugihara T, Osakai T. Clarification of the mechanism of interfacial electron-transfer reaction between ferrocene and hexacyanoferrate(iii) by digital simulation of cyclic voltammograms[J]. J. Phys. Chem. B, 2003, 107(36): 9717-9725.

[69]

Osakai T, Ichikawa S, Hotta H, Nagatani H. A true electron-transfer reaction between 5,10,15,20-tetraphenylporphyrinato cadmium(ii) and the hexacyanoferrate couple at the nitrobenzene/water interface[J]. Anal. Sci., 2004, 20(11): 1567-1573.

[70]

Jane Stockmann T, Deng H, Peljo P, Kontturi K, Opallo M. Mechanism of oxygen reduction by metallocenes near liquid|liquid interfaces[J]. J. Electroanal. Chem., 2014, 729: 43-52.

[71]

Deng H, Peljo P, Momotenko D, Cortés-Salazar F, Stockmann T.J, Kontturi K, Opallo M, Girault H H. Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy[J]. J. Electroanal. Chem., 2014, 732: 101-109.

[72]

Laborda E, Molina A. Impact experiments at the interface between two immiscible electrolyte solutions (ITIES)[J]. Curr. Opin. Electrochem., 2021, 26: 100664.

[73]

Shao Y, Osborne M D, Girault H H. Assisted ion transfer at micro-ITIES supported at the tip of micropipettes[J]. J. Electroanal. Chem. Interfacial Electrochem., 1991, 318(1-2): 101-109.

[74]

Shendure J, Balasubramanian S, Church G M, Gilbert W, Rogers J, Schloss J A, Waterston R H. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345-353.

[75]

Deng Z, Renault C. Detection of individual insulating entities by electrochemical blocking[J]. Curr. Opin. Electrochem., 2021, 25: 100619.

[76]

Dick J E, Renault C, Bard A J. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes[J]. J. Am. Chem. Soc., 2015, 137(26): 8376-8379.

[77]

Moazzenzade T, Huskens J, Lemay S G. Stochastic electrochemistry at ultralow concentrations: the case for digital sensors[J]. Analyst, 2020, 145(3): 750-758.

[78]

Rodgers P J, Amemiya S. Cyclic voltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces[J]. Anal. Chem., 2007, 79(24): 9276-9285.

[79]

Bonezzi J, Boika A. Deciphering the magnitude of current steps in electrochemical blocking collision experiments and its implications[J]. Electrochim. Acta, 2017, 236: 252-259.

[80]

Ẑutić V, Ćosović B, Marčenko E, Bihari N, Kršinić F. Surfactant production by marine phytoplankton[J]. Mar. Chem., 1981, 10(6): 505-520.

[81]

Žutić V, Pleše T, Tomaić J, Legović T. Electrochemical characterization of fluid vesicles in natural waters[J]. Mol. Cryst. Liq. Cryst., 1984, 113(1): 131-145.

[82]

Hatay I, Su B, Li F, Partovi-Nia R, Vrubel H, Hu X, Ersoz M, Girault H H. Hydrogen evolution at liquid-liquid interfaces[J]. Angew. Chem. Int. Ed., 2009, 121(28): 5241-5244.

[83]

Lu S M, Chen M, Wen H, Zhong C B, Wang H W, Yu Z, Long Y T. Hydrodynamics-controlled single-particle electrocatalysis[J]. J. Am. Chem. Soc., 2024, 146: 15053-15060.

[84]

Zevenbergen M A G, Singh P S, Goluch E D, Wolfrum B L, Lemay S G. Stochastic sensing of single molecules in a nanofluidic electrochemical device[J]. Nano Lett., 2011, 11(7): 2881-2886.

[85]

Lesch A, Vaske B, Meiners F, Momotenko D, Cortés-Salazarv F, Girault H H, Wittstock G. Parallel imaging and template-free patterning of self‐assembled monolayers with soft linear microelectrode arrays[J]. Angew. Chem. Int. Ed., 2012, 51(41): 10413-10416.

[86]

Lemay S G, Moazzenzade T. Single-entity electrochemistry for digital biosensing at ultralow concentrations[J]. Anal. Chem., 2021, 93(26): 9023-9031.

PDF (2748KB)

137

Accesses

0

Citation

Detail

Sections
Recommended

/