Aqueous Supercapacitors with Wide Operative Voltage Window and Long Cycling Life Enabled by Electrolyte Hybridization Effect

Shi-Hua Ma , Qi Yin , Jin-Ping Zhao

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (11) : 2408051

PDF (2434KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (11) :2408051 DOI: 10.61558/2993-074X.3481
ARTICLE
research-article

Aqueous Supercapacitors with Wide Operative Voltage Window and Long Cycling Life Enabled by Electrolyte Hybridization Effect

Author information +
History +
PDF (2434KB)

Abstract

Developing supercapacitors (SCs) with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes. Although the design of water in salt (WIS) electrolytes has pushed the development of aqueous electrolytes to a new height, the WIS electrolytes with an operative voltage window of up to 2.5 V is still very scarce. Herein, in order to enrich the type of aqueous electrolyte with high operative voltage, tetramethylammonium trifluoromethanesulfonate (TMAOTf) based WIS electrolyte was used as a model to construct WIS based hybrid electrolyte with acetonitrile (ACN) co-solvent and LiTFSI co-solute. In view of the coordination effect of ACN and Li+ on free water in TMAOTf based WIS electrolyte, the TMA+-Li+-AWIS electrolyte has the electrochemical stabilization window of up to 3.35 V. Further coupled with the commercial YP-50F electrodes, TMA+-Li+-AWIS based SCs exhibited wide operative voltage window (2.5 V), long cycling life (45,000 cycles) and good low-temperature performance (99.99 % capacitance retention after 2000 cycles at -20 oC). The design of this hybrid electrolyte will enrich the types of aqueous hybrid electrolytes with long cycling life and wide operative voltage window.

Keywords

Supercapacitor / Aqueous hybrid electrolyte / tetramethylammonium trifluoromethanesulfonate based water in salt electrolyte / Operative voltage window / Cycling life

Cite this article

Download citation ▾
Shi-Hua Ma, Qi Yin, Jin-Ping Zhao. Aqueous Supercapacitors with Wide Operative Voltage Window and Long Cycling Life Enabled by Electrolyte Hybridization Effect. Journal of Electrochemistry, 2024, 30(11): 2408051 DOI:10.61558/2993-074X.3481

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng J Z, Wang Y, Xu Y T, Ma. H Y, Wang G W, Ma P J, Tang Y, Yan X B. Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly(ionic liquid) electrolytes[J]. Adv. Mater., 2021, 33(31): 2100887.

[2]

Feng J Z, Wang Y, Xu Y T, Sun Y L, Tang Y, Yan X B. Ion regulation of ionic liquid electrolytes for supercapacitors[J]. Energy Environ. Sci., 2021, 14: 2859-2882.

[3]

Zhang E, Fulik N, Hao G P, Zhang H Y, Kaskel S. An asymmetric supercapacitor-diode (CAPode) for unidirectional energy storage[J]. Angew. Chem. Int. Ed., 2019 58(37): 13060-13065.

[4]

Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. Natl. Sci. Rev., 2017 4(3): 453-489.

[5]

Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nat. Commun., 2016, 7: 12647

[6]

Gogotsi Y, Penner R M. Energy storage in nanomaterials - Capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083.

[7]

González A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: Technologies and materials[J]. Renew. Sust. Energy Rev., 2016, 58: 1189-1206.

[8]

Zhong C, Deng Y D, Hu W P, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484-539.

[9]

Xiao D W, Dou Q Y, Zhang L, Ma Y L, Shi S Q, Yan X B. Optimization of organic/water hybrid electrolytes for high‐rate carbon‐based supercapacitor[J]. Adv. Funct. Mater., 2019, 29(42): 1904136.

[10]

Dou Q Y, Lei S L, Wang D W, Zhang Q N, Xiao D W, Guo H W, Wang A P, Yang H, Li Y L, Shi S Q, Yan X B. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte[J]. Energy Environ. Sci., 2018 11: 3212-3219.

[11]

Wang C S, Pu Y X, Feng J Z, Xu Y T, Su K L M, Yang B J, Lang J W, Tian G K. Aqueous supercapacitors with low cost and high voltage enabled by Co‐solute crowding effect of electrolyte[J]. ChemElectroChem, 2022, 9(22): 202200882.

[12]

Pal B, Yang S, Ramesh S, Thangadurai V, Jose J. Electrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Adv., 2019, 1: 3807-3835.

[13]

Suo L M, Han F D, Fan X L, Liu H L, Xu K, Wang C S. “Water-in-Salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. J. Mater. Chem. A., 2016, 4: 6639-6644.

[14]

Liang T T, Hou R L, Dou Q Y, Zhang H Z, Yan X B. The applications of water‐in‐salt electrolytes in electrochemical energy storage devices[J]. Adv. Funct. Mater., 2020, 3(31): 2006749.

[15]

Tian X, Zhu Q Z, Xu B. “Water‐in‐Salt” electrolytes for supercapacitors: A review[J]. ChemSusChem, 2021, 14(12): 2501-2515.

[16]

Guo J H, Ma Y L, Zhao K, Wang Y, Yang B P, Cui J F, Yan X B. High‐performance and ultra‐stable aqueous supercapacitors based on a green and low-cost water‐in‐salt electrolyte[J]. ChemElectroChem, 2019, 6(21): 5433-5438.

[17]

Bu X D, Su L J, Dou Q Y, Lei S L, Yan X B. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor[J]. J. Mater. Chem. A., 2019, 7: 7541-7547.

[18]

Zhang M, Wang W J, Liang X H, Li C, Deng W J, Chen H B, Li R. Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor[J]. Chin. Chem. Lett., 2021, 32(7): 2217-2221.

[19]

Liu Q, Zhou J W, Song C H., Li X L, Wang Z P, Yang J, Cheng J L, Li H, Wang B. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt" gel electrolyte and N-doped graphene fiber[J]. Energy Storage Mater., 24: 495-503.

[20]

Wu S L, Su B Z, Sun M Z, Gu S, Lu Z G, Zhang K L, Yu D Y W, Huang B L, Wang P F, Lee C S, Zhang W J. Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering[J]. Adv. Mater., 2021, 33(41): 2102390.

[21]

Yu J H, Yu C, Song X D, Zhang Q, Wang Z, Xie Y Y, Liu Y B, Li W B, Ding Y W, Qiu J S. Microscopic-level insights into solvation chemistry for nonsolvating diluents enabling high-voltage/rate aqueous supercapacitors[J]. J. Am. Chem. Soc., 2023 145(25): 13828-13838.

[22]

Arbizzani C, Biso M, Cericola D, Lazore M, Soavi F, Mastragostino M. Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes[J]. J. Power Sources., 2008, 185(2):1575-1579.

[23]

Chen J W, Vatamanu J, Xing L D, Borodin O, Chen H Y, Guan X C, Liu X, Xu K, Li W S. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes[J]. Adv. Energy Mater., 2019, 10: 1902654.

[24]

Ciurduc E, Cruz C, Patil N, Mavrandonakis A, Marcilla R. Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries[J]. Energy Storage Mater., 2022, 53: 532-543.

[25]

Yue J M, Lin L D, Jiang L W, Zhang Q Q, Tong Y X, Suo L M, Hu Y S, Li H, Huang X J, Chen L Q. Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte[J]. Adv. Energy Mater., 2020, 10(36): 2000665.

[26]

Dou Q Y, Liu L Y, Yang B J, Lang J W, Yan X B. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors[J]. Nat. Commun., 2017, 8: 2188.

[27]

Ruschhaupt R, Pohlmann S, Varzi A, Passerini S. Determining realistic electrochemical stability windows of electrolytes for electrical double layer capacitors[J]. Batteries & Supercaps, 2020, 3(8): 698-707.

[28]

Pal B, Yang S, Ramesh S, Thangadurai V, Rajan J. Electrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Adv., 2019, 1(10): 3807-3835.

[29]

Guo W, Yu C, Li S F, Song X D, Yang Y, Qiu B, Zhao C T, Huang H W, Yang J, Han X T, Li D, Qiu J S. A phase transformation-resistant electrode enabled by a MnO2 confined effect for enhanced energy storage[J], Adv. Funct. Mater., 2019, 27(29): 1901342.

[30]

Dou Q Y, Lian C, Lei S L, Chen J T, Liu H L, Yan X B. Silica-grafted ionic liquid for maximizing the operational voltage of electrical double-layer capacitors[J]. Energy Storage Mater., 2019, 18: 253-259.

[31]

Liu Z X, Luo X B, Qin L P, Fang G Z, Liang S Q. Progress and prospect of low-temperature zinc metal batteries[J]. Adv. Powder Mater., 2021, 1(2): 100011.

[32]

Zhang Q N, Xu S, Wang Y, Dou Q Y, Sun Y L, Yan X B. Temperature-dependent structure and performance evolution of “water-in-salt” electrolyte for supercapacitor[J]. Energy Storage Mater., 2023, 55: 205-213.

[33]

Lei S, Zeng Z Q, Liu M C, Zhang H, Cheng S J, Xie J. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano energy, 2022, 98: 107265.

PDF (2434KB)

200

Accesses

0

Citation

Detail

Sections
Recommended

/