Single Nanobubble Formation on Au Nanoelectrodes and Au@WS2 Nanoelectrodes: Voltammetric Analysis and Electrocatalysis

Xian-Zhun Luo , Xiao-Hu Chen , Yong-Xin Li

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (10) : 2414001

PDF (1160KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (10) :2414001 DOI: 10.61558/2993-074X.3475
ARTICLE
research-article

Single Nanobubble Formation on Au Nanoelectrodes and Au@WS2 Nanoelectrodes: Voltammetric Analysis and Electrocatalysis

Author information +
History +
PDF (1160KB)

Abstract

Taking advantage of the extremely small size of the gold nanodisk electrode, the single hydrogen nanobubble generated on the surface of the nanoelectrode was studied to evaluate its hydrogen evolution performance. It was found that compared with the bare gold nanodisk electrode, the bubble formation potential of the gold nanodisk electrode modified with tungsten disulfide quantum dots (WS2 QDs) on the surface was more positive, indicating that its hydrogen evolution activity was higher. Microdynamic model analysis shows that the average standard rate constant of the rate-determining step of the hydrogen evolution reaction of gold nanoelectrodes modified with WS2 QDs is approximately 12 times larger than that of gold nanoelectrodes. This work based on the formation of nanobubbles provides new ideas for the design and performance evaluation of hydrogen evolution reaction catalysts.

Keywords

Nanoelectrode / Nanobubble / Electrocatalysis

Cite this article

Download citation ▾
Xian-Zhun Luo, Xiao-Hu Chen, Yong-Xin Li. Single Nanobubble Formation on Au Nanoelectrodes and Au@WS2 Nanoelectrodes: Voltammetric Analysis and Electrocatalysis. Journal of Electrochemistry, 2024, 30(10): 2414001 DOI:10.61558/2993-074X.3475

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khaselev O, Turner J A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting[J]. Science, 1998, 280(5362): 425-427.

[2]

Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80.

[3]

Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011, 10(10): 780-786.

[4]

Cheng Y, Xu C, Jia L, Gale J D, Zhang L, Liu C, Shen P K. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting[J]. Appl. Catal. B-Environ., 2015, 163: 96-104.

[5]

Rees N V, Compton R G. Carbon-free energy: A review of ammonia-and hydrazine-based electrochemical fuel cells[J]. Energy Environ. Sci., 2011, 4(4): 1255-1260.

[6]

Meng Y Y, Zou X X, Huang X X, Goswami A, Liu Z W, Asefa T. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation[J]. Adv. Mater., 2014, 26(37): 6510-6516.

[7]

Van Der Linde P, Peñas-López P, Soto Á M, Van Der Meer D, Lohse D, Gardeniers H, Rivas D F. Gas bubble evolution on microstructured silicon substrates[J]. Energy Environ. Sci., 2018, 11(12): 3452-3462.

[8]

Zhao X, Ren H, Luo L. Gas bubbles in electrochemical gas evolution reactions[J]. Langmuir, 2019, 35(16): 5392-5408.

[9]

Angulo A, van der Linde P, Gardeniers H, Modestino M, Rivas D F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.

[10]

Graziano G. Forever blowing nanobubbles[J]. Nat. Rev. Chem., 2020, 4(10): 506-506.

[11]

Liu Y L, Jin C, Liu Y W, Chen Q J. Recent progress in gas nanobubble electrochemistry[J]. Sci. China Chem., 2021, 51(3): 310-322.

[12]

Luo L, White H S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes[J]. Langmuir, 2013, 29(35): 11169-11175.

[13]

Chen Q, Luo L, Faraji H, Feldberg S W, White H S. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. J. Phys. Chem. Lett., 2014, 5(20): 3539-3544.

[14]

Chen Q, Luo L, White H S. Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode[J]. Langmuir, 2015, 31(15): 4573-4581.

[15]

Chen Q, Wiedenroth H S, German S R, White H S. Electrochemical nucleation of stable N2 nanobubbles at Pt nanoelectrodes[J]. J. Am. Chem. Soc., 2015, 137(37): 12064-12069.

[16]

German S R, Edwards M A, Chen Q, Liu Y, Luo L, White H S. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions[J]. Faraday Discuss., 2016, 193: 223-240.

[17]

Ren H, German S R, Edwards M A, Chen Q, White H S. Electrochemical generation of individual O2 nanobubbles via H2O2 oxidation[J]. J. Phys. Chem. Lett., 2017, 8(11): 2450-2454.

[18]

Ren H, Edwards M A, Wang Y, White H S. Electrochemically controlled nucleation of single CO2 nanobubbles via formate oxidation at Pt nanoelectrodes[J]. J. Phys. Chem. Lett., 2020, 11(4): 1291-1296.

[19]

Qiu X, Wei H F, Li R J, Li Y X. Electrochemical and electrocatalytic performance of single Au@Pt/Au bimetallic nanoparticles[J]. J. Alloy. Compd., 2023, 956: 170365.

[20]

Chen W, Wang H, Tang H R, Yang C, Li Y X. Unique voltammetry of silver nanoparticles: From single particle to aggregates[J]. Anal. Chem., 2019, 91(22): 14188-14191.

[21]

Duan X H, Li N, Wang G N, Su X G. High sensitive ratiometric fluorescence analysis of trypsin and dithiothreitol based on WS2 QDs[J]. Talanta, 2020, 219: 121171.

[22]

Guo X R, Wang Y, Wu F Y, Ni Y N, Kokot S. The use of tungsten disulfide dots as highly selective, fluorescent probes for analysis of nitrofurazone[J]. Talanta, 2015, 144: 1036-1043.

[23]

Pakiari A, Jamshidi Z. Nature and strength of M- S Bonds (M= Au, Ag, and Cu) in binary alloy gold clusters[J]. J. Phys. Chem. A, 2010, 114(34): 9212-9221.

[24]

Hua H M, Liu Y, Wang D M, Li Y X. Size-dependent voltammetry at single silver nanoelectrodes[J]. Anal. Chem., 2018, 90(16): 9677-9681.

[25]

Li Y X, Wu Q Q, Jiao S F, Xu C D, Wang L. Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis[J]. Anal. Chem., 2013, 85(8): 4135-4140.

[26]

Watkins J J, Chen J, White H S, Abruna H D, Maisonhaute E, Amatore C. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Anal. Chem., 2003, 75(16): 3962-3971.

[27]

Cheng Z L, Ma L, Liu Z. Hydrothermal-assisted grinding route for WS2 quantum dots (QDs) from nanosheets with preferable tribological performance[J]. Chin. Chem. Lett., 2021, 32(1): 583-586.

[28]

Yan Z L, Fu L J, Yang H M, Ouyang J. Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance[J]. J. Hazard. Mater., 2018, 344: 1090-1100.

[29]

Bayat A, Saievar-Iranizad E. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation[J]. J. Lumines., 2017, 185: 236-240.

[30]

Yan Y H, Zhang C L, Gu W, Ding C P, Li X C, Xian Y Z. Facile synthesis of water-soluble WS2quantum dots for turn-on fluorescent measurement of lipoic acid[J]. J. Phys. Chem. C, 2016, 120(22): 12170-12177.

[31]

Lin L X, Xu Y X, Zhang S W, Ross I M, Ong A C M, Allwood D A. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling[J]. ACS nano, 2013, 7(9): 8214-8223.

[32]

Xu S S, Gao X M, Hu M, Sun J Y, Wang D S, Zhou F, Weng L J, Liu W M. Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties[J]. Surf. Coat. Technol., 2014, 238: 197-206.

[33]

Wang Y, Liu Y, Zhang J F, Wu J J, Xu H, Wen X W, Zhang X, Tiwary C S, Yang W, Vajtai R, Zhang Y, Chopra N, Odeh I N, Wu Y C, Ajayan P M. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Sci. Adv., 2017, 3(12): e1701500.

[34]

Shi F Y, Du J R, Han Q, Zhang F R, Wang K, Kan Z T, Wang L, Li C Y, Xu L. Integrated wearable foam modified with WS2nanosheets@MoS2 quantum dots for oral disease diagnosis and healthcare monitoring[J]. Chem. Eng. J., 2023, 477: 146800.

[35]

Edwards M A, White H S, Ren H. Voltammetric determination of the stochastic formation rate and geometry of individual H2, N2, and O2 bubble nuclei[J]. ACS Nano, 2019, 13(6): 6330-6340.

[36]

Chen Q, Ranaweera R, Luo L. Hydrogen bubble formation at hydrogen-insertion electrodes[J]. J. Phys. Chem. C, 2018, 122(27): 15421-15426.

[37]

Chen Q J, Luo L. Correlation between gas bubble formation and hydrogen evolution reaction kinetics at nanoelectrodes[J]. Langmuir, 2018, 34(15): 4554-4559.

[38]

Wei H F, Wang H, Tang H R, Li Y X. Voltammetric analysis of single nanobubble formation on Ag and Ag@MoS2 nanoelectrodes[J]. J. Phys. Chem. C, 2021, 125(5): 3073-3080.

[39]

Sheng W, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes[J]. J. Electrochem. Soc., 2010, 157(11): B1529.

[40]

Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger H A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy Environ. Sci., 2014, 7(7): 2255-2260.

[41]

Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci Rep, 2015, 5(1): 13801.

[42]

Hill C M, Kim J, Bard A J. Electrochemistry at a metal nanoparticle on a Tunneling film: A steady-state model of current densities at a tunneling ultramicroelectrode[J]. J. Am. Chem. Soc., 2015, 137(35): 11321-11326.

[43]

Defnet P A, Han C, Zhang B. Temporally-resolved ultrafast hydrogen adsorption and evolution on single platinum nanoparticles[J]. Anal. Chem., 2019, 91(6): 4023-4030.

[44]

Mariano R G, McKelvey K, White H S, Kanan M W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations[J]. Science, 2017, 358(6367): 1187-1192.

[45]

Liu C M, Lin H W, Huang Y S, Chu Y C, Chen C, Lyu D R, Chen K N, Tu K N. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu[J]. Sci Rep, 2015, 5(1): 9734.

[46]

Aaronson B D B, Chen C H, Li H, Koper M T M, Lai S C S, Unwin P R. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: Visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction[J]. J. Am. Chem. Soc., 2013, 135(10): 3873-3880.

[47]

Chen C H, Meadows K E, Cuharuc A, Lai S C S, Unwin P R. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18545-18552.

PDF (1160KB)

257

Accesses

0

Citation

Detail

Sections
Recommended

/