Electrochemical-Method-Induced Strong Metal-Support Interaction in Pt-CNT@SnO2 for CO-Tolerant Hydrogen Oxidation Reaction

Shen-Zhou Li , Zi-Jie Lin , Qi-An Chen , Zhao Cai , Qing Li

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (12) : 2404121

PDF (2349KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (12) :2404121 DOI: 10.61558/2993-074X.3474
ARTICLE
research-article

Electrochemical-Method-Induced Strong Metal-Support Interaction in Pt-CNT@SnO2 for CO-Tolerant Hydrogen Oxidation Reaction

Author information +
History +
PDF (2349KB)

Abstract

Inducing the classic strong metal-support interaction (SMSI) is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles (NPs) with supports. Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs. In this study, a mild electrochemical method has been developed as a new approach to induce SMSI, using the cable structured core@shell CNT@SnO2 loaded Pt NPs as a proof of concept. The induced SnOx encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction (HOR), and the HOR current density could still maintain 85% for 2000 s with 10000 ppm CO in H2, while the commercial Pt/C is completely inactivated. In addition, the electrons transfer from SnOx to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO2, achieving the excellent exchange current density of 1.55 A·mgPt-1. In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnOx caused by the electrochemical redox operation, and the weakening the Sn-O bond strength by Pt NPs.

Keywords

Strong metal-support interaction / Pt / Supported metal catalyst / Hydrogen oxidation reaction / CO tolerance

Cite this article

Download citation ▾
Shen-Zhou Li, Zi-Jie Lin, Qi-An Chen, Zhao Cai, Qing Li. Electrochemical-Method-Induced Strong Metal-Support Interaction in Pt-CNT@SnO2 for CO-Tolerant Hydrogen Oxidation Reaction. Journal of Electrochemistry, 2024, 30(12): 2404121 DOI:10.61558/2993-074X.3474

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van Deelen T W, Hernández Mejía C, de Jong K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat. Catal., 2019, 2(11): 955-970.

[2]

Li Y Y, Zhang Y S, Qian K, Huang W X. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts[J]. ACS Catal., 2022, 12(2): 1268-1287.

[3]

Tang H L, Wei J K, Liu F, Qiao B T, Pan X L, Li L, Liu J Y, Wang J H, Zhang T. Strong metal-support interactions between gold nanoparticles and nonoxides[J]. J. Am. Chem. Soc., 2015, 138(1): 56-59.

[4]

Luo Z X, Zhao G Q, Pan H G, Sun W P. Strong metal-support interaction in heterogeneous catalysts[J]. Adv. Energy Mater., 2022, 12(37): 2201395.

[5]

Tauster S J, Fung S C, Garten R L. Strong metal-support interactions. Group 8 noble metals supported on TiO2[J]. J. Am. Chem. Soc., 1978, 100(1): 170-175.

[6]

Beck A, Huang X, Artiglia L, Zabilskiy M, Wang X, Rzepka P, Palagin D, Willinger M G, van Bokhoven J A. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction[J]. Nat. Commun., 2020, 11(1): 3220.

[7]

Zhang S, Plessow P N, Willis J J, Dai S, Xu M, Graham G W, Cargnello M, Abild-Pedersen F, Pan X. Dynamical observation and detailed description of catalysts under strong metal-support interaction[J]. Nano Lett., 2016, 16(7): 4528-4534.

[8]

Ro I, Resasco J, Christopher P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts[J]. ACS Catal., 2018, 8(8): 7368-7387.

[9]

Zhang Y R, Yan W J, Qi H F, Su X, Su Y, Liu X Y, Li L, Yang X F, Huang Y Q, Zhang T. Strong metal-support interaction of Ru on TiO2 derived from the Co-reduction mechanism of RuxTi1-xO2 interphase[J]. ACS Catal., 2022, 12(3): 1697-1705.

[10]

Wang L X, Wang L, Meng X J, Xiao F S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Adv. Mater., 2019, 31(50): 1901905.

[11]

Pu T C, Zhang W H, Zhu M H. Engineering heterogeneous catalysis with strong metal-support interactions: Characterization, theory and manipulation[J]. Angew. Chem. Int. Ed., 2022, 62(4): e202212278.

[12]

Feng R X, Li D, Yang H Z, Li C Y, Zhao Y X, Waterhouse G I N, Shang L, Zhang T R. Epitaxial ultrathin Pt atomic layers on CrN nanoparticle catalysts[J]. Adv. Mater., 2023, 36(9): 2309251.

[13]

Yang Z J, Chen C Q, Zhao Y X, Wang Q, Zhao J Q, Waterhouse G I N, Qin Y, Shang L, Zhang T R. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J]. Adv. Mater., 2023, 35(1): 2208799.

[14]

Zhang Y S, Liu J X, Qian K, Jia A P, Li D, Shi L, Hu J, Zhu J F, Huang W X. Structure sensitivity of Au-TiO2 strong metal-support interactions[J]. Angew. Chem. Int. Ed., 2021, 60(21): 12074-12081.

[15]

Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren YG, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide[J]. Sci. Adv., 2017, 3(10): e1700231.

[16]

Zhang X X, Shi W, Li Y, Zhao W N, Han S B, Shen W J. Pt3Ti intermetallic alloy formed by strong metal-support interaction over Pt/TiO2 for the selective hydrogenation of acetophenone[J]. ACS Catal., 2023, 13(7): 4030-4041.

[17]

Wang X, Beck A, van Bokhoven J A, Palagin D. Thermodynamic insights into strong metal-support interaction of transition metal nanoparticles on titania: Simple descriptors for complex chemistry[J]. J. Mater. Chem. A, 2021, 9(7): 4044-4054.

[18]

Liu S F, Qi H F, Zhou J H, Xu W, Niu Y M, Zhang B S, Zhao Y, Liu W, Ao Z M, Kuang Z C, Li L, Wang M, Wang J H. Encapsulation of platinum by titania under an oxidative atmosphere: Contrary to classical strong metal-support interactions[J]. ACS Catal., 2021: 6081-6090.

[19]

Chen H, Yang Z Z, Wang X, Polo-Garzon F, Halstenberg P W, Wang T, Suo X, Yang S Z, Meyer H M, Wu Z L, Dai S. Photoinduced strong metal-support interaction for enhanced catalysis[J]. J. Am. Chem. Soc., 2021, 143(23): 8521-8526.

[20]

Siniard K M, Li M, Yang S Z, Zhang J, Polo-Garzon F, Wu Z, Yang Z, Dai S. Ultrasonication-induced strong metal-support interaction construction in water towards enhanced catalysis[J]. Angew. Chem. Int. Ed., 2023, 135(20): e202214322.

[21]

Hornberger E, Bergmann A, Schmies H, Kühl S, Wang G, Drnec J, Sandbeck D J S, Ramani V, Cherevko S, Mayrhofer K J J, Strasser P. In situ stability studies of platinum nanoparticles supported on ruthenium-titanium mixed oxide (RTO) for fuel cell cathodes[J]. ACS Catal., 2018, 8(10): 9675-9683.

[22]

Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 3.

[23]

Chen H J, Tang M H, Chen S L. Hydrophobicity optimization of cathode catalyst layer for proton exchange membrane fuel cell[J]. J. Electrochem., 2023, 29(9): 2.

[24]

Liu X, Wang Y H, Liang J S, Li S Z, Zhang S Y, Su D, Cai Z, Huang Y H, Elbaz L, Li Q. Introducing electron buffers into intermetallic Pt alloys against surface polarization for high-performing fuel cells[J]. J. Am. Chem. Soc., 2024, 146(3): 2033-2042.

[25]

Liu X, Zhao Z L, Liang J S, Li S Z, Lu G, Priest C, Wang T Y, Han J T, Wu G, Wang X M, Huang Y H, Li Q. Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells[J]. Angew. Chem. Int. Ed., 2023, 62(23): e202302134.

[26]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169.

[27]

Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953.

[28]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865.

[29]

Monkhorst H J, Pack J D. Special points for brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188-5192.

[30]

Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. J. Phys. Chem. A, 2011, 115(21): 5461-5466.

[31]

Patterson A L. The scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982.

[32]

Geppert T N, Bosund M, Putkonen M, Stuhmeier B M, Pasanen A T, Heikkila P, Gasteiger H A, El-Sayed H A. HOR activity of Pt-TiO2-y at unconventionally high potentials explained: The influence of SMSI on the electrochemical behavior of Pt[J]. J. Electrochem. Soc., 2020, 167(8): 084517.

[33]

Wang Y, Li Z H, Zheng X Q, Wu R, Song J F, Chen Y L, Cao X Z, Wang Y, Nie Y. Renovating phase constitution and construction of pt nanocubes for electrocatalysis of methanol oxidation via a solvothermal-induced strong metal-support interaction[J]. Appl. Catal. B-Environ., 2023, 325: 122383.

[34]

Jang J, Sharma M, Choi D, Kang Y S, Kim Y, Min J, Sung H, Jung N, Yoo S J. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal-carbon hybrid core-shell catalyst[J]. ACS Appl. Mater. Interfaces, 2019, 11(31): 27735-27742.

[35]

Fu Q, Colmenares Rausseo L C, Martinez U, Dahl P I, Garcia Lastra J M, Vullum P E, Svenum I H, Vegge T. Effect of sb segregation on conductance and catalytic activity at Pt/Sb-doped SnO2 interface: A synergetic computational and experimental study[J]. ACS Appl. Mater. Interfaces, 2015, 7(50): 27782-27795.

[36]

Wang Q, Gu Y D, Zhu W X, Han L, Pan F, Song C. Noble-metal-assisted fast interfacial oxygen migration with topotactic phase transition in perovskite oxides[J]. Adv. Funct. Mater., 2021, 31(40): 2106765.

[37]

Li S Z, Liu J Y, Liang J S, Lin Z J, Liu X, Chen Y, Lu G, Wang C L, Wei P, Han J T, Huang Y H, Wu G, Li Q. Tuning oxygen vacancy in SnO2 inhibits Pt migration and agglomeration towards high-performing fuel cells[J]. Appl. Catal. B-Environ., 2023, 320: 122017.

[38]

Lin Z J, Liu J Y, Li S Z, Liang J S, Liu X, Xie L F, Lu G, Han J T, Huang Y H, Li Q. Anti-corrosive SnS2/SnO2 heterostructured support for Pt nanoparticles enables remarkable oxygen reduction catalysis via interfacial enhancement[J]. Adv. Funct. Mater., 2023, 33(11): 2211638.

[39]

Samanta R, Mishra R, Barman S. Interface-engineered porous Pt-PdO nanostructures for highly efficient hydrogen evolution and oxidation reactions in base and acid[J]. ACS Sustainable Chem. Eng., 2022, 10(11): 3704-3715.

[40]

Zhou Y J, Yu F Y, Lang Z L, Nie H D, Wang Z Z, Shao M W, Liu Y, Tan H Q, Li Y G, Kang Z H. Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs[J]. Chem. Eng. J., 2021, 426: 130709.

[41]

Jin C Q, Wu F L, Tang H B, Pan H F, Chen Z D, Wang R, Meng Z H, Li J S, Tang H L. Confined tuning of the charge distribution of Pt electrocatalyst for reinforcing anti-poisoning ability: Toward efficient separation of hydrogen from gases containing ammonia[J]. Chem. Eng. J., 2023, 475: 146139.

[42]

Chen G Z, Chen W, Lu R H, Ma C, Zhang Z D, Huang Z Y, Weng J N, Wang Z Y, Han Y H, Huang W. Near-atomic-scale superfine alloy clusters for ultrastable acidic hydrogen electrocatalysis[J]. J. Am. Chem. Soc., 2023, 145(40): 22069-22078.

[43]

Li X, Han X, Yang Z R, Wang S, Yang Y, Wang J, Chen J D, Chen Z W, Jin H L. Lattice-distorted Pt wrinkled nanoparticles for highly effective hydrogen electrocatalysis[J]. Nano Res., 2024: 1-8.

[44]

Huang Z Y, Lu R H, Zhang Y Z, Chen W, Chen G Z, Ma C, Wang Z Y, Han Y H, Huang W. A highly efficient pH-universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms[J]. Adv. Funct. Mater., 2023, 33(47): 230633.

[45]

Zhou Y Y, Xie Z Y, Jiang J X, Wang J, Song X Y, He Q, Ding W, Wei Z D. Lattice-confined ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat. Catal., 2021, 4(4): 341-341.

PDF (2349KB)

143

Accesses

0

Citation

Detail

Sections
Recommended

/