Electronic Communication between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction

Meng-Ting Gao , Ying Wei , Xue-Meng Hu , Wenj-Jie Zhu , Qing-Qing Liu , Jin-Yuan Qiang , Wan-Wan Liu , Ying Wang , Xu Li , Jian-Feng Huang , Yong-Qiang Feng

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (9) : 2403081

PDF (2704KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (9) :2403081 DOI: 10.61558/2993-074X.3460
ARTICLE
research-article

Electronic Communication between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction

Author information +
History +
PDF (2704KB)

Abstract

Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction (HER) remains a significant challenge. Here, a novel and efficient cobalt (Co), ruthenium (Ru) bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes (CoRu@N-CNTs), was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis. Benefiting from the electronic communication between Co and Ru sites, the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity. To deliver a current density of 10 mA·cm-2, it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec-1 in 1 mol·L-1 potassium hydroxide (KOH) solution, outperforming the benchmark Pt/C catalyst. The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion.

Keywords

CoRu alloy / Electrocatalyst / Water splitting / Hydrogen evolution reaction / Carbon nanotubes

Cite this article

Download citation ▾
Meng-Ting Gao, Ying Wei, Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, Jin-Yuan Qiang, Wan-Wan Liu, Ying Wang, Xu Li, Jian-Feng Huang, Yong-Qiang Feng. Electronic Communication between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction. Journal of Electrochemistry, 2024, 30(9): 2403081 DOI:10.61558/2993-074X.3460

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiao M F, Wang Y, Wang Q, Hu G Z, Mamat X, Zhang S S, Wang S Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angew. Chem. Int. Ed., 2020, 59(7): 2688-2694.

[2]

Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230.

[3]

Hodges A, Hoang A L, Tsekouras G, Wagner K, Lee C Y, Swiegers G F, Wallace G G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen[J]. Nat. Commun., 2022, 13(1): 1304.

[4]

Chu C H, Huang D H, Gupta S, Weon S, Niu J F, Stavitski E, Muhich C, Kim J H. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis[J]. Nat. Commun., 2021, 12(1): 5179.

[5]

Kang J X, Qiu X Y, Hu Q, Zhong J, Gao X, Huang R, Wan C Z, Liu L M, Duan X F, Guo L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation[J]. Nat. Catal., 2021, 4(12): 1050-1058.

[6]

Gao T T, Li X Q, Chen X J, Zhou C X, Yue Q, Yuan H Y, Xiao D. Ultra-fast preparing carbon nanotube-supported trimetallic Ni, Ru, Fe heterostructures as robust bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021, 424: 130416.

[7]

Wang T J, Jiang Y C, He J W, Li F M, Ding Y, Chen P, Chen Y. Porous palladium phosphide nanotubes for formic acid electrooxidation[J]. Carbon Energy, 2022, 4(3): 283-293.

[8]

Jiang W J, Tang T, Zhang Y, Hu J S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Acc. Chem. Res., 2020, 53(6): 1111-1123.

[9]

Huang C, Ouyang T, Zou Y, Li N, Liu Z Q. Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting[J]. J. Mater. Chem. A, 2018, 6(17): 7420-7427.

[10]

Olabi A G, Abdelkareem M A. Renewable energy and climate change[J]. Renew. Sus. Energ. Rev., 2022, 158: 112111.

[11]

Wang X N, Zhao L M, Li X J, Liu Y, Wang Y S, Yao Q F, Xie J P, Xue Q Z, Yan Z F, Yuan X, Xing W. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation[J]. Nat. Commun., 2022, 13(1): 1596.

[12]

Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2021, 60(33): 17832-17852.

[13]

Chen H, Zhang B, Liang X, Zou X X. Light alloying element-regulated noble metal catalysts for energy-related applications[J]. Chinese J. Catal., 2022, 43(3): 611-635.

[14]

Sun Y M, Xue Z Q, Liu Q L, Jia Y L, Li Y L, Liu K, Lin Y Y, Liu M, Li G Q, Su C Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 1369.

[15]

Clay C, Haq S, Hodgson A. Intact and dissociative adsorption of water on Ru(0001)[J]. Chem. Phys. Lett., 2004, 388(1): 89-93.

[16]

Cao X J, Huo J J, Li L, Qu J P, Zhao Y F, Chen W H, Liu C T, Liu H, Wang G X. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions[J]. Adv. Energy Mater., 2022, 12(41): 2202119.

[17]

Liu Z, Zeng L L, Yu J Y, Yang L J, Zhang J, Zhang X L, Han F, Zhao L L, Li X, Liu H, Zhou W J. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction[J]. Nano Energy, 2021, 85: 105940.

[18]

Wang Y J, Luo W J, Li H J, Cheng C A W. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction[J]. Nanoscale Adv., 2021, 3(17): 5068-5074.

[19]

Wu Y L, Li X, Wei Y S, Fu Z, Wei W, Wu X T, Zhu Q L, Xu Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction[J]. Adv. Mater., 2021, 33(12): 2006965.

[20]

Zhang X L, Ma J, Yan R W, Cheng W X, Zheng J, Jin B K. Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation[J]. J. Alloy. Compd, 2021, 867: 159017.

[21]

Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller J T, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021, 12(1): 4587.

[22]

Han X, Li Y J, Wang X, Dong J T, Li H M, Yin S, Xia J X. Ru anchored on Co(OH)2 nanowire arrays as highly effective electrocatalyst for full water splitting[J]. Int. J. Hydrogen Energ., 2024, 51: 769-776.

[23]

Liu Z, Yang X D, Hu G Z, Feng L G. Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2020, 8(24): 9136-9144.

[24]

Shah K, Dai R Y, Mateen M, Hassan Z, Zhuang Z W, Liu C H, Israr M, Cheong W C, Hu B T, Tu R Y, Zhang C, Chen X, Peng Q, Chen C, Li Y D. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER[J]. Angew. Chem. Int. Ed., 2022, 61(4): e202114951.

[25]

Martínez-Séptimo A, Valenzuela M A, Del Angel P, González-Huerta G R. Irruox/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media[J]. Int. J. Hydrogen Energ., 2021, 46(51): 25918-25928.

[26]

Li G K, Jang H, Liu S G, Li Z J, Kim M G, Qin Q, Liu X, Cho J. The synergistic Effect of Hf-O-Ru Bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution[J]. Nat. Commun., 2022, 13(1): 1270.

[27]

Feng W H, Feng Y Q, Chen J S, Wang H, Hu Y Z, Luo T M, Yuan C K, Cao L Y, Feng L L, Huang J F. Interfacial electronic engineering of Ru/FeRu nanoparticles as efficient trifunctional electrocatalyst for overall water splitting and Zn-Air battery[J]. Chem. Eng. J., 2022, 437: 135456.

[28]

Lin S Y, Chen Y P, Cao Y, Zhang L, Feng J J, Wang A J. Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn-Air battery and water electrolysis[J]. J. Power Sources, 2022, 521: 230926.

[29]

Song H Q, Wu M, Tang Z Y, Tse J S, Yang B, Lu S Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7234-7244.

[30]

Kumar A, Bui V Q, Lee J, Wang L, Jadhav A R, Liu X, Shao X, Liu Y, Yu J, Hwang Y, Bui H T D, Ajmal S, Kim M G, Kim S G, Park G S, Kawazoe Y, Lee H. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 6766.

[31]

Lu Z Y, Wang B F, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angew. Chem. Int. Ed., 2019, 58(9): 2622-2626.

[32]

Bai L, Hsu C S, Alexander D T L, Chen H M, Hu X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis[J]. Nat. Energy, 2021, 6(11): 1054-1066.

[33]

Liu D B, Zhao Y, Wu C Q, Xu W J, Xi S B, Chen M X, Yang L, Zhou Y Z, He Q, Li X Y, Ge B H, Song L, Jiang J, Yan Q Y. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics[J]. Nano Energy, 2022, 98: 107296.

[34]

Li J Z, Hou C Z, Chen C, Ma W S, Li Q, Hu L W, Lv X W, Dang J. Collaborative interface optimization strategy guided ultrafine RuCo and Mxene heterostructure electrocatalysts for efficient overall water splitting[J]. ACS Nano, 2023, 17(11): 10947-10957.

[35]

Su K Y, Yang S, Yang A Z, Guo Y, Liu B, Zhu J W, Tang Y W, Qiu X Y. Customizing the anisotropic electronic states of Janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis[J]. Appl. Catal. B-Environ., 2023, 331: 122694.

[36]

Luo T M, Huang J F, Hu Y Z, Yuan C K, Chen J S, Cao L Y, Kajiyoshi K, Liu Y J, Zhao Y, Li Z J, Feng Y Q. Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction[J]. Adv. Funct. Mater., 2023, 33(12): 2213058.

[37]

Wei C, Rao R R, Peng J, Huang B, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv. Mater., 2019, 31(31): 1806296.

[38]

Chen J, Huang J, Wang R, Feng W, Wang H, Luo T, Hu Y, Yuan C, Feng L, Cao L, Kajiyoshi K, He C, Liu Y, Li Z, Feng Y. Atomic ruthenium coordinated with chlorine and nitrogen as efficient and multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air battery[J]. Chem. Eng. J., 2022, 441: 136078.

[39]

Feng Y Q, Li X, Liu Q Q, Zhu W J, Huo X M, Gao M T, Liu W W, Wang Y, Wei Y. Fullerene-derived nanocomposite as an efficient electrocatalyst for overall water splitting and Zn-air battery[J]. Mater. Chem. Front., 2023, 7(24): 6446-6462.

[40]

Chen J S, Huang J F, Zhao Y, Cao L Y, Kajiyoshi K, Liu Y J, Li Z J, Feng Y Q. Enhancing the electronic metal-support interaction of CoRu alloy and pyridinic N for electrocatalytic pH-universal hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 450: 138026.

[41]

Duan S S, Han G S, Su Y H, Zhang X Y, Liu Y Y, Wu X L, Li B J. Magnetic Co@G-C3N4 core-shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation[J]. Langmuir, 2016, 32(25): 6272-6281.

[42]

Zhang F F, Zhu Y L, Chen Y, Lu Y Z H, Lin Q, Zhang L, Tao S W, Zhang X W, Wang H T. RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(25): 12810-12820.

[43]

Zhang M L, Wang J L, Zhang Y Q, Ye L, Gong Y Q. Ultrafine CoRu alloy nanoparticles in situ embedded in Co4N Porous nanosheets as high-efficient hydrogen evolution electrocatalysts[J]. Dalton Trans., 2021, 50(8): 2973-2980.

[44]

Chen J, Ha Y, Wang R R, Liu Y X, Xu H B, Shang B, Wu R B, Pan H G. Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis[J]. Nano-Micro Lett., 2022, 14(1): 186.

[45]

Cao D, Wang J Y, Xu H X, Cheng D J. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution[J]. Small, 2021, 17(31): 2101163.

[46]

Tiwari J N, Harzandi A M, Ha M, Sultan S, Myung C W, Park H J, Kim D Y, Thangavel P, Singh A N, Sharma P, Chandrasekaran S S, Salehnia F, Jang J W, Shin H S, Lee Z, Kim K S. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-Doped graphitic sheet[J]. Adv. Energy Mater., 2019, 9(26): 1900931.

[47]

Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, Hu B T, Wang D S, Peng Q, Chen C, Li Y D. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8982-8990.

[48]

Yu W H, Huang H, Qin Y N, Zhang D, Zhang Y Y, Liu K, Zhang Y, Lai J P, Wang L. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution[J]. Adv. Energy Mater., 2022, 12(21): 2200110.

[49]

Chen Y W, Ding R, Li J, Liu J G. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy[J]. Appl. Catal. B-Environ., 2022, 301: 120830.

[50]

Su P P, Pei W, Wang X W, Ma Y F, Jiang Q K, Liang J, Zhou S, Zhao J J, Liu J, Lu G Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate[J]. Angew. Chem. Int. Ed., 2021, 60(29): 16044-16050.

PDF (2704KB)

570

Accesses

0

Citation

Detail

Sections
Recommended

/