Numerical Analysis of Explosion Characteristics of Vent Gas from 18650 LiFePO4 Batteries with Different States of Charge

Shi-Lin Wang , Xu Gong , Li-Na Liu , Yi-Tong Li , Chen-Yu Zhang , Le-Jun Xu , Xu-Ning Feng , Huai-Bin Wang

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (8) : 2309241

PDF (1405KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (8) :2309241 DOI: 10.61558/2993-074X.3454
Article
research-article

Numerical Analysis of Explosion Characteristics of Vent Gas from 18650 LiFePO4 Batteries with Different States of Charge

Author information +
History +
PDF (1405KB)

Abstract

The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries. Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles, thereby promoting the application and development of lithium-ion batteries. Based on this understanding and combined with previous research on gas production from lithium-ion batteries, this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge (SOCs). The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the "elimination" method, and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas. And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas. The study found that the 100% SOC battery has the lowest explosion limit of the vent gas. The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher. Therefore, it has the maximum laminar flame speed and adiabatic flame temperature. The combustion and explosion hazard of battery vent gas increases with the increase of SOC, and the risk of explosion is the greatest and most harmful when SOC reaches 100%. However, the related hazards decrease to varying degrees with overcharging of the battery. This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries, revealing the impact of SOC on the hazardousness of battery vent gas. It provides references for the safety of storage and transportation of lithium-ion batteries, safety protection of energy storage stations, and the selection of related fire extinguishing agents.

Keywords

Combustion and explosion characteristics / Explosion limit / Laminar flame speed / Adiabatic flame temperature / Sensitivity analysis

Cite this article

Download citation ▾
Shi-Lin Wang, Xu Gong, Li-Na Liu, Yi-Tong Li, Chen-Yu Zhang, Le-Jun Xu, Xu-Ning Feng, Huai-Bin Wang. Numerical Analysis of Explosion Characteristics of Vent Gas from 18650 LiFePO4 Batteries with Different States of Charge. Journal of Electrochemistry, 2024, 30(8): 2309241 DOI:10.61558/2993-074X.3454

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song L B, Zheng Y H, Xiao Z L, Wang C, Long T Y. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. J. Electron. Mater., 2021, 51(1): 30-46.

[2]

Feng X N, Lu L G, Ouyang M G, Li J Q, He X M. A 3d thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.

[3]

Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Mater., 2018, 10: 246-267.

[4]

Duan J, Tang X, Dai H F, Yang Y, Wu W Y, Wei X Z, Huang Y H. Building safe lithium-ion batteries for electric vehicles: A review[J]. Electrochem. Energy Rev., 2019, 3(1): 1-42.

[5]

International Energy Agency: Global EV Data Explorer[DB/OL]. https://www.iea.org/data-and-statistics

[6]

Zhang H, Wang L, He X M. Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNiXMnYCo1-x-yO2 cathode materials[J]. Battery Energy, 2021, 1(1): 20210011.

[7]

Liu Y, Mao Y, Wang H C, Pan Y J, Liu B H. Internal short circuit of lithium metal batteries under mechanical abuse[J]. Int. J. Mech. Sci., 2023, 245: 108130.

[8]

Golubkov A W, Planteu R, Krohn P, Rasch B, Brunnsteiner B, Thaler A, Hacker V. Thermal runaway of large automotive li-ion batteries[J]. RSC Adv., 2018, 8(70): 40172-40186.

[9]

Liu B H, Jia Y K, Yuan C H, Wang L B, Gao X, Yin S, Xu J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review[J]. Energy Storage Mater., 2020, 24: 85-112.

[10]

Szabo I, Sirca A A, Scurtu L, Kocsis L, Hanches I N, Mariaşiu F. Comparative study of Li-ion 21700 cylindrical cell under mechanical deformation[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2022, 1256(1): 012023.

[11]

Zeyu C, Rui X, Sun F C. Research status and analysis for battery safety accidents in electric vehicles[J]. J. Mech. Eng., 2019, 55(24): 93-104.

[12]

Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878.

[13]

Peng Y, Yang L Z, Ju X Y, Liao B S, Ye K, Li L, Cao B, Ni Y. A Comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. J. Hazard. Mater., 2020, 381: 120916.

[14]

Koch S, Fill A, Birke K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. J. Power sources, 2018, 398: 106-112.

[15]

Zhang Q S, Niu J H, Yang J, Liu T T, Bao F W, Wang Q. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway[J]. J. Energy Storage, 2022, 56: 106146.

[16]

Baird A R, Archibald E J, Marr K C, Ezekoye O A. Explosion hazards from lithium-ion battery vent gas[J]. J. Power sources, 2020, 446: 227257.

[17]

Hu E J, Huang Z H, Jiang X, Li Q Q, Zhang X Y. Kinetic study on laminar burning velocities and ignition delay times of C1-C4 alkanes[J]. J. Eng. Thermophys-RUS, 2013, 34(3): 558-562

[18]

Ma B, Liu J, Yu R G. Study on the flammability limits of lithium-ion battery vent gas under different initial conditions[J]. ACS Omega, 2020, 5(43): 28096-28107.

[19]

Fan R J, Wang Z R, Lu Y W, Lin C D, Guo W J. Numerical analysis on the combustion characteristic of lithium-ion battery vent gases and the suppression effect[J]. Fuel, 2022, 330: 125450.

[20]

Golubkov A W, Scheikl S, Planteu R, Voitic G, Wiltsche H, Stangl C, Fauler G, Thaler A, Hacker V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - Impact of state of charge and overcharge[J]. RSC Adv., 2015, 5(70): 57171-57186.

[21]

Wang H, You A V, Joshi S G, et al. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds[DB/OL]. 2018-06-20, http://ignis.usc.edu/USC_Mech_Il.htm

[22]

Akram M, Saxena P, Kumar S. Laminar burning velocity of methane-air mixtures at elevated temperatures[J]. Energy Fuels, 2013, 27(6): 3460-3466.

[23]

Liu Z, Kim N I. An assembled annular stepwise diverging tube for the measurement of laminar burning velocity and quenching distance[J]. Combust. Flame, 2014, 161(6): 1499-1506.

[24]

Pagliaro J L, Linteris G T, Sunderland P B, Baker P T. Combustion inhibition and enhancement of premixed methane-air flames by halon replacements[J]. Combust. Flame, 2015, 162(1): 41-49.

[25]

Shang R X, Zhang Y, Zhu M M, Zhang Z Z, Zhang D K, Li G. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames[J]. Int. J. Hydrog. Energy, 2016, 41(33): 15056-15067.

[26]

Guo C C, Zhang Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. JSSE, 2016, 12(9): 46-49

[27]

Chen Y. Industrial fire and explosion accident prevention[M]. Beijing: Chemical Industry Press, 2010.

[28]

Wang H B, Xu H, Zhang Z L, Wang Q Z, Jin C Y, Wu C J, Xu C S, Hao J Y, Sun L, Du Z M, Li Y, Sun J L, Feng X N. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190.

PDF (1405KB)

255

Accesses

0

Citation

Detail

Sections
Recommended

/