Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry

Qiong Sun , Hai-Hui Du , Tian-Jiang Sun , Dian-Tao Li , Min Cheng , Jing Liang , Hai-Xia Li , Zhan-Liang Tao

Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (7) : 2314002

PDF (1946KB)
Journal of Electrochemistry ›› 2024, Vol. 30 ›› Issue (7) :2314002 DOI: 10.61558/2993-074X.3447
ARTICLE
research-article

Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry

Author information +
History +
PDF (1946KB)

Abstract

The unstable zinc (Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries. Herein, the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry. The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity, optimize the solvation shell of water and Zn2+ ions, and regulate the formation of local water (H2O)-poor environment on the surface of Zn electrode, which effectively inhibit the decomposition of water molecules, and thus, achieve the thermodynamically stable and highly reversible Zn electrochemistry. As a result, the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm-2 and 1 mAh·cm-2, and over 250 h at 5 mA·cm-2 and 5 mAh·cm-2. Moreover, the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%, obtaining a better performance than that with a pure 2 mol·L-1 ZnSO4 electrolyte. And the constructed Zn/poly1, 5-naphthalenediamine (PNDA) batteries could be stably discharged for 2300 cycles at 1 A·g-1 with an excellent capacity retention rate. This result indicates that the addition of 1 mol·L-1 non-toxic sorbitol into a conventional ZnSO4 electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition, which greatly promotes its cycle performance, providing a new approach in future development of high performance aqueous Zn ion batteries.

Keywords

aqueous zinc ion batteries / dendrite / sorbitol additive / solvation regulation / interface modulation

Cite this article

Download citation ▾
Qiong Sun, Hai-Hui Du, Tian-Jiang Sun, Dian-Tao Li, Min Cheng, Jing Liang, Hai-Xia Li, Zhan-Liang Tao. Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry. Journal of Electrochemistry, 2024, 30(7): 2314002 DOI:10.61558/2993-074X.3447

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.

[2]

Liang J, Li X, Zhao Y, Goncharova L V, Wang G, Adair K R, Wang C, Li R, Zhu Y, Qian Y, Zhang L, Yang R, Lu S, Sun X. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Adv. Mater., 2018, 30(45): 1804684.

[3]

Chang N N, Li T Y, Li R, Wang S N, Yin Y B, Zhang H M, Li X F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy Environ. Sci., 2020, 13(10): 3527-3535.

[4]

Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.

[5]

Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.

[6]

Cai Z, Wang J, Sun Y. Anode corrosion in aqueous Zn metal batteries[J]. eScience, 2023, 3(1): 100093.

[7]

Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549.

[8]

Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.

[9]

Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L, Mai W J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18247-18255.

[10]

Cao J, Zhang D D, Zhang X Y, Zeng Z Y, Qin J Q, Huang Y H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries[J]. Energy Environ. Sci., 2022, 15(2): 499-528.

[11]

Ma G Q, Miao L C, Dong Y, Yuan W T, Nie X Y, Di S L, Wang Y Y, Wang L B, Zhang N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries[J]. Energy Storage Mater., 2022, 47: 203-210.

[12]

Ye Z, Cao Z, Chee M O L, Dong P, Ajayan P M, Shen J, Ye M. Advances in Zn-ion batteries via regulating liquid electrolyte[J]. Energy Storage Mater., 2020, 32: 290-305.

[13]

Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X, Q, Wang C S. Solvation structure design for aqueous Zn metal batteries[J]. J. Am. Chem. Soc., 2020, 142(51): 21404-21409.

[14]

Shi J Q, Sun T J, Bao J Q, Zheng S B, Du H H, Li L, Yuan X M, Ma T, Tao Z L. "Water-in-deep eutectic solvent" electrolytes for high-performance aqueous Zn-ion batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2102035.

[15]

Zhang Q, Ma Y L, Lu Y, Li L, Wan F, Zhang K, Chen J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nat. Commun., 2020, 11(1): 4463.

[16]

Li T C, Lin C, Luo M, Wang P, Li D S, Li S, Zhou J, Yang H Y. Interfacial molecule engineering for reversible Zn electrochemistry[J]. ACS Energy Lett., 2023, 8(8): 3258-3268.

[17]

Li D, Cao L S, Deng T, Liu S F, Wang C S. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angew. Chem. Int. Ed., 2021, 60(23): 13035-13041.

[18]

Qiu M J, Ma L, Sun P, Wang Z L, Cui G F, Mai W J. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode[J]. Nano-Micro Lett., 2022, 14: 31.

[19]

Yu L, Huang J, Wang S J, Qi L H, Wang S S, Chen C J. Ionic liquid "water pocket" for stable and environment-adaptable aqueous zinc metal batteries[J]. Adv. Mater., 2023, 35(21): 2210789.

[20]

Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C, Oostenbrink C, Mark A E. An automated force field topology builder (atb) and repository: version 1.0[J]. J. Chem. Theory Comput., 2011, 7(12): 4026-4037.

[21]

Hess B. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Abstr. Papers Am. Chem. Soc., 2009, 237: 435-447.

[22]

Lomas J S, Joubert L, Maurel F. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of 1H NMR chemical shifts[J]. Magn. Reson. Chem., 2016, 54(10): 805-814.

[23]

Sun T J, Nian Q S, Ren X D, Tao Z L. Hydrogen-bond chemistry in rechargeable batteries[J]. Joule, 2023, 7(12): 2700-2731.

[24]

Wei J, Zhang P B, Shen T Y, Liu Y Z, Dai T F, Tie Z X, Jin Z. Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries[J]. ACS Energy Lett., 2023, 8(1): 762-771.

[25]

Lu H T, Zhang X L, Luo M H, Cao K S, Lu Y H, Xu B B, Pan H G, Tao K, Jiang Y Z. Amino acid-induced interface charge engineering enables highly reversible Zn anode[J]. Adv. Funct. Mater., 2021, 31(45): 2103514.

[26]

Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023, 62(27): e202304444.

[27]

Chen W Y, Guo S, Qin L P, Li L Y, Cao X X, Zhou J, Luo Z G, Fang G Z, Liang S Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces[J]. Adv. Funct. Mater., 2022, 32(20): 2112609.

[28]

Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy Environ. Sci., 2019, 12(6): 1938-1949.

[29]

Miao L C, Wang R H, Di S L, Qian Z F, Zhang L, Xin W L, Liu M Y, Zhu Z Q, Chu S Q, Du Y, Zhang N. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes[J]. ACS Nano., 2022, 16 (6): 9667-9678.

[30]

Li C C, Hu L, Ren X Y, Lin L, Zhan C Z, Weng Q S, Sun X Q, Yu X L. Asymmetric charge distribution of active centers in small molecule quinone cathode boosts high-energy and high-rate aqueous zinc-organic batteries[J]. Adv. Funct. Mater., 2024, 34(16): 2313241.

[31]

Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. H+-insertion boosted α-MnO2 for an a-queous Zn-ion battery[J]. Small, 2020, 16(5): 1905842.

[32]

Zhao Y, Wang Y N, Zhao Z M, Zhao J W, Xin T, Wang N, Liu J Z. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode[J]. Energy Storage Mater., 2020, 28: 64-72.

PDF (1946KB)

443

Accesses

0

Citation

Detail

Sections
Recommended

/